new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 20

Priority Matters: Optimising Kubernetes Clusters Usage with Constraint-Based Pod Packing

Distributed applications employ Kubernetes for scalable, fault-tolerant deployments over computer clusters, where application components run in groups of containers called pods. The scheduler, at the heart of Kubernetes' architecture, determines the placement of pods given their priority and resource requirements on cluster nodes. To quickly allocate pods, the scheduler uses lightweight heuristics that can lead to suboptimal placements and resource fragmentation, preventing allocations of otherwise deployable pods on the available nodes. We propose the usage of constraint programming to find the optimal allocation of pods satisfying all their priorities and resource requests. Implementation-wise, our solution comes as a plug-in to the default scheduler that operates as a fallback mechanism when some pods cannot be allocated. Using the OR-Tools constraint solver, our experiments on small-to-mid-sized clusters indicate that, within a 1-second scheduling window, our approach places more higher-priority pods than the default scheduler (possibly demonstrating allocation optimality) in over 44\% of realisable allocation scenarios where the default scheduler fails, while certifying that the default scheduler's placement is already optimal in over 19\% of scenarios. With a 10-second window, our approach improves placements in over 73\% and still certifies that the default scheduler's placement is already optimal in over 19\% of scenarios.

  • 3 authors
·
Nov 11

Priority-Centric Human Motion Generation in Discrete Latent Space

Text-to-motion generation is a formidable task, aiming to produce human motions that align with the input text while also adhering to human capabilities and physical laws. While there have been advancements in diffusion models, their application in discrete spaces remains underexplored. Current methods often overlook the varying significance of different motions, treating them uniformly. It is essential to recognize that not all motions hold the same relevance to a particular textual description. Some motions, being more salient and informative, should be given precedence during generation. In response, we introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM), which utilizes a Transformer-based VQ-VAE to derive a concise, discrete motion representation, incorporating a global self-attention mechanism and a regularization term to counteract code collapse. We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token within the entire motion sequence. This approach retains the most salient motions during the reverse diffusion process, leading to more semantically rich and varied motions. Additionally, we formulate two strategies to gauge the importance of motion tokens, drawing from both textual and visual indicators. Comprehensive experiments on the HumanML3D and KIT-ML datasets confirm that our model surpasses existing techniques in fidelity and diversity, particularly for intricate textual descriptions.

  • 5 authors
·
Aug 28, 2023

Priority prediction of Asian Hornet sighting report using machine learning methods

As infamous invaders to the North American ecosystem, the Asian giant hornet (Vespa mandarinia) is devastating not only to native bee colonies, but also to local apiculture. One of the most effective way to combat the harmful species is to locate and destroy their nests. By mobilizing the public to actively report possible sightings of the Asian giant hornet, the governmentcould timely send inspectors to confirm and possibly destroy the nests. However, such confirmation requires lab expertise, where manually checking the reports one by one is extremely consuming of human resources. Further given the limited knowledge of the public about the Asian giant hornet and the randomness of report submission, only few of the numerous reports proved positive, i.e. existing nests. How to classify or prioritize the reports efficiently and automatically, so as to determine the dispatch of personnel, is of great significance to the control of the Asian giant hornet. In this paper, we propose a method to predict the priority of sighting reports based on machine learning. We model the problem of optimal prioritization of sighting reports as a problem of classification and prediction. We extracted a variety of rich features in the report: location, time, image(s), and textual description. Based on these characteristics, we propose a classification model based on logistic regression to predict the credibility of a certain report. Furthermore, our model quantifies the impact between reports to get the priority ranking of the reports. Extensive experiments on the public dataset from the WSDA (the Washington State Department of Agriculture) have proved the effectiveness of our method.

  • 5 authors
·
Jun 28, 2021