new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 27

Block and Detail: Scaffolding Sketch-to-Image Generation

We introduce a novel sketch-to-image tool that aligns with the iterative refinement process of artists. Our tool lets users sketch blocking strokes to coarsely represent the placement and form of objects and detail strokes to refine their shape and silhouettes. We develop a two-pass algorithm for generating high-fidelity images from such sketches at any point in the iterative process. In the first pass we use a ControlNet to generate an image that strictly follows all the strokes (blocking and detail) and in the second pass we add variation by renoising regions surrounding blocking strokes. We also present a dataset generation scheme that, when used to train a ControlNet architecture, allows regions that do not contain strokes to be interpreted as not-yet-specified regions rather than empty space. We show that this partial-sketch-aware ControlNet can generate coherent elements from partial sketches that only contain a small number of strokes. The high-fidelity images produced by our approach serve as scaffolds that can help the user adjust the shape and proportions of objects or add additional elements to the composition. We demonstrate the effectiveness of our approach with a variety of examples and evaluative comparisons. Quantitatively, evaluative user feedback indicates that novice viewers prefer the quality of images from our algorithm over a baseline Scribble ControlNet for 84% of the pairs and found our images had less distortion in 81% of the pairs.

  • 5 authors
·
Feb 28, 2024

Meta-Prompting: Enhancing Language Models with Task-Agnostic Scaffolding

We introduce meta-prompting, an effective scaffolding technique designed to enhance the functionality of language models (LMs). This approach transforms a single LM into a multi-faceted conductor, adept at managing and integrating multiple independent LM queries. By employing high-level instructions, meta-prompting guides the LM to break down complex tasks into smaller, more manageable subtasks. These subtasks are then handled by distinct "expert" instances of the same LM, each operating under specific, tailored instructions. Central to this process is the LM itself, in its role as the conductor, which ensures seamless communication and effective integration of the outputs from these expert models. It additionally employs its inherent critical thinking and robust verification processes to refine and authenticate the end result. This collaborative prompting approach empowers a single LM to simultaneously act as a comprehensive orchestrator and a panel of diverse experts, significantly enhancing its performance across a wide array of tasks. The zero-shot, task-agnostic nature of meta-prompting greatly simplifies user interaction by obviating the need for detailed, task-specific instructions. Furthermore, our research demonstrates the seamless integration of external tools, such as a Python interpreter, into the meta-prompting framework, thereby broadening its applicability and utility. Through rigorous experimentation with GPT-4, we establish the superiority of meta-prompting over conventional scaffolding methods: When averaged across all tasks, including the Game of 24, Checkmate-in-One, and Python Programming Puzzles, meta-prompting, augmented with a Python interpreter functionality, surpasses standard prompting by 17.1%, expert (dynamic) prompting by 17.3%, and multipersona prompting by 15.2%.

  • 2 authors
·
Jan 23, 2024 5

Staying in the Sweet Spot: Responsive Reasoning Evolution via Capability-Adaptive Hint Scaffolding

Reinforcement learning with verifiable rewards (RLVR) has achieved remarkable success in enhancing the reasoning capabilities of large language models (LLMs). However, existing RLVR methods often suffer from exploration inefficiency due to mismatches between the training data's difficulty and the model's capability. LLMs fail to discover viable reasoning paths when problems are overly difficult, while learning little new capability when problems are too simple. In this work, we formalize the impact of problem difficulty by quantifying the relationship between loss descent speed and rollout accuracy. Building on this analysis, we propose SEELE, a novel supervision-aided RLVR framework that dynamically adjusts problem difficulty to stay within the high-efficiency region. SEELE augments each training sample by appending a hint (part of a full solution) after the original problem. Unlike previous hint-based approaches, SEELE deliberately and adaptively adjusts the hint length for each problem to achieve an optimal difficulty. To determine the optimal hint length, SEELE employs a multi-round rollout sampling strategy. In each round, it fits an item response theory model to the accuracy-hint pairs collected in preceding rounds to predict the required hint length for the next round. This instance-level, real-time difficulty adjustment aligns problem difficulty with the evolving model capability, thereby improving exploration efficiency. Experimental results show that SEELE outperforms Group Relative Policy Optimization (GRPO) and Supervised Fine-tuning (SFT) by +11.8 and +10.5 points, respectively, and surpasses the best previous supervision-aided approach by +3.6 points on average across six math reasoning benchmarks.

Outdoor-to-Indoor 28 GHz Wireless Measurements in Manhattan: Path Loss, Environmental Effects, and 90% Coverage

Outdoor-to-indoor (OtI) signal propagation further challenges the already tight link budgets at millimeter-wave (mmWave). To gain insight into OtI mmWave scenarios at 28 GHz, we conducted an extensive measurement campaign consisting of over 2,200 link measurements. In total, 43 OtI scenarios were measured in West Harlem, New York City, covering seven highly diverse buildings. The measured OtI path gain can vary by up to 40 dB for a given link distance, and the empirical path gain model for all data shows an average of 30 dB excess loss over free space at distances beyond 50 m, with an RMS fitting error of 11.7 dB. The type of glass is found to be the single dominant feature for OtI loss, with 20 dB observed difference between empirical path gain models for scenarios with low-loss and high-loss glass. The presence of scaffolding, tree foliage, or elevated subway tracks, as well as difference in floor height are each found to have an impact between 5-10 dB. We show that for urban buildings with high-loss glass, OtI coverage can support 500 Mbps for 90% of indoor user equipment (UEs) with a base station (BS) antenna placed up to 49 m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, data rates over 2.5/1.2 Gbps are possible from a BS 68/175 m away from the school building, when a line-of-sight path is available. We expect these results to be useful for the deployment of mmWave networks in dense urban environments as well as the development of relevant scheduling and beam management algorithms.

  • 15 authors
·
May 19, 2022

Fine-Grained Guidance for Retrievers: Leveraging LLMs' Feedback in Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) has proven to be an effective method for mitigating hallucination issues inherent in large language models (LLMs). Previous approaches typically train retrievers based on semantic similarity, lacking optimization for RAG. More recent works have proposed aligning retrievers with the preference signals of LLMs. However, these preference signals are often difficult for dense retrievers, which typically have weaker language capabilities, to understand and learn effectively. Drawing inspiration from pedagogical theories like Guided Discovery Learning, we propose a novel framework, FiGRet (Fine-grained Guidance for Retrievers), which leverages the language capabilities of LLMs to construct examples from a more granular, information-centric perspective to guide the learning of retrievers. Specifically, our method utilizes LLMs to construct easy-to-understand examples from samples where the retriever performs poorly, focusing on three learning objectives highly relevant to the RAG scenario: relevance, comprehensiveness, and purity. These examples serve as scaffolding to ultimately align the retriever with the LLM's preferences. Furthermore, we employ a dual curriculum learning strategy and leverage the reciprocal feedback between LLM and retriever to further enhance the performance of the RAG system. A series of experiments demonstrate that our proposed framework enhances the performance of RAG systems equipped with different retrievers and is applicable to various LLMs.

  • 6 authors
·
Nov 6, 2024

CLASS Meet SPOCK: An Education Tutoring Chatbot based on Learning Science Principles

We present a design framework called Conversational Learning with Analytical Step-by-Step Strategies (CLASS) for developing high-performance Intelligent Tutoring Systems (ITS). The CLASS framework aims to empower ITS with with two critical capabilities: imparting tutor-like step-by-step guidance and enabling tutor-like conversations in natural language to effectively engage learners. To empower ITS with the aforementioned capabilities, the CLASS framework employs two carefully curated synthetic datasets. The first scaffolding dataset encompasses a variety of elements, including problems, their corresponding subproblems, hints, incorrect solutions, and tailored feedback. This dataset provides ITS with essential problem-solving strategies necessary for guiding students through each step of the conversation. The second conversational dataset contains simulated student-tutor conversations that involve the application of problem-solving strategies learned from the first dataset. In the second dataset, the tutoring system adheres to a pre-defined response template, which helps to maintain consistency and structure in ITS's responses during its interactions. This structured methodology facilitates seamless integration of user feedback and yields valuable insights into ITS's internal decision-making process, allowing for continuous refinement and improvement of the system. We also present a proof-of-concept ITS, referred to as SPOCK, trained using the CLASS framework with a focus on college level introductory biology content. A carefully constructed protocol was developed for SPOCK's preliminary evaluation, examining aspects such as the factual accuracy and relevance of its responses. Experts in the field of biology offered favorable remarks, particularly highlighting SPOCK's capability to break down questions into manageable subproblems and provide step-by-step guidance to students.

  • 4 authors
·
May 22, 2023

SRLAgent: Enhancing Self-Regulated Learning Skills through Gamification and LLM Assistance

Self-regulated learning (SRL) is crucial for college students navigating increased academic demands and independence. Insufficient SRL skills can lead to disorganized study habits, low motivation, and poor time management, undermining learners ability to thrive in challenging environments. Through a formative study involving 59 college students, we identified key challenges students face in developing SRL skills, including difficulties with goal-setting, time management, and reflective learning. To address these challenges, we introduce SRLAgent, an LLM-assisted system that fosters SRL skills through gamification and adaptive support from large language models (LLMs). Grounded in Zimmermans three-phase SRL framework, SRLAgent enables students to engage in goal-setting, strategy execution, and self-reflection within an interactive game-based environment. The system offers real-time feedback and scaffolding powered by LLMs to support students independent study efforts. We evaluated SRLAgent using a between-subjects design, comparing it to a baseline system (SRL without Agent features) and a traditional multimedia learning condition. Results showed significant improvements in SRL skills within the SRLAgent group (p < .001, Cohens d = 0.234) and higher engagement compared to the baselines. This work highlights the value of embedding SRL scaffolding and real-time AI support within gamified environments, offering design implications for educational technologies that aim to promote deeper learning and metacognitive skill development.

  • 8 authors
·
Jun 11 2

Reliable Weak-to-Strong Monitoring of LLM Agents

We stress test monitoring systems for detecting covert misbehavior in autonomous LLM agents (e.g., secretly sharing private information). To this end, we systematize a monitor red teaming (MRT) workflow that incorporates: (1) varying levels of agent and monitor situational awareness; (2) distinct adversarial strategies to evade the monitor, such as prompt injection; and (3) two datasets and environments -- SHADE-Arena for tool-calling agents and our new CUA-SHADE-Arena, which extends TheAgentCompany, for computer-use agents. We run MRT on existing LLM monitor scaffoldings, which orchestrate LLMs and parse agent trajectories, alongside a new hybrid hierarchical-sequential scaffolding proposed in this work. Our empirical results yield three key findings. First, agent awareness dominates monitor awareness: an agent's knowledge that it is being monitored substantially degrades the monitor's reliability. On the contrary, providing the monitor with more information about the agent is less helpful than expected. Second, monitor scaffolding matters more than monitor awareness: the hybrid scaffolding consistently outperforms baseline monitor scaffolding, and can enable weaker models to reliably monitor stronger agents -- a weak-to-strong scaling effect. Third, in a human-in-the-loop setting where humans discuss with the LLM monitor to get an updated judgment for the agent's behavior, targeted human oversight is most effective; escalating only pre-flagged cases to human reviewers improved the TPR by approximately 15% at FPR = 0.01. Our work establishes a standard workflow for MRT, highlighting the lack of adversarial robustness for LLMs and humans when monitoring and detecting agent misbehavior. We release code, data, and logs to spur further research.

  • 8 authors
·
Aug 26

Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning

Recent advances in Large Language Models (LLMs) have underscored the potential of Reinforcement Learning (RL) to facilitate the emergence of reasoning capabilities. Despite the encouraging results, a fundamental dilemma persists as RL improvement relies on learning from high-quality samples, yet the exploration for such samples remains bounded by the inherent limitations of LLMs. This, in effect, creates an undesirable cycle in which what cannot be explored cannot be learned. In this work, we propose Rubric-Scaffolded Reinforcement Learning (RuscaRL), a novel instructional scaffolding framework designed to break the exploration bottleneck for general LLM reasoning. Specifically, RuscaRL introduces checklist-style rubrics as (1) explicit scaffolding for exploration during rollout generation, where different rubrics are provided as external guidance within task instructions to steer diverse high-quality responses. This guidance is gradually decayed over time, encouraging the model to internalize the underlying reasoning patterns; (2) verifiable rewards for exploitation during model training, where we can obtain robust LLM-as-a-Judge scores using rubrics as references, enabling effective RL on general reasoning tasks. Extensive experiments demonstrate the superiority of the proposed RuscaRL across various benchmarks, effectively expanding reasoning boundaries under the best-of-N evaluation. Notably, RuscaRL significantly boosts Qwen-2.5-7B-Instruct from 23.6 to 50.3 on HealthBench-500, surpassing GPT-4.1. Furthermore, our fine-tuned variant on Qwen3-30B-A3B-Instruct achieves 61.1 on HealthBench-500, outperforming leading LLMs including OpenAI-o3.

  • 13 authors
·
Aug 23 2

Pedagogical Alignment of Large Language Models

In this paper, we introduce the novel concept of pedagogically aligned Large Language Models (LLMs) that signifies a transformative shift in the application of LLMs within educational contexts. Rather than providing direct responses to user queries, pedagogically-aligned LLMs function as scaffolding tools, breaking complex problems into manageable subproblems and guiding students towards the final answer through constructive feedback and hints. The objective is to equip learners with problem-solving strategies that deepen their understanding and internalization of the subject matter. Previous research in this field has primarily applied the supervised finetuning approach without framing the objective as an alignment problem, hence not employing reinforcement learning through human feedback (RLHF) methods. This study reinterprets the narrative by viewing the task through the lens of alignment and demonstrates how RLHF methods emerge naturally as a superior alternative for aligning LLM behaviour. Building on this perspective, we propose a novel approach for constructing a reward dataset specifically designed for the pedagogical alignment of LLMs. We apply three state-of-the-art RLHF algorithms and find that they outperform SFT significantly. Our qualitative analyses across model differences and hyperparameter sensitivity further validate the superiority of RLHF over SFT. Also, our study sheds light on the potential of online feedback for enhancing the performance of pedagogically-aligned LLMs, thus providing valuable insights for the advancement of these models in educational settings.

  • 4 authors
·
Feb 7, 2024

Lita: Light Agent Uncovers the Agentic Coding Capabilities of LLMs

Large language models (LLMs) are increasingly being applied to programming tasks, ranging from single-turn code completion to autonomous agents. Current code agent designs frequently depend on complex, hand-crafted workflows and tool sets. However, this reliance on elaborate scaffolding presents several challenges: agent performance becomes overly dependent on prompt tuning and custom design choices, heavy human intervention obscures a model's true underlying capabilities, and intricate pipelines are costly to build and maintain. Furthermore, optimizing complex task prompts increases the risk of data leakage. Currently, when introducing new models, LLM providers like OpenAI and Anthropic often publish benchmark scores to demonstrate their models' coding proficiency, but keep their proprietary evaluation frameworks confidential. To address these limitations, we introduce Lita (Lite Agent), which operationalizes liteness, a principle of minimizing manual design while retaining the essential elements of a fully autonomous agent. Lita enables a more faithful and unified evaluation without elaborate scaffolding. Experiments on the Aider Polyglot and SWE-Bench with frontier models demonstrate that Lita achieves competitive or superior performance compared to workflow-based and agentic baselines. Crucially, Lita also consumes fewer tokens and requires significantly less design effort. Our results suggest that Lita is sufficient to reveal the underlying coding competence of modern LLMs. Finally, we propose the Agent Complexity Law: the performance gap between agents of varying complexity, from simple to sophisticated designs, will shrink as the core model improves, ultimately converging to a negligible difference.

  • 9 authors
·
Sep 30

COIG-Writer: A High-Quality Dataset for Chinese Creative Writing with Thought Processes

Large language models exhibit systematic deficiencies in creative writing, particularly in non-English contexts where training data is scarce and lacks process-level supervision. We present COIG-Writer, a novel Chinese creative writing dataset that captures both diverse outputs and their underlying thought processes through systematic reverse-engineering of high-quality texts. Unlike existing datasets that provide only input-output pairs, COIG-Writer comprises 1,665 meticulously curated triplets spanning 51 genres, each containing: (1) a reverse-engineered prompt, (2) detailed creative reasoning documenting decision-making processes, and (3) the final text. Through comprehensive experiments, we identify a two-component model of creative writing: narrative logic (provided by process supervision) and linguistic expression (maintained by general-purpose data). Our findings reveal three critical insights: (1) Process supervision is highly effective but requires stabilization with general data. A ratio of at least one creative sample to twelve general samples is needed to achieve optimal performance; below this threshold, the win rate progressively degrades (from 62.75% down to 35.78%)., (2) creative capabilities are culturally-bound with no cross-lingual transfer (89.26pp gap between Chinese and English performance), and (3) lexical diversity inversely correlates with creative quality (TTR paradox), suggesting high diversity signals compensatory behavior for logical deficiencies. These findings establish that creative excellence emerges from the interaction between logical scaffolding and linguistic grounding, analogous to how mathematical reasoning enhances but cannot replace linguistic competence in foundation models.

Are LLMs ready to help non-expert users to make charts of official statistics data?

In this time when biased information, deep fakes, and propaganda proliferate, the accessibility of reliable data sources is more important than ever. National statistical institutes provide curated data that contain quantitative information on a wide range of topics. However, that information is typically spread across many tables and the plain numbers may be arduous to process. Hence, this open data may be practically inaccessible. We ask the question "Are current Generative AI models capable of facilitating the identification of the right data and the fully-automatic creation of charts to provide information in visual form, corresponding to user queries?". We present a structured evaluation of recent large language models' (LLMs) capabilities to generate charts from complex data in response to user queries. Working with diverse public data from Statistics Netherlands, we assessed multiple LLMs on their ability to identify relevant data tables, perform necessary manipulations, and generate appropriate visualizations autonomously. We propose a new evaluation framework spanning three dimensions: data retrieval & pre-processing, code quality, and visual representation. Results indicate that locating and processing the correct data represents the most significant challenge. Additionally, LLMs rarely implement visualization best practices without explicit guidance. When supplemented with information about effective chart design, models showed marked improvement in representation scores. Furthermore, an agentic approach with iterative self-evaluation led to excellent performance across all evaluation dimensions. These findings suggest that LLMs' effectiveness for automated chart generation can be enhanced through appropriate scaffolding and feedback mechanisms, and that systems can already reach the necessary accuracy across the three evaluation dimensions.

  • 4 authors
·
Sep 3

APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents

We present APT, an advanced Large Language Model (LLM)-driven framework that enables autonomous agents to construct complex and creative structures within the Minecraft environment. Unlike previous approaches that primarily concentrate on skill-based open-world tasks or rely on image-based diffusion models for generating voxel-based structures, our method leverages the intrinsic spatial reasoning capabilities of LLMs. By employing chain-of-thought decomposition along with multimodal inputs, the framework generates detailed architectural layouts and blueprints that the agent can execute under zero-shot or few-shot learning scenarios. Our agent incorporates both memory and reflection modules to facilitate lifelong learning, adaptive refinement, and error correction throughout the building process. To rigorously evaluate the agent's performance in this emerging research area, we introduce a comprehensive benchmark consisting of diverse construction tasks designed to test creativity, spatial reasoning, adherence to in-game rules, and the effective integration of multimodal instructions. Experimental results using various GPT-based LLM backends and agent configurations demonstrate the agent's capacity to accurately interpret extensive instructions involving numerous items, their positions, and orientations. The agent successfully produces complex structures complete with internal functionalities such as Redstone-powered systems. A/B testing indicates that the inclusion of a memory module leads to a significant increase in performance, emphasizing its role in enabling continuous learning and the reuse of accumulated experience. Additionally, the agent's unexpected emergence of scaffolding behavior highlights the potential of future LLM-driven agents to utilize subroutine planning and leverage the emergence ability of LLMs to autonomously develop human-like problem-solving techniques.

  • 2 authors
·
Nov 26, 2024

Thinking Beyond Tokens: From Brain-Inspired Intelligence to Cognitive Foundations for Artificial General Intelligence and its Societal Impact

Can machines truly think, reason and act in domains like humans? This enduring question continues to shape the pursuit of Artificial General Intelligence (AGI). Despite the growing capabilities of models such as GPT-4.5, DeepSeek, Claude 3.5 Sonnet, Phi-4, and Grok 3, which exhibit multimodal fluency and partial reasoning, these systems remain fundamentally limited by their reliance on token-level prediction and lack of grounded agency. This paper offers a cross-disciplinary synthesis of AGI development, spanning artificial intelligence, cognitive neuroscience, psychology, generative models, and agent-based systems. We analyze the architectural and cognitive foundations of general intelligence, highlighting the role of modular reasoning, persistent memory, and multi-agent coordination. In particular, we emphasize the rise of Agentic RAG frameworks that combine retrieval, planning, and dynamic tool use to enable more adaptive behavior. We discuss generalization strategies, including information compression, test-time adaptation, and training-free methods, as critical pathways toward flexible, domain-agnostic intelligence. Vision-Language Models (VLMs) are reexamined not just as perception modules but as evolving interfaces for embodied understanding and collaborative task completion. We also argue that true intelligence arises not from scale alone but from the integration of memory and reasoning: an orchestration of modular, interactive, and self-improving components where compression enables adaptive behavior. Drawing on advances in neurosymbolic systems, reinforcement learning, and cognitive scaffolding, we explore how recent architectures begin to bridge the gap between statistical learning and goal-directed cognition. Finally, we identify key scientific, technical, and ethical challenges on the path to AGI.

EnzyControl: Adding Functional and Substrate-Specific Control for Enzyme Backbone Generation

Designing enzyme backbones with substrate-specific functionality is a critical challenge in computational protein engineering. Current generative models excel in protein design but face limitations in binding data, substrate-specific control, and flexibility for de novo enzyme backbone generation. To address this, we introduce EnzyBind, a dataset with 11,100 experimentally validated enzyme-substrate pairs specifically curated from PDBbind. Building on this, we propose EnzyControl, a method that enables functional and substrate-specific control in enzyme backbone generation. Our approach generates enzyme backbones conditioned on MSA-annotated catalytic sites and their corresponding substrates, which are automatically extracted from curated enzyme-substrate data. At the core of EnzyControl is EnzyAdapter, a lightweight, modular component integrated into a pretrained motif-scaffolding model, allowing it to become substrate-aware. A two-stage training paradigm further refines the model's ability to generate accurate and functional enzyme structures. Experiments show that our EnzyControl achieves the best performance across structural and functional metrics on EnzyBind and EnzyBench benchmarks, with particularly notable improvements of 13\% in designability and 13\% in catalytic efficiency compared to the baseline models. The code is released at https://github.com/Vecteur-libre/EnzyControl.

MathDial: A Dialogue Tutoring Dataset with Rich Pedagogical Properties Grounded in Math Reasoning Problems

While automatic dialogue tutors hold great potential in making education personalized and more accessible, research on such systems has been hampered by a lack of sufficiently large and high-quality datasets. Collecting such datasets remains challenging, as recording tutoring sessions raises privacy concerns and crowdsourcing leads to insufficient data quality. To address this, we propose a framework to generate such dialogues by pairing human teachers with a Large Language Model (LLM) prompted to represent common student errors. We describe how we use this framework to collect MathDial, a dataset of 3k one-to-one teacher-student tutoring dialogues grounded in multi-step math reasoning problems. While models like GPT-3 are good problem solvers, they fail at tutoring because they generate factually incorrect feedback or are prone to revealing solutions to students too early. To overcome this, we let teachers provide learning opportunities to students by guiding them using various scaffolding questions according to a taxonomy of teacher moves. We demonstrate MathDial and its extensive annotations can be used to finetune models to be more effective tutors (and not just solvers). We confirm this by automatic and human evaluation, notably in an interactive setting that measures the trade-off between student solving success and telling solutions. The dataset is released publicly.

  • 7 authors
·
May 23, 2023

Comprehension Without Competence: Architectural Limits of LLMs in Symbolic Computation and Reasoning

Large Language Models (LLMs) display striking surface fluency yet systematically fail at tasks requiring symbolic reasoning, arithmetic accuracy, and logical consistency. This paper offers a structural diagnosis of such failures, revealing a persistent gap between comprehension and competence. Through controlled experiments and architectural analysis, we demonstrate that LLMs often articulate correct principles without reliably applying them--a failure rooted not in knowledge access, but in computational execution. We term this phenomenon the computational split-brain syndrome, where instruction and action pathways are geometrically and functionally dissociated. This core limitation recurs across domains, from mathematical operations to relational inferences, and explains why model behavior remains brittle even under idealized prompting. We argue that LLMs function as powerful pattern completion engines, but lack the architectural scaffolding for principled, compositional reasoning. Our findings delineate the boundary of current LLM capabilities and motivate future models with metacognitive control, principle lifting, and structurally grounded execution. This diagnosis also clarifies why mechanistic interpretability findings may reflect training-specific pattern coordination rather than universal computational principles, and why the geometric separation between instruction and execution pathways suggests limitations in neural introspection and mechanistic analysis.

  • 1 authors
·
Jul 14 1

La-Proteina: Atomistic Protein Generation via Partially Latent Flow Matching

Recently, many generative models for de novo protein structure design have emerged. Yet, only few tackle the difficult task of directly generating fully atomistic structures jointly with the underlying amino acid sequence. This is challenging, for instance, because the model must reason over side chains that change in length during generation. We introduce La-Proteina for atomistic protein design based on a novel partially latent protein representation: coarse backbone structure is modeled explicitly, while sequence and atomistic details are captured via per-residue latent variables of fixed dimensionality, thereby effectively side-stepping challenges of explicit side-chain representations. Flow matching in this partially latent space then models the joint distribution over sequences and full-atom structures. La-Proteina achieves state-of-the-art performance on multiple generation benchmarks, including all-atom co-designability, diversity, and structural validity, as confirmed through detailed structural analyses and evaluations. Notably, La-Proteina also surpasses previous models in atomistic motif scaffolding performance, unlocking critical atomistic structure-conditioned protein design tasks. Moreover, La-Proteina is able to generate co-designable proteins of up to 800 residues, a regime where most baselines collapse and fail to produce valid samples, demonstrating La-Proteina's scalability and robustness.

  • 9 authors
·
Jul 12

DeepPerception: Advancing R1-like Cognitive Visual Perception in MLLMs for Knowledge-Intensive Visual Grounding

Human experts excel at fine-grained visual discrimination by leveraging domain knowledge to refine perceptual features, a capability that remains underdeveloped in current Multimodal Large Language Models (MLLMs). Despite possessing vast expert-level knowledge, MLLMs struggle to integrate reasoning into visual perception, often generating direct responses without deeper analysis. To bridge this gap, we introduce knowledge-intensive visual grounding (KVG), a novel visual grounding task that requires both fine-grained perception and domain-specific knowledge integration. To address the challenges of KVG, we propose DeepPerception, an MLLM enhanced with cognitive visual perception capabilities. Our approach consists of (1) an automated data synthesis pipeline that generates high-quality, knowledge-aligned training samples, and (2) a two-stage training framework combining supervised fine-tuning for cognitive reasoning scaffolding and reinforcement learning to optimize perception-cognition synergy. To benchmark performance, we introduce KVG-Bench a comprehensive dataset spanning 10 domains with 1.3K manually curated test cases. Experimental results demonstrate that DeepPerception significantly outperforms direct fine-tuning, achieving +8.08\% accuracy improvements on KVG-Bench and exhibiting +4.60\% superior cross-domain generalization over baseline approaches. Our findings highlight the importance of integrating cognitive processes into MLLMs for human-like visual perception and open new directions for multimodal reasoning research. The data, codes, and models are released at https://github.com/thunlp/DeepPerception.

  • 8 authors
·
Mar 17 2

DPLM-2: A Multimodal Diffusion Protein Language Model

Proteins are essential macromolecules defined by their amino acid sequences, which determine their three-dimensional structures and, consequently, their functions in all living organisms. Therefore, generative protein modeling necessitates a multimodal approach to simultaneously model, understand, and generate both sequences and structures. However, existing methods typically use separate models for each modality, limiting their ability to capture the intricate relationships between sequence and structure. This results in suboptimal performance in tasks that requires joint understanding and generation of both modalities. In this paper, we introduce DPLM-2, a multimodal protein foundation model that extends discrete diffusion protein language model (DPLM) to accommodate both sequences and structures. To enable structural learning with the language model, 3D coordinates are converted to discrete tokens using a lookup-free quantization-based tokenizer. By training on both experimental and high-quality synthetic structures, DPLM-2 learns the joint distribution of sequence and structure, as well as their marginals and conditionals. We also implement an efficient warm-up strategy to exploit the connection between large-scale evolutionary data and structural inductive biases from pre-trained sequence-based protein language models. Empirical evaluation shows that DPLM-2 can simultaneously generate highly compatible amino acid sequences and their corresponding 3D structures eliminating the need for a two-stage generation approach. Moreover, DPLM-2 demonstrates competitive performance in various conditional generation tasks, including folding, inverse folding, and scaffolding with multimodal motif inputs, as well as providing structure-aware representations for predictive tasks.

  • 6 authors
·
Oct 17, 2024 3

VideoGameBench: Can Vision-Language Models complete popular video games?

Vision-language models (VLMs) have achieved strong results on coding and math benchmarks that are challenging for humans, yet their ability to perform tasks that come naturally to humans--such as perception, spatial navigation, and memory management--remains understudied. Real video games are crafted to be intuitive for humans to learn and master by leveraging innate inductive biases, making them an ideal testbed for evaluating such capabilities in VLMs. To this end, we introduce VideoGameBench, a benchmark consisting of 10 popular video games from the 1990s that VLMs directly interact with in real-time. VideoGameBench challenges models to complete entire games with access to only raw visual inputs and a high-level description of objectives and controls, a significant departure from existing setups that rely on game-specific scaffolding and auxiliary information. We keep three of the games secret to encourage solutions that generalize to unseen environments. Our experiments show that frontier vision-language models struggle to progress beyond the beginning of each game. We find inference latency to be a major limitation of frontier models in the real-time setting; therefore, we introduce VideoGameBench Lite, a setting where the game pauses while waiting for the LM's next action. The best performing model, Gemini 2.5 Pro, completes only 0.48% of VideoGameBench and 1.6% of VideoGameBench Lite. We hope that the formalization of the human skills mentioned above into this benchmark motivates progress in these research directions.

  • 4 authors
·
May 23 3

How Large Language Models are Designed to Hallucinate

Large language models (LLMs) achieve remarkable fluency across linguistic and reasoning tasks but remain systematically prone to hallucination. Prevailing accounts attribute hallucinations to data gaps, limited context, or optimization errors. We argue instead that hallucination is a structural outcome of the transformer architecture. As coherence engines, transformers are compelled to produce fluent continuations, with self-attention simulating the relational structure of meaning but lacking the existential grounding of temporality, mood, and care that stabilizes human understanding. On this basis, we distinguish ontological hallucination, arising when continuations require disclosure of beings in world, and residual reasoning hallucination, where models mimic inference by recycling traces of human reasoning in text. We illustrate these patterns through case studies aligned with Heideggerian categories and an experiment across twelve LLMs showing how simulated "self-preservation" emerges under extended prompts. Our contribution is threefold: (1) a comparative account showing why existing explanations are insufficient; (2) a predictive taxonomy of hallucination linked to existential structures with proposed benchmarks; and (3) design directions toward "truth-constrained" architectures capable of withholding or deferring when disclosure is absent. We conclude that hallucination is not an incidental defect but a defining limit of transformer-based models, an outcome scaffolding can mask but never resolve.

  • 2 authors
·
Sep 19

Exploring Direct Instruction and Summary-Mediated Prompting in LLM-Assisted Code Modification

This paper presents a study of using large language models (LLMs) in modifying existing code. While LLMs for generating code have been widely studied, their role in code modification remains less understood. Although "prompting" serves as the primary interface for developers to communicate intents to LLMs, constructing effective prompts for code modification introduces challenges different from generation. Prior work suggests that natural language summaries may help scaffold this process, yet such approaches have been validated primarily in narrow domains like SQL rewriting. This study investigates two prompting strategies for LLM-assisted code modification: Direct Instruction Prompting, where developers describe changes explicitly in free-form language, and Summary-Mediated Prompting, where changes are made by editing the generated summaries of the code. We conducted an exploratory study with 15 developers who completed modification tasks using both techniques across multiple scenarios. Our findings suggest that developers followed an iterative workflow: understanding the code, localizing the edit, and validating outputs through execution or semantic reasoning. Each prompting strategy presented trade-offs: direct instruction prompting was more flexible and easier to specify, while summary-mediated prompting supported comprehension, prompt scaffolding, and control. Developers' choice of strategy was shaped by task goals and context, including urgency, maintainability, learning intent, and code familiarity. These findings highlight the need for more usable prompt interactions, including adjustable summary granularity, reliable summary-code traceability, and consistency in generated summaries.

  • 5 authors
·
Aug 2

Large Language Models Often Know When They Are Being Evaluated

If AI models can detect when they are being evaluated, the effectiveness of evaluations might be compromised. For example, models could have systematically different behavior during evaluations, leading to less reliable benchmarks for deployment and governance decisions. We investigate whether frontier language models can accurately classify transcripts based on whether they originate from evaluations or real-world deployment, a capability we call evaluation awareness. To achieve this, we construct a diverse benchmark of 1,000 prompts and transcripts from 61 distinct datasets. These span public benchmarks (e.g., MMLU, SWEBench), real-world deployment interactions, and agent trajectories from scaffolding frameworks (e.g., web-browsing agents). Frontier models clearly demonstrate above-random evaluation awareness (Gemini-2.5-Pro reaches an AUC of 0.83), but do not yet surpass our simple human baseline (AUC of 0.92). Furthermore, both AI models and humans are better at identifying evaluations in agentic settings compared to chat settings. Additionally, we test whether models can identify the purpose of the evaluation. Under multiple-choice and open-ended questioning, AI models far outperform random chance in identifying what an evaluation is testing for. Our results indicate that frontier models already exhibit a substantial, though not yet superhuman, level of evaluation-awareness. We recommend tracking this capability in future models.

  • 5 authors
·
May 28

SeqGenSQL -- A Robust Sequence Generation Model for Structured Query Language

We explore using T5 (Raffel et al. (2019)) to directly translate natural language questions into SQL statements. General purpose natural language that interfaces to information stored within databases requires flexibly translating natural language questions into database queries. The best performing text-to-SQL systems approach this task by first converting questions into an intermediate logical form (LF) (Lyu et al. (2020)). While LFs provide a convenient intermediate representation and simplify query generation, they introduce an additional layer of complexity and annotation requirements. However, weakly supervised modeling that directly converts questions to SQL statements has proven more difficult without the scaffolding provided by LFs (Min et al. (2019)). We approach direct conversion of questions to SQL statements using T5 (Raffel et al. (2019)), a pre-trained textto-text generation model, modified to support pointer-generator style decoding (See et al. (2017)). We explore using question augmentation with table schema information and the use of automatically generated silver training data. The resulting model achieves 90.5% execution accuracy on the WikiSQL (Zhong et al. (2017)) test data set, a new state-of-the-art on weakly supervised SQL generation. The performance improvement is 6.6% absolute over the prior state-of-the-art (Min et al. (2019)) and approaches the performance of state-ofthe-art systems making use of LFs.

  • 4 authors
·
Nov 7, 2020

Schema for In-Context Learning

In-Context Learning (ICL) enables transformer-based language models to adapt to new tasks by conditioning on demonstration examples. However, traditional example-driven in-context learning lacks explicit modules for knowledge retrieval and transfer at the abstraction level. Inspired by cognitive science, specifically schema theory, which holds that humans interpret new information by activating pre-existing mental frameworks (schemas) to structure understanding, we introduce SCHEMA ACTIVATED IN CONTEXT LEARNING (SA-ICL). This framework extracts the representation of the building blocks of cognition for the reasoning process instilled from prior examples, creating an abstracted schema, a lightweight, structured template of key inferential steps and their relationships, which is then used to augment a model's reasoning process when presented with a novel question. We demonstrate that a broad range of large language models (LLMs) lack the capacity to form and utilize internal schema-based learning representations implicitly, but instead benefit significantly from explicit schema-based scaffolding. Across chemistry and physics questions from the GPQA dataset, our experiments show that SA-ICL consistently boosts performance, up to 36.19 percent, when the single demonstration example is of high quality, which simultaneously reduces reliance on the number of demonstrations and enhances interpretability. SCHEMA ACTIVATED IN CONTEXT LEARNING not only bridges disparate ICL strategies ranging from pattern priming to Chain-of-Thought prompting, but also paves a new path for enhancing human-like reasoning in LLMs.

  • 7 authors
·
Oct 14