- Enhancing Conversational Search: Large Language Model-Aided Informative Query Rewriting Query rewriting plays a vital role in enhancing conversational search by transforming context-dependent user queries into standalone forms. Existing approaches primarily leverage human-rewritten queries as labels to train query rewriting models. However, human rewrites may lack sufficient information for optimal retrieval performance. To overcome this limitation, we propose utilizing large language models (LLMs) as query rewriters, enabling the generation of informative query rewrites through well-designed instructions. We define four essential properties for well-formed rewrites and incorporate all of them into the instruction. In addition, we introduce the role of rewrite editors for LLMs when initial query rewrites are available, forming a "rewrite-then-edit" process. Furthermore, we propose distilling the rewriting capabilities of LLMs into smaller models to reduce rewriting latency. Our experimental evaluation on the QReCC dataset demonstrates that informative query rewrites can yield substantially improved retrieval performance compared to human rewrites, especially with sparse retrievers. 4 authors · Oct 14, 2023 2
1 Ask Optimal Questions: Aligning Large Language Models with Retriever's Preference in Conversational Search Conversational search, unlike single-turn retrieval tasks, requires understanding the current question within a dialogue context. The common approach of rewrite-then-retrieve aims to decontextualize questions to be self-sufficient for off-the-shelf retrievers, but most existing methods produce sub-optimal query rewrites due to the limited ability to incorporate signals from the retrieval results. To overcome this limitation, we present a novel framework RetPO (Retriever's Preference Optimization), which is designed to optimize a language model (LM) for reformulating search queries in line with the preferences of the target retrieval systems. The process begins by prompting a large LM to produce various potential rewrites and then collects retrieval performance for these rewrites as the retrievers' preferences. Through the process, we construct a large-scale dataset called RF collection, containing Retrievers' Feedback on over 410K query rewrites across 12K conversations. Furthermore, we fine-tune a smaller LM using this dataset to align it with the retrievers' preferences as feedback. The resulting model achieves state-of-the-art performance on two recent conversational search benchmarks, significantly outperforming existing baselines, including GPT-3.5. 6 authors · Feb 18, 2024
- Meta Knowledge for Retrieval Augmented Large Language Models Retrieval Augmented Generation (RAG) is a technique used to augment Large Language Models (LLMs) with contextually relevant, time-critical, or domain-specific information without altering the underlying model parameters. However, constructing RAG systems that can effectively synthesize information from large and diverse set of documents remains a significant challenge. We introduce a novel data-centric RAG workflow for LLMs, transforming the traditional retrieve-then-read system into a more advanced prepare-then-rewrite-then-retrieve-then-read framework, to achieve higher domain expert-level understanding of the knowledge base. Our methodology relies on generating metadata and synthetic Questions and Answers (QA) for each document, as well as introducing the new concept of Meta Knowledge Summary (MK Summary) for metadata-based clusters of documents. The proposed innovations enable personalized user-query augmentation and in-depth information retrieval across the knowledge base. Our research makes two significant contributions: using LLMs as evaluators and employing new comparative performance metrics, we demonstrate that (1) using augmented queries with synthetic question matching significantly outperforms traditional RAG pipelines that rely on document chunking (p < 0.01), and (2) meta knowledge-augmented queries additionally significantly improve retrieval precision and recall, as well as the final answers breadth, depth, relevancy, and specificity. Our methodology is cost-effective, costing less than $20 per 2000 research papers using Claude 3 Haiku, and can be adapted with any fine-tuning of either the language or embedding models to further enhance the performance of end-to-end RAG pipelines. 6 authors · Aug 16, 2024
- 3D Gaussian Splatting as Markov Chain Monte Carlo While 3D Gaussian Splatting has recently become popular for neural rendering, current methods rely on carefully engineered cloning and splitting strategies for placing Gaussians, which can lead to poor-quality renderings, and reliance on a good initialization. In this work, we rethink the set of 3D Gaussians as a random sample drawn from an underlying probability distribution describing the physical representation of the scene-in other words, Markov Chain Monte Carlo (MCMC) samples. Under this view, we show that the 3D Gaussian updates can be converted as Stochastic Gradient Langevin Dynamics (SGLD) updates by simply introducing noise. We then rewrite the densification and pruning strategies in 3D Gaussian Splatting as simply a deterministic state transition of MCMC samples, removing these heuristics from the framework. To do so, we revise the 'cloning' of Gaussians into a relocalization scheme that approximately preserves sample probability. To encourage efficient use of Gaussians, we introduce a regularizer that promotes the removal of unused Gaussians. On various standard evaluation scenes, we show that our method provides improved rendering quality, easy control over the number of Gaussians, and robustness to initialization. 9 authors · Apr 15, 2024