Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOne Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings
Deploying language models often requires handling model size vs. performance trade-offs to satisfy downstream latency constraints while preserving the model's usefulness. Model distillation is commonly employed to reduce model size while maintaining acceptable performance. However, distillation can be inefficient since it involves multiple training steps. In this work, we introduce MODULARSTARENCODER, a modular multi-exit encoder with 1B parameters, useful for multiple tasks within the scope of code retrieval. MODULARSTARENCODER is trained with a novel self-distillation mechanism that significantly improves lower-layer representations-allowing different portions of the model to be used while still maintaining a good trade-off in terms of performance. Our architecture focuses on enhancing text-to-code and code-to-code search by systematically capturing syntactic and semantic structures across multiple levels of representation. Specific encoder layers are targeted as exit heads, allowing higher layers to guide earlier layers during training. This self-distillation effect improves intermediate representations, increasing retrieval recall at no extra training cost. In addition to the multi-exit scheme, our approach integrates a repository-level contextual loss that maximally utilizes the training context window, further enhancing the learned representations. We also release a new dataset constructed via code translation, seamlessly expanding traditional text-to-code benchmarks with code-to-code pairs across diverse programming languages. Experimental results highlight the benefits of self-distillation through multi-exit supervision.
Self-Supervised Speech Quality Estimation and Enhancement Using Only Clean Speech
Speech quality estimation has recently undergone a paradigm shift from human-hearing expert designs to machine-learning models. However, current models rely mainly on supervised learning, which is time-consuming and expensive for label collection. To solve this problem, we propose VQScore, a self-supervised metric for evaluating speech based on the quantization error of a vector-quantized-variational autoencoder (VQ-VAE). The training of VQ-VAE relies on clean speech; hence, large quantization errors can be expected when the speech is distorted. To further improve correlation with real quality scores, domain knowledge of speech processing is incorporated into the model design. We found that the vector quantization mechanism could also be used for self-supervised speech enhancement (SE) model training. To improve the robustness of the encoder for SE, a novel self-distillation mechanism combined with adversarial training is introduced. In summary, the proposed speech quality estimation method and enhancement models require only clean speech for training without any label requirements. Experimental results show that the proposed VQScore and enhancement model are competitive with supervised baselines. The code will be released after publication.
Overcoming the Pitfalls of Vision-Language Model Finetuning for OOD Generalization
Existing vision-language models exhibit strong generalization on a variety of visual domains and tasks. However, such models mainly perform zero-shot recognition in a closed-set manner, and thus struggle to handle open-domain visual concepts by design. There are recent finetuning methods, such as prompt learning, that not only study the discrimination between in-distribution (ID) and out-of-distribution (OOD) samples, but also show some improvements in both ID and OOD accuracies. In this paper, we first demonstrate that vision-language models, after long enough finetuning but without proper regularization, tend to overfit the known classes in the given dataset, with degraded performance on unknown classes. Then we propose a novel approach OGEN to address this pitfall, with the main focus on improving the OOD GENeralization of finetuned models. Specifically, a class-conditional feature generator is introduced to synthesize OOD features using just the class name of any unknown class. Such synthesized features will provide useful knowledge about unknowns and help regularize the decision boundary between ID and OOD data when optimized jointly. Equally important is our adaptive self-distillation mechanism to regularize our feature generation model during joint optimization, i.e., adaptively transferring knowledge between model states to further prevent overfitting. Experiments validate that our method yields convincing gains in OOD generalization performance in different settings.
Calligrapher: Freestyle Text Image Customization
We introduce Calligrapher, a novel diffusion-based framework that innovatively integrates advanced text customization with artistic typography for digital calligraphy and design applications. Addressing the challenges of precise style control and data dependency in typographic customization, our framework incorporates three key technical contributions. First, we develop a self-distillation mechanism that leverages the pre-trained text-to-image generative model itself alongside the large language model to automatically construct a style-centric typography benchmark. Second, we introduce a localized style injection framework via a trainable style encoder, which comprises both Qformer and linear layers, to extract robust style features from reference images. An in-context generation mechanism is also employed to directly embed reference images into the denoising process, further enhancing the refined alignment of target styles. Extensive quantitative and qualitative evaluations across diverse fonts and design contexts confirm Calligrapher's accurate reproduction of intricate stylistic details and precise glyph positioning. By automating high-quality, visually consistent typography, Calligrapher surpasses traditional models, empowering creative practitioners in digital art, branding, and contextual typographic design.
GP-NeRF: Generalized Perception NeRF for Context-Aware 3D Scene Understanding
Applying NeRF to downstream perception tasks for scene understanding and representation is becoming increasingly popular. Most existing methods treat semantic prediction as an additional rendering task, i.e., the "label rendering" task, to build semantic NeRFs. However, by rendering semantic/instance labels per pixel without considering the contextual information of the rendered image, these methods usually suffer from unclear boundary segmentation and abnormal segmentation of pixels within an object. To solve this problem, we propose Generalized Perception NeRF (GP-NeRF), a novel pipeline that makes the widely used segmentation model and NeRF work compatibly under a unified framework, for facilitating context-aware 3D scene perception. To accomplish this goal, we introduce transformers to aggregate radiance as well as semantic embedding fields jointly for novel views and facilitate the joint volumetric rendering of both fields. In addition, we propose two self-distillation mechanisms, i.e., the Semantic Distill Loss and the Depth-Guided Semantic Distill Loss, to enhance the discrimination and quality of the semantic field and the maintenance of geometric consistency. In evaluation, we conduct experimental comparisons under two perception tasks (i.e. semantic and instance segmentation) using both synthetic and real-world datasets. Notably, our method outperforms SOTA approaches by 6.94\%, 11.76\%, and 8.47\% on generalized semantic segmentation, finetuning semantic segmentation, and instance segmentation, respectively.
Decoupled Global-Local Alignment for Improving Compositional Understanding
Contrastive Language-Image Pre-training (CLIP) has achieved success on multiple downstream tasks by aligning image and text modalities. However, the nature of global contrastive learning limits CLIP's ability to comprehend compositional concepts, such as relations and attributes. Although recent studies employ global hard negative samples to improve compositional understanding, these methods significantly compromise the model's inherent general capabilities by forcibly distancing textual negative samples from images in the embedding space. To overcome this limitation, we introduce a Decoupled Global-Local Alignment (DeGLA) framework that improves compositional understanding while substantially mitigating losses in general capabilities. To optimize the retention of the model's inherent capabilities, we incorporate a self-distillation mechanism within the global alignment process, aligning the learnable image-text encoder with a frozen teacher model derived from an exponential moving average. Under the constraint of self-distillation, it effectively mitigates the catastrophic forgetting of pretrained knowledge during fine-tuning. To improve compositional understanding, we first leverage the in-context learning capability of Large Language Models (LLMs) to construct about 2M high-quality negative captions across five types. Subsequently, we propose the Image-Grounded Contrast (IGC) loss and Text-Grounded Contrast (TGC) loss to enhance vision-language compositionally. Extensive experimental results demonstrate the effectiveness of the DeGLA framework. Compared to previous state-of-the-art methods, DeGLA achieves an average enhancement of 3.5% across the VALSE, SugarCrepe, and ARO benchmarks. Concurrently, it obtains an average performance improvement of 13.0% on zero-shot classification tasks across eleven datasets. Our code will be released at https://github.com/xiaoxing2001/DeGLA
Annealing Self-Distillation Rectification Improves Adversarial Training
In standard adversarial training, models are optimized to fit one-hot labels within allowable adversarial perturbation budgets. However, the ignorance of underlying distribution shifts brought by perturbations causes the problem of robust overfitting. To address this issue and enhance adversarial robustness, we analyze the characteristics of robust models and identify that robust models tend to produce smoother and well-calibrated outputs. Based on the observation, we propose a simple yet effective method, Annealing Self-Distillation Rectification (ADR), which generates soft labels as a better guidance mechanism that accurately reflects the distribution shift under attack during adversarial training. By utilizing ADR, we can obtain rectified distributions that significantly improve model robustness without the need for pre-trained models or extensive extra computation. Moreover, our method facilitates seamless plug-and-play integration with other adversarial training techniques by replacing the hard labels in their objectives. We demonstrate the efficacy of ADR through extensive experiments and strong performances across datasets.
How JEPA Avoids Noisy Features: The Implicit Bias of Deep Linear Self Distillation Networks
Two competing paradigms exist for self-supervised learning of data representations. Joint Embedding Predictive Architecture (JEPA) is a class of architectures in which semantically similar inputs are encoded into representations that are predictive of each other. A recent successful approach that falls under the JEPA framework is self-distillation, where an online encoder is trained to predict the output of the target encoder, sometimes using a lightweight predictor network. This is contrasted with the Masked AutoEncoder (MAE) paradigm, where an encoder and decoder are trained to reconstruct missing parts of the input in the data space rather, than its latent representation. A common motivation for using the JEPA approach over MAE is that the JEPA objective prioritizes abstract features over fine-grained pixel information (which can be unpredictable and uninformative). In this work, we seek to understand the mechanism behind this empirical observation by analyzing the training dynamics of deep linear models. We uncover a surprising mechanism: in a simplified linear setting where both approaches learn similar representations, JEPAs are biased to learn high-influence features, i.e., features characterized by having high regression coefficients. Our results point to a distinct implicit bias of predicting in latent space that may shed light on its success in practice.
Speculative Decoding via Early-exiting for Faster LLM Inference with Thompson Sampling Control Mechanism
The recent advancements in large language models (LLMs) have been extraordinary, yet the escalating inference costs associated with them present challenges in real-world applications. To address these challenges, we propose a novel approach called Early-exiting Speculative Decoding (EESD) with lossless acceleration. Specifically, EESD utilizes a segment of the LLM to generate draft tokens, incorporating Early-exiting structures after the first N layers. To enhance the quality of draft tokens, a self-distillation method is integrated. This early-exiting design not only reduces deployment and training costs but also significantly accelerates the token generation speed. Moreover, we introduce a novel sampling mechanism that leverages Thompson Sampling to regulate the generation processes, automatically determining the quantity of draft tokens in each round. The original LLM is then employed to validate these draft tokens through a single forward pass, and thus guarantees that the final output text maintains a distribution consistent with vanilla auto-regressive decoding. The experimental results on both 13B and 70B models demonstrate that our approach decodes tokens at a markedly accelerated rate compared to prior methods, showing the effectiveness of our approach.
ConvSearch-R1: Enhancing Query Reformulation for Conversational Search with Reasoning via Reinforcement Learning
Conversational search systems require effective handling of context-dependent queries that often contain ambiguity, omission, and coreference. Conversational Query Reformulation (CQR) addresses this challenge by transforming these queries into self-contained forms suitable for off-the-shelf retrievers. However, existing CQR approaches suffer from two critical constraints: high dependency on costly external supervision from human annotations or large language models, and insufficient alignment between the rewriting model and downstream retrievers. We present ConvSearch-R1, the first self-driven framework that completely eliminates dependency on external rewrite supervision by leveraging reinforcement learning to optimize reformulation directly through retrieval signals. Our novel two-stage approach combines Self-Driven Policy Warm-Up to address the cold-start problem through retrieval-guided self-distillation, followed by Retrieval-Guided Reinforcement Learning with a specially designed rank-incentive reward shaping mechanism that addresses the sparsity issue in conventional retrieval metrics. Extensive experiments on TopiOCQA and QReCC datasets demonstrate that ConvSearch-R1 significantly outperforms previous state-of-the-art methods, achieving over 10% improvement on the challenging TopiOCQA dataset while using smaller 3B parameter models without any external supervision.
HQ-SMem: Video Segmentation and Tracking Using Memory Efficient Object Embedding With Selective Update and Self-Supervised Distillation Feedback
Video Object Segmentation (VOS) is foundational to numerous computer vision applications, including surveillance, autonomous driving, robotics and generative video editing. However, existing VOS models often struggle with precise mask delineation, deformable objects, topologically transforming objects, tracking drift and long video sequences. In this paper, we introduce HQ-SMem, for High Quality video segmentation and tracking using Smart Memory, a novel method that enhances the performance of VOS base models by addressing these limitations. Our approach incorporates three key innovations: (i) leveraging SAM with High-Quality masks (SAM-HQ) alongside appearance-based candidate-selection to refine coarse segmentation masks, resulting in improved object boundaries; (ii) implementing a dynamic smart memory mechanism that selectively stores relevant key frames while discarding redundant ones, thereby optimizing memory usage and processing efficiency for long-term videos; and (iii) dynamically updating the appearance model to effectively handle complex topological object variations and reduce drift throughout the video. These contributions mitigate several limitations of existing VOS models including, coarse segmentations that mix-in background pixels, fixed memory update schedules, brittleness to drift and occlusions, and prompt ambiguity issues associated with SAM. Extensive experiments conducted on multiple public datasets and state-of-the-art base trackers demonstrate that our method consistently ranks among the top two on VOTS and VOTSt 2024 datasets. Moreover, HQ-SMem sets new benchmarks on Long Video Dataset and LVOS, showcasing its effectiveness in challenging scenarios characterized by complex multi-object dynamics over extended temporal durations.
The Role of Entropy and Reconstruction in Multi-View Self-Supervised Learning
The mechanisms behind the success of multi-view self-supervised learning (MVSSL) are not yet fully understood. Contrastive MVSSL methods have been studied through the lens of InfoNCE, a lower bound of the Mutual Information (MI). However, the relation between other MVSSL methods and MI remains unclear. We consider a different lower bound on the MI consisting of an entropy and a reconstruction term (ER), and analyze the main MVSSL families through its lens. Through this ER bound, we show that clustering-based methods such as DeepCluster and SwAV maximize the MI. We also re-interpret the mechanisms of distillation-based approaches such as BYOL and DINO, showing that they explicitly maximize the reconstruction term and implicitly encourage a stable entropy, and we confirm this empirically. We show that replacing the objectives of common MVSSL methods with this ER bound achieves competitive performance, while making them stable when training with smaller batch sizes or smaller exponential moving average (EMA) coefficients. Github repo: https://github.com/apple/ml-entropy-reconstruction.
Class Token and Knowledge Distillation for Multi-head Self-Attention Speaker Verification Systems
This paper explores three novel approaches to improve the performance of speaker verification (SV) systems based on deep neural networks (DNN) using Multi-head Self-Attention (MSA) mechanisms and memory layers. Firstly, we propose the use of a learnable vector called Class token to replace the average global pooling mechanism to extract the embeddings. Unlike global average pooling, our proposal takes into account the temporal structure of the input what is relevant for the text-dependent SV task. The class token is concatenated to the input before the first MSA layer, and its state at the output is used to predict the classes. To gain additional robustness, we introduce two approaches. First, we have developed a Bayesian estimation of the class token. Second, we have added a distilled representation token for training a teacher-student pair of networks using the Knowledge Distillation (KD) philosophy, which is combined with the class token. This distillation token is trained to mimic the predictions from the teacher network, while the class token replicates the true label. All the strategies have been tested on the RSR2015-Part II and DeepMine-Part 1 databases for text-dependent SV, providing competitive results compared to the same architecture using the average pooling mechanism to extract average embeddings.
Generic-to-Specific Distillation of Masked Autoencoders
Large vision Transformers (ViTs) driven by self-supervised pre-training mechanisms achieved unprecedented progress. Lightweight ViT models limited by the model capacity, however, benefit little from those pre-training mechanisms. Knowledge distillation defines a paradigm to transfer representations from large (teacher) models to small (student) ones. However, the conventional single-stage distillation easily gets stuck on task-specific transfer, failing to retain the task-agnostic knowledge crucial for model generalization. In this study, we propose generic-to-specific distillation (G2SD), to tap the potential of small ViT models under the supervision of large models pre-trained by masked autoencoders. In generic distillation, decoder of the small model is encouraged to align feature predictions with hidden representations of the large model, so that task-agnostic knowledge can be transferred. In specific distillation, predictions of the small model are constrained to be consistent with those of the large model, to transfer task-specific features which guarantee task performance. With G2SD, the vanilla ViT-Small model respectively achieves 98.7%, 98.1% and 99.3% the performance of its teacher (ViT-Base) for image classification, object detection, and semantic segmentation, setting a solid baseline for two-stage vision distillation. Code will be available at https://github.com/pengzhiliang/G2SD.
Self-Sustaining Representation Expansion for Non-Exemplar Class-Incremental Learning
Non-exemplar class-incremental learning is to recognize both the old and new classes when old class samples cannot be saved. It is a challenging task since representation optimization and feature retention can only be achieved under supervision from new classes. To address this problem, we propose a novel self-sustaining representation expansion scheme. Our scheme consists of a structure reorganization strategy that fuses main-branch expansion and side-branch updating to maintain the old features, and a main-branch distillation scheme to transfer the invariant knowledge. Furthermore, a prototype selection mechanism is proposed to enhance the discrimination between the old and new classes by selectively incorporating new samples into the distillation process. Extensive experiments on three benchmarks demonstrate significant incremental performance, outperforming the state-of-the-art methods by a margin of 3%, 3% and 6%, respectively.
MEND: Meta dEmonstratioN Distillation for Efficient and Effective In-Context Learning
Large Language models (LLMs) have demonstrated impressive in-context learning (ICL) capabilities, where a LLM makes predictions for a given test input together with a few input-output pairs (demonstrations). Nevertheless, the inclusion of demonstrations leads to a quadratic increase in the computational overhead of the self-attention mechanism. Existing solutions attempt to distill lengthy demonstrations into compact vectors. However, they often require task-specific retraining or compromise LLM's in-context learning performance. To mitigate these challenges, we present Meta dEmonstratioN Distillation (MEND), where a language model learns to distill any lengthy demonstrations into vectors without retraining for a new downstream task. We exploit the knowledge distillation to enhance alignment between MEND and LLM, achieving both efficiency and effectiveness simultaneously. MEND is endowed with the meta-knowledge of distilling demonstrations through a two-stage training process, which includes meta-distillation pretraining and fine-tuning. Comprehensive evaluations across seven diverse ICL task partitions using decoder-only (GPT-2) and encoder-decoder (T5) attest to MEND's prowess. It not only matches but often outperforms the Vanilla ICL as well as other state-of-the-art distillation models, while significantly reducing the computational demands. This innovation promises enhanced scalability and efficiency for the practical deployment of large language models
itKD: Interchange Transfer-based Knowledge Distillation for 3D Object Detection
Point-cloud based 3D object detectors recently have achieved remarkable progress. However, most studies are limited to the development of network architectures for improving only their accuracy without consideration of the computational efficiency. In this paper, we first propose an autoencoder-style framework comprising channel-wise compression and decompression via interchange transfer-based knowledge distillation. To learn the map-view feature of a teacher network, the features from teacher and student networks are independently passed through the shared autoencoder; here, we use a compressed representation loss that binds the channel-wised compression knowledge from both student and teacher networks as a kind of regularization. The decompressed features are transferred in opposite directions to reduce the gap in the interchange reconstructions. Lastly, we present an head attention loss to match the 3D object detection information drawn by the multi-head self-attention mechanism. Through extensive experiments, we verify that our method can train the lightweight model that is well-aligned with the 3D point cloud detection task and we demonstrate its superiority using the well-known public datasets; e.g., Waymo and nuScenes.
Constraint-aware and Ranking-distilled Token Pruning for Efficient Transformer Inference
Deploying pre-trained transformer models like BERT on downstream tasks in resource-constrained scenarios is challenging due to their high inference cost, which grows rapidly with input sequence length. In this work, we propose a constraint-aware and ranking-distilled token pruning method ToP, which selectively removes unnecessary tokens as input sequence passes through layers, allowing the model to improve online inference speed while preserving accuracy. ToP overcomes the limitation of inaccurate token importance ranking in the conventional self-attention mechanism through a ranking-distilled token distillation technique, which distills effective token rankings from the final layer of unpruned models to early layers of pruned models. Then, ToP introduces a coarse-to-fine pruning approach that automatically selects the optimal subset of transformer layers and optimizes token pruning decisions within these layers through improved L_0 regularization. Extensive experiments on GLUE benchmark and SQuAD tasks demonstrate that ToP outperforms state-of-the-art token pruning and model compression methods with improved accuracy and speedups. ToP reduces the average FLOPs of BERT by 8.1x while achieving competitive accuracy on GLUE, and provides a real latency speedup of up to 7.4x on an Intel CPU.
Towards Alignment-Centric Paradigm: A Survey of Instruction Tuning in Large Language Models
Instruction tuning is a pivotal technique for aligning large language models (LLMs) with human intentions, safety constraints, and domain-specific requirements. This survey provides a comprehensive overview of the full pipeline, encompassing (i) data collection methodologies, (ii) full-parameter and parameter-efficient fine-tuning strategies, and (iii) evaluation protocols. We categorized data construction into three major paradigms: expert annotation, distillation from larger models, and self-improvement mechanisms, each offering distinct trade-offs between quality, scalability, and resource cost. Fine-tuning techniques range from conventional supervised training to lightweight approaches, such as low-rank adaptation (LoRA) and prefix tuning, with a focus on computational efficiency and model reusability. We further examine the challenges of evaluating faithfulness, utility, and safety across multilingual and multimodal scenarios, highlighting the emergence of domain-specific benchmarks in healthcare, legal, and financial applications. Finally, we discuss promising directions for automated data generation, adaptive optimization, and robust evaluation frameworks, arguing that a closer integration of data, algorithms, and human feedback is essential for advancing instruction-tuned LLMs. This survey aims to serve as a practical reference for researchers and practitioners seeking to design LLMs that are both effective and reliably aligned with human intentions.
Knowledge Concentration: Learning 100K Object Classifiers in a Single CNN
Fine-grained image labels are desirable for many computer vision applications, such as visual search or mobile AI assistant. These applications rely on image classification models that can produce hundreds of thousands (e.g. 100K) of diversified fine-grained image labels on input images. However, training a network at this vocabulary scale is challenging, and suffers from intolerable large model size and slow training speed, which leads to unsatisfying classification performance. A straightforward solution would be training separate expert networks (specialists), with each specialist focusing on learning one specific vertical (e.g. cars, birds...). However, deploying dozens of expert networks in a practical system would significantly increase system complexity and inference latency, and consumes large amounts of computational resources. To address these challenges, we propose a Knowledge Concentration method, which effectively transfers the knowledge from dozens of specialists (multiple teacher networks) into one single model (one student network) to classify 100K object categories. There are three salient aspects in our method: (1) a multi-teacher single-student knowledge distillation framework; (2) a self-paced learning mechanism to allow the student to learn from different teachers at various paces; (3) structurally connected layers to expand the student network capacity with limited extra parameters. We validate our method on OpenImage and a newly collected dataset, Entity-Foto-Tree (EFT), with 100K categories, and show that the proposed model performs significantly better than the baseline generalist model.
KL-based self-distillation for large language models
Large pre-trained language models often struggle to incorporate new domain-specific terminology when fine-tuned on small, specialized corpora. In this work, we address the challenge of vocabulary expansion in frozen LLMs by introducing a mathematically grounded method for knowledge distillation via KL divergence, even when the original and extended models use different tokenizations. This allows the student model to inherit distributional knowledge from the teacher despite differing vocabularies. We compare our KL-based distillation approach to conventional cross-entropy training, evaluating both methods across multiple strategies for initializing new token embeddings. After embedding initialization, models are further fine-tuned to integrate the new vocabulary. Each trained model is benchmarked on approximately 2000 code-generation tasks, where our approach achieves the best performance across the board. Finally, through mechanistic interpretability, we analyze how models learn representations for the new tokens, providing an explanation for the observed gains and offering insight into the structure of embedding space during vocabulary expansion.
Understanding Self-Distillation in the Presence of Label Noise
Self-distillation (SD) is the process of first training a teacher model and then using its predictions to train a student model with the same architecture. Specifically, the student's objective function is big(xi*ell(teacher's predictions, student's predictions) + (1-xi)*ell(given labels, student's predictions)big), where ell is some loss function and xi is some parameter in [0,1]. Empirically, SD has been observed to provide performance gains in several settings. In this paper, we theoretically characterize the effect of SD in two supervised learning problems with noisy labels. We first analyze SD for regularized linear regression and show that in the high label noise regime, the optimal value of xi that minimizes the expected error in estimating the ground truth parameter is surprisingly greater than 1. Empirically, we show that xi > 1 works better than xi leq 1 even with the cross-entropy loss for several classification datasets when 50\% or 30\% of the labels are corrupted. Further, we quantify when optimal SD is better than optimal regularization. Next, we analyze SD in the case of logistic regression for binary classification with random label corruption and quantify the range of label corruption in which the student outperforms the teacher in terms of accuracy. To our knowledge, this is the first result of its kind for the cross-entropy loss.
Bayesian Optimization Meets Self-Distillation
Bayesian optimization (BO) has contributed greatly to improving model performance by suggesting promising hyperparameter configurations iteratively based on observations from multiple training trials. However, only partial knowledge (i.e., the measured performances of trained models and their hyperparameter configurations) from previous trials is transferred. On the other hand, Self-Distillation (SD) only transfers partial knowledge learned by the task model itself. To fully leverage the various knowledge gained from all training trials, we propose the BOSS framework, which combines BO and SD. BOSS suggests promising hyperparameter configurations through BO and carefully selects pre-trained models from previous trials for SD, which are otherwise abandoned in the conventional BO process. BOSS achieves significantly better performance than both BO and SD in a wide range of tasks including general image classification, learning with noisy labels, semi-supervised learning, and medical image analysis tasks.
Random Teachers are Good Teachers
In this work, we investigate the implicit regularization induced by teacher-student learning dynamics in self-distillation. To isolate its effect, we describe a simple experiment where we consider teachers at random initialization instead of trained teachers. Surprisingly, when distilling a student into such a random teacher, we observe that the resulting model and its representations already possess very interesting characteristics; (1) we observe a strong improvement of the distilled student over its teacher in terms of probing accuracy. (2) The learned representations are data-dependent and transferable between different tasks but deteriorate strongly if trained on random inputs. (3) The student checkpoint contains sparse subnetworks, so-called lottery tickets, and lies on the border of linear basins in the supervised loss landscape. These observations have interesting consequences for several important areas in machine learning: (1) Self-distillation can work solely based on the implicit regularization present in the gradient dynamics without relying on any dark knowledge, (2) self-supervised learning can learn features even in the absence of data augmentation and (3) training dynamics during the early phase of supervised training do not necessarily require label information. Finally, we shed light on an intriguing local property of the loss landscape: the process of feature learning is strongly amplified if the student is initialized closely to the teacher. These results raise interesting questions about the nature of the landscape that have remained unexplored so far. Code is available at https://github.com/safelix/dinopl.
Even your Teacher Needs Guidance: Ground-Truth Targets Dampen Regularization Imposed by Self-Distillation
Knowledge distillation is classically a procedure where a neural network is trained on the output of another network along with the original targets in order to transfer knowledge between the architectures. The special case of self-distillation, where the network architectures are identical, has been observed to improve generalization accuracy. In this paper, we consider an iterative variant of self-distillation in a kernel regression setting, in which successive steps incorporate both model outputs and the ground-truth targets. This allows us to provide the first theoretical results on the importance of using the weighted ground-truth targets in self-distillation. Our focus is on fitting nonlinear functions to training data with a weighted mean square error objective function suitable for distillation, subject to ell_2 regularization of the model parameters. We show that any such function obtained with self-distillation can be calculated directly as a function of the initial fit, and that infinite distillation steps yields the same optimization problem as the original with amplified regularization. Furthermore, we provide a closed form solution for the optimal choice of weighting parameter at each step, and show how to efficiently estimate this weighting parameter for deep learning and significantly reduce the computational requirements compared to a grid search.
Self-Evolution Knowledge Distillation for LLM-based Machine Translation
Knowledge distillation (KD) has shown great promise in transferring knowledge from larger teacher models to smaller student models. However, existing KD strategies for large language models often minimize output distributions between student and teacher models indiscriminately for each token. This overlooks the imbalanced nature of tokens and their varying transfer difficulties. In response, we propose a distillation strategy called Self-Evolution KD. The core of this approach involves dynamically integrating teacher distribution and one-hot distribution of ground truth into the student distribution as prior knowledge, which promotes the distillation process. It adjusts the ratio of prior knowledge based on token learning difficulty, fully leveraging the teacher model's potential. Experimental results show our method brings an average improvement of approximately 1.4 SacreBLEU points across four translation directions in the WMT22 test sets. Further analysis indicates that the improvement comes from better knowledge transfer from teachers, confirming our hypothesis.
TraFlow: Trajectory Distillation on Pre-Trained Rectified Flow
Majorities of distillation methods on pre-trained diffusion models or on pre-trained rectified flow, focus on either the distillation outputs or the trajectories between random noises and clean images to speed up sample generations from pre-trained models. In those trajectory-based distillation methods, consistency distillation requires the self-consistent trajectory projection to regulate the trajectory, which might avoid the common ODE approximation error {while still be concerning about sampling efficiencies}. At the same time, rectified flow distillations enforce straight trajectory for fast sampling, although an ODE solver is still required. In this work, we propose a trajectory distillation method, \modelname, that enjoys the benefits of both and enables few-step generations. TraFlow adopts the settings of consistency trajectory models, and further enforces the properties of self-consistency and straightness throughout the entire trajectory. These two properties are pursued by reaching a balance with following three targets: (1) reconstruct the output from pre-trained models; (2) learn the amount of changes by pre-trained models; (3) satisfy the self-consistency over its trajectory. Extensive experimental results have shown the effectiveness of our proposed method.
Shortcutting Pre-trained Flow Matching Diffusion Models is Almost Free Lunch
We present an ultra-efficient post-training method for shortcutting large-scale pre-trained flow matching diffusion models into efficient few-step samplers, enabled by novel velocity field self-distillation. While shortcutting in flow matching, originally introduced by shortcut models, offers flexible trajectory-skipping capabilities, it requires a specialized step-size embedding incompatible with existing models unless retraining from scratchx2013a process nearly as costly as pretraining itself. Our key contribution is thus imparting a more aggressive shortcut mechanism to standard flow matching models (e.g., Flux), leveraging a unique distillation principle that obviates the need for step-size embedding. Working on the velocity field rather than sample space and learning rapidly from self-guided distillation in an online manner, our approach trains efficiently, e.g., producing a 3-step Flux less than one A100 day. Beyond distillation, our method can be incorporated into the pretraining stage itself, yielding models that inherently learn efficient, few-step flows without compromising quality. This capability also enables, to our knowledge, the first few-shot distillation method (e.g., 10 text-image pairs) for dozen-billion-parameter diffusion models, delivering state-of-the-art performance at almost free cost.
Diffusion Self-Distillation for Zero-Shot Customized Image Generation
Text-to-image diffusion models produce impressive results but are frustrating tools for artists who desire fine-grained control. For example, a common use case is to create images of a specific instance in novel contexts, i.e., "identity-preserving generation". This setting, along with many other tasks (e.g., relighting), is a natural fit for image+text-conditional generative models. However, there is insufficient high-quality paired data to train such a model directly. We propose Diffusion Self-Distillation, a method for using a pre-trained text-to-image model to generate its own dataset for text-conditioned image-to-image tasks. We first leverage a text-to-image diffusion model's in-context generation ability to create grids of images and curate a large paired dataset with the help of a Visual-Language Model. We then fine-tune the text-to-image model into a text+image-to-image model using the curated paired dataset. We demonstrate that Diffusion Self-Distillation outperforms existing zero-shot methods and is competitive with per-instance tuning techniques on a wide range of identity-preservation generation tasks, without requiring test-time optimization.
Self-supervised Label Augmentation via Input Transformations
Self-supervised learning, which learns by constructing artificial labels given only the input signals, has recently gained considerable attention for learning representations with unlabeled datasets, i.e., learning without any human-annotated supervision. In this paper, we show that such a technique can be used to significantly improve the model accuracy even under fully-labeled datasets. Our scheme trains the model to learn both original and self-supervised tasks, but is different from conventional multi-task learning frameworks that optimize the summation of their corresponding losses. Our main idea is to learn a single unified task with respect to the joint distribution of the original and self-supervised labels, i.e., we augment original labels via self-supervision of input transformation. This simple, yet effective approach allows to train models easier by relaxing a certain invariant constraint during learning the original and self-supervised tasks simultaneously. It also enables an aggregated inference which combines the predictions from different augmentations to improve the prediction accuracy. Furthermore, we propose a novel knowledge transfer technique, which we refer to as self-distillation, that has the effect of the aggregated inference in a single (faster) inference. We demonstrate the large accuracy improvement and wide applicability of our framework on various fully-supervised settings, e.g., the few-shot and imbalanced classification scenarios.
Lyra: Generative 3D Scene Reconstruction via Video Diffusion Model Self-Distillation
The ability to generate virtual environments is crucial for applications ranging from gaming to physical AI domains such as robotics, autonomous driving, and industrial AI. Current learning-based 3D reconstruction methods rely on the availability of captured real-world multi-view data, which is not always readily available. Recent advancements in video diffusion models have shown remarkable imagination capabilities, yet their 2D nature limits the applications to simulation where a robot needs to navigate and interact with the environment. In this paper, we propose a self-distillation framework that aims to distill the implicit 3D knowledge in the video diffusion models into an explicit 3D Gaussian Splatting (3DGS) representation, eliminating the need for multi-view training data. Specifically, we augment the typical RGB decoder with a 3DGS decoder, which is supervised by the output of the RGB decoder. In this approach, the 3DGS decoder can be purely trained with synthetic data generated by video diffusion models. At inference time, our model can synthesize 3D scenes from either a text prompt or a single image for real-time rendering. Our framework further extends to dynamic 3D scene generation from a monocular input video. Experimental results show that our framework achieves state-of-the-art performance in static and dynamic 3D scene generation.
Multi-Mode Online Knowledge Distillation for Self-Supervised Visual Representation Learning
Self-supervised learning (SSL) has made remarkable progress in visual representation learning. Some studies combine SSL with knowledge distillation (SSL-KD) to boost the representation learning performance of small models. In this study, we propose a Multi-mode Online Knowledge Distillation method (MOKD) to boost self-supervised visual representation learning. Different from existing SSL-KD methods that transfer knowledge from a static pre-trained teacher to a student, in MOKD, two different models learn collaboratively in a self-supervised manner. Specifically, MOKD consists of two distillation modes: self-distillation and cross-distillation modes. Among them, self-distillation performs self-supervised learning for each model independently, while cross-distillation realizes knowledge interaction between different models. In cross-distillation, a cross-attention feature search strategy is proposed to enhance the semantic feature alignment between different models. As a result, the two models can absorb knowledge from each other to boost their representation learning performance. Extensive experimental results on different backbones and datasets demonstrate that two heterogeneous models can benefit from MOKD and outperform their independently trained baseline. In addition, MOKD also outperforms existing SSL-KD methods for both the student and teacher models.
Score identity Distillation: Exponentially Fast Distillation of Pretrained Diffusion Models for One-Step Generation
We introduce Score identity Distillation (SiD), an innovative data-free method that distills the generative capabilities of pretrained diffusion models into a single-step generator. SiD not only facilitates an exponentially fast reduction in Fr\'echet inception distance (FID) during distillation but also approaches or even exceeds the FID performance of the original teacher diffusion models. By reformulating forward diffusion processes as semi-implicit distributions, we leverage three score-related identities to create an innovative loss mechanism. This mechanism achieves rapid FID reduction by training the generator using its own synthesized images, eliminating the need for real data or reverse-diffusion-based generation, all accomplished within significantly shortened generation time. Upon evaluation across four benchmark datasets, the SiD algorithm demonstrates high iteration efficiency during distillation and surpasses competing distillation approaches, whether they are one-step or few-step, data-free, or dependent on training data, in terms of generation quality. This achievement not only redefines the benchmarks for efficiency and effectiveness in diffusion distillation but also in the broader field of diffusion-based generation. The PyTorch implementation is available at https://github.com/mingyuanzhou/SiD
HeadArtist: Text-conditioned 3D Head Generation with Self Score Distillation
This work presents HeadArtist for 3D head generation from text descriptions. With a landmark-guided ControlNet serving as the generative prior, we come up with an efficient pipeline that optimizes a parameterized 3D head model under the supervision of the prior distillation itself. We call such a process self score distillation (SSD). In detail, given a sampled camera pose, we first render an image and its corresponding landmarks from the head model, and add some particular level of noise onto the image. The noisy image, landmarks, and text condition are then fed into the frozen ControlNet twice for noise prediction. Two different classifier-free guidance (CFG) weights are applied during these two predictions, and the prediction difference offers a direction on how the rendered image can better match the text of interest. Experimental results suggest that our approach delivers high-quality 3D head sculptures with adequate geometry and photorealistic appearance, significantly outperforming state-ofthe-art methods. We also show that the same pipeline well supports editing the generated heads, including both geometry deformation and appearance change.
Distill Not Only Data but Also Rewards: Can Smaller Language Models Surpass Larger Ones?
Distilling large language models (LLMs) typically involves transferring the teacher model's responses through supervised fine-tuning (SFT). However, this approach neglects the potential to distill both data (output content) and reward signals (quality evaluations). Extracting reliable reward signals directly from teacher models is challenging, as LLMs are optimized for generation rather than evaluation, often resulting in biased or inconsistent assessments. To address this limitation, we propose a novel distillation pipeline that transfers both responses and rewards. Our method generates pseudo-rewards through a self-supervised mechanism that leverages the inherent structure of both teacher and student responses, enabling reward learning without explicit external evaluation. The reward model subsequently guides reinforcement learning (RL), allowing iterative refinement of the student model after an SFT warm-up phase. Experiments on GSM8K and MMLU-PRO demonstrate that our method consistently outperforms traditional SFT-based approaches, enabling student models to surpass the performance of their teachers. This work highlights the potential for scalable, efficient distillation through structured self-supervised reward learning, reducing dependence on external reward supervision.
Towards Training One-Step Diffusion Models Without Distillation
Recent advances in one-step generative models typically follow a two-stage process: first training a teacher diffusion model and then distilling it into a one-step student model. This distillation process traditionally relies on both the teacher model's score function to compute the distillation loss and its weights for student initialization. In this paper, we explore whether one-step generative models can be trained directly without this distillation process. First, we show that the teacher's score function is not essential and propose a family of distillation methods that achieve competitive results without relying on score estimation. Next, we demonstrate that initialization from teacher weights is indispensable in successful training. Surprisingly, we find that this benefit is not due to improved ``input-output" mapping but rather the learned feature representations, which dominate distillation quality. Our findings provide a better understanding of the role of initialization in one-step model training and its impact on distillation quality.
Improving Differentiable Architecture Search via Self-Distillation
Differentiable Architecture Search (DARTS) is a simple yet efficient Neural Architecture Search (NAS) method. During the search stage, DARTS trains a supernet by jointly optimizing architecture parameters and network parameters. During the evaluation stage, DARTS discretizes the supernet to derive the optimal architecture based on architecture parameters. However, recent research has shown that during the training process, the supernet tends to converge towards sharp minima rather than flat minima. This is evidenced by the higher sharpness of the loss landscape of the supernet, which ultimately leads to a performance gap between the supernet and the optimal architecture. In this paper, we propose Self-Distillation Differentiable Neural Architecture Search (SD-DARTS) to alleviate the discretization gap. We utilize self-distillation to distill knowledge from previous steps of the supernet to guide its training in the current step, effectively reducing the sharpness of the supernet's loss and bridging the performance gap between the supernet and the optimal architecture. Furthermore, we introduce the concept of voting teachers, where multiple previous supernets are selected as teachers, and their output probabilities are aggregated through voting to obtain the final teacher prediction. Experimental results on real datasets demonstrate the advantages of our novel self-distillation-based NAS method compared to state-of-the-art alternatives.
Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need?
The focus of recent meta-learning research has been on the development of learning algorithms that can quickly adapt to test time tasks with limited data and low computational cost. Few-shot learning is widely used as one of the standard benchmarks in meta-learning. In this work, we show that a simple baseline: learning a supervised or self-supervised representation on the meta-training set, followed by training a linear classifier on top of this representation, outperforms state-of-the-art few-shot learning methods. An additional boost can be achieved through the use of self-distillation. This demonstrates that using a good learned embedding model can be more effective than sophisticated meta-learning algorithms. We believe that our findings motivate a rethinking of few-shot image classification benchmarks and the associated role of meta-learning algorithms. Code is available at: http://github.com/WangYueFt/rfs/.
From Slow Bidirectional to Fast Causal Video Generators
Current video diffusion models achieve impressive generation quality but struggle in interactive applications due to bidirectional attention dependencies. The generation of a single frame requires the model to process the entire sequence, including the future. We address this limitation by adapting a pretrained bidirectional diffusion transformer to a causal transformer that generates frames on-the-fly. To further reduce latency, we extend distribution matching distillation (DMD) to videos, distilling 50-step diffusion model into a 4-step generator. To enable stable and high-quality distillation, we introduce a student initialization scheme based on teacher's ODE trajectories, as well as an asymmetric distillation strategy that supervises a causal student model with a bidirectional teacher. This approach effectively mitigates error accumulation in autoregressive generation, allowing long-duration video synthesis despite training on short clips. Our model supports fast streaming generation of high quality videos at 9.4 FPS on a single GPU thanks to KV caching. Our approach also enables streaming video-to-video translation, image-to-video, and dynamic prompting in a zero-shot manner. We will release the code based on an open-source model in the future.
Hyper-SD: Trajectory Segmented Consistency Model for Efficient Image Synthesis
Recently, a series of diffusion-aware distillation algorithms have emerged to alleviate the computational overhead associated with the multi-step inference process of Diffusion Models (DMs). Current distillation techniques often dichotomize into two distinct aspects: i) ODE Trajectory Preservation; and ii) ODE Trajectory Reformulation. However, these approaches suffer from severe performance degradation or domain shifts. To address these limitations, we propose Hyper-SD, a novel framework that synergistically amalgamates the advantages of ODE Trajectory Preservation and Reformulation, while maintaining near-lossless performance during step compression. Firstly, we introduce Trajectory Segmented Consistency Distillation to progressively perform consistent distillation within pre-defined time-step segments, which facilitates the preservation of the original ODE trajectory from a higher-order perspective. Secondly, we incorporate human feedback learning to boost the performance of the model in a low-step regime and mitigate the performance loss incurred by the distillation process. Thirdly, we integrate score distillation to further improve the low-step generation capability of the model and offer the first attempt to leverage a unified LoRA to support the inference process at all steps. Extensive experiments and user studies demonstrate that Hyper-SD achieves SOTA performance from 1 to 8 inference steps for both SDXL and SD1.5. For example, Hyper-SDXL surpasses SDXL-Lightning by +0.68 in CLIP Score and +0.51 in Aes Score in the 1-step inference.
Distribution Backtracking Builds A Faster Convergence Trajectory for One-step Diffusion Distillation
Accelerating the sampling speed of diffusion models remains a significant challenge. Recent score distillation methods distill a heavy teacher model into an one-step student generator, which is optimized by calculating the difference between the two score functions on the samples generated by the student model. However, there is a score mismatch issue in the early stage of the distillation process, because existing methods mainly focus on using the endpoint of pre-trained diffusion models as teacher models, overlooking the importance of the convergence trajectory between the student generator and the teacher model. To address this issue, we extend the score distillation process by introducing the entire convergence trajectory of teacher models and propose Distribution Backtracking Distillation (DisBack) for distilling student generators. DisBask is composed of two stages: Degradation Recording and Distribution Backtracking. Degradation Recording is designed to obtain the convergence trajectory of teacher models, which records the degradation path from the trained teacher model to the untrained initial student generator. The degradation path implicitly represents the intermediate distributions of teacher models. Then Distribution Backtracking trains a student generator to backtrack the intermediate distributions for approximating the convergence trajectory of teacher models. Extensive experiments show that DisBack achieves faster and better convergence than the existing distillation method and accomplishes comparable generation performance. Notably, DisBack is easy to implement and can be generalized to existing distillation methods to boost performance. Our code is publicly available on https://github.com/SYZhang0805/DisBack.
DDAE++: Enhancing Diffusion Models Towards Unified Generative and Discriminative Learning
While diffusion models have gained prominence in image synthesis, their generative pre-training has been shown to yield discriminative representations, paving the way towards unified visual generation and understanding. However, two key questions remain: 1) Can these representations be leveraged to improve the training of diffusion models themselves, rather than solely benefiting downstream tasks? 2) Can the feature quality be enhanced to rival or even surpass modern self-supervised learners, without compromising generative capability? This work addresses these questions by introducing self-conditioning, a straightforward yet effective mechanism that internally leverages the rich semantics inherent in denoising network to guide its own decoding layers, forming a tighter bottleneck that condenses high-level semantics to improve generation. Results are compelling: our method boosts both generation FID and recognition accuracy with 1% computational overhead and generalizes across diverse diffusion architectures. Crucially, self-conditioning facilitates an effective integration of discriminative techniques, such as contrastive self-distillation, directly into diffusion models without sacrificing generation quality. Extensive experiments on pixel-space and latent-space datasets show that in linear evaluations, our enhanced diffusion models, particularly UViT and DiT, serve as strong representation learners, surpassing various self-supervised models.
Distillation Scaling Laws
We provide a distillation scaling law that estimates distilled model performance based on a compute budget and its allocation between the student and teacher. Our findings reduce the risks associated with using distillation at scale; compute allocation for both the teacher and student models can now be done to maximize student performance. We provide compute optimal distillation recipes for when 1) a teacher exists, or 2) a teacher needs training. If many students are to be distilled, or a teacher already exists, distillation outperforms supervised pretraining until a compute level which grows predictably with student size. If one student is to be distilled and a teacher also needs training, supervised learning should be done instead. Additionally, we provide insights across our large scale study of distillation, which increase our understanding of distillation and inform experimental design.
Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones
Recently, research efforts have been concentrated on revealing how pre-trained model makes a difference in neural network performance. Self-supervision and semi-supervised learning technologies have been extensively explored by the community and are proven to be of great potential in obtaining a powerful pre-trained model. However, these models require huge training costs (i.e., hundreds of millions of images or training iterations). In this paper, we propose to improve existing baseline networks via knowledge distillation from off-the-shelf pre-trained big powerful models. Different from existing knowledge distillation frameworks which require student model to be consistent with both soft-label generated by teacher model and hard-label annotated by humans, our solution performs distillation by only driving prediction of the student model consistent with that of the teacher model. Therefore, our distillation setting can get rid of manually labeled data and can be trained with extra unlabeled data to fully exploit capability of teacher model for better learning. We empirically find that such simple distillation settings perform extremely effective, for example, the top-1 accuracy on ImageNet-1k validation set of MobileNetV3-large and ResNet50-D can be significantly improved from 75.2% to 79% and 79.1% to 83%, respectively. We have also thoroughly analyzed what are dominant factors that affect the distillation performance and how they make a difference. Extensive downstream computer vision tasks, including transfer learning, object detection and semantic segmentation, can significantly benefit from the distilled pretrained models. All our experiments are implemented based on PaddlePaddle, codes and a series of improved pretrained models with ssld suffix are available in PaddleClas.
Target-Driven Distillation: Consistency Distillation with Target Timestep Selection and Decoupled Guidance
Consistency distillation methods have demonstrated significant success in accelerating generative tasks of diffusion models. However, since previous consistency distillation methods use simple and straightforward strategies in selecting target timesteps, they usually struggle with blurs and detail losses in generated images. To address these limitations, we introduce Target-Driven Distillation (TDD), which (1) adopts a delicate selection strategy of target timesteps, increasing the training efficiency; (2) utilizes decoupled guidances during training, making TDD open to post-tuning on guidance scale during inference periods; (3) can be optionally equipped with non-equidistant sampling and x0 clipping, enabling a more flexible and accurate way for image sampling. Experiments verify that TDD achieves state-of-the-art performance in few-step generation, offering a better choice among consistency distillation models.
Multi-student Diffusion Distillation for Better One-step Generators
Diffusion models achieve high-quality sample generation at the cost of a lengthy multistep inference procedure. To overcome this, diffusion distillation techniques produce student generators capable of matching or surpassing the teacher in a single step. However, the student model's inference speed is limited by the size of the teacher architecture, preventing real-time generation for computationally heavy applications. In this work, we introduce Multi-Student Distillation (MSD), a framework to distill a conditional teacher diffusion model into multiple single-step generators. Each student generator is responsible for a subset of the conditioning data, thereby obtaining higher generation quality for the same capacity. MSD trains multiple distilled students, allowing smaller sizes and, therefore, faster inference. Also, MSD offers a lightweight quality boost over single-student distillation with the same architecture. We demonstrate MSD is effective by training multiple same-sized or smaller students on single-step distillation using distribution matching and adversarial distillation techniques. With smaller students, MSD gets competitive results with faster inference for single-step generation. Using 4 same-sized students, MSD significantly outperforms single-student baseline counterparts and achieves remarkable FID scores for one-step image generation: 1.20 on ImageNet-64x64 and 8.20 on zero-shot COCO2014.
Can a student Large Language Model perform as well as it's teacher?
The burgeoning complexity of contemporary deep learning models, while achieving unparalleled accuracy, has inadvertently introduced deployment challenges in resource-constrained environments. Knowledge distillation, a technique aiming to transfer knowledge from a high-capacity "teacher" model to a streamlined "student" model, emerges as a promising solution to this dilemma. This paper provides a comprehensive overview of the knowledge distillation paradigm, emphasizing its foundational principles such as the utility of soft labels and the significance of temperature scaling. Through meticulous examination, we elucidate the critical determinants of successful distillation, including the architecture of the student model, the caliber of the teacher, and the delicate balance of hyperparameters. While acknowledging its profound advantages, we also delve into the complexities and challenges inherent in the process. Our exploration underscores knowledge distillation's potential as a pivotal technique in optimizing the trade-off between model performance and deployment efficiency.
Self-Distillation for Further Pre-training of Transformers
Pre-training a large transformer model on a massive amount of unlabeled data and fine-tuning it on labeled datasets for diverse downstream tasks has proven to be a successful strategy, for a variety of vision and natural language processing tasks. However, direct fine-tuning of the pre-trained model may be suboptimal if there exist large discrepancies across data domains for pre-training and fine-tuning. To tackle this issue, several previous studies have proposed further pre-training strategies, where we continue to pre-train the model on the target unlabeled dataset before fine-tuning. However, all of them solely focus on language models and we empirically find that a Vision Transformer is vulnerable to overfitting as we continue to pretrain the model on target unlabeled data. In order to tackle this limitation, we propose self-distillation as a regularization for a further pre-training stage. Specifically, we first further pre-train the initial pre-trained model on the target unlabeled data and then consider it as a teacher for self-distillation. Then we take the same initial pre-trained model as a student and enforce its hidden representations to be close to those of the teacher while optimizing the student with a masked auto-encoding objective. We empirically validate the efficacy of self-distillation on a variety of benchmark datasets for image and text classification tasks. Experimentally, we show that our proposed method outperforms all the relevant baselines. Theoretically, we analyze the proposed method with a simplified model to understand how self-distillation for further pre-training can potentially help improve the performance of the downstream tasks.
Self-Distillation Bridges Distribution Gap in Language Model Fine-Tuning
The surge in Large Language Models (LLMs) has revolutionized natural language processing, but fine-tuning them for specific tasks often encounters challenges in balancing performance and preserving general instruction-following abilities. In this paper, we posit that the distribution gap between task datasets and the LLMs serves as the primary underlying cause. To address the problem, we introduce Self-Distillation Fine-Tuning (SDFT), a novel approach that bridges the distribution gap by guiding fine-tuning with a distilled dataset generated by the model itself to match its original distribution. Experimental results on the Llama-2-chat model across various benchmarks demonstrate that SDFT effectively mitigates catastrophic forgetting while achieving comparable or superior performance on downstream tasks compared to the vanilla fine-tuning. Moreover, SDFT demonstrates the potential to maintain the helpfulness and safety alignment of LLMs. Our code is available at https://github.com/sail-sg/sdft.
Distribution Matching Distillation Meets Reinforcement Learning
Distribution Matching Distillation (DMD) distills a pre-trained multi-step diffusion model to a few-step one to improve inference efficiency. However, the performance of the latter is often capped by the former. To circumvent this dilemma, we propose DMDR, a novel framework that combines Reinforcement Learning (RL) techniques into the distillation process. We show that for the RL of the few-step generator, the DMD loss itself is a more effective regularization compared to the traditional ones. In turn, RL can help to guide the mode coverage process in DMD more effectively. These allow us to unlock the capacity of the few-step generator by conducting distillation and RL simultaneously. Meanwhile, we design the dynamic distribution guidance and dynamic renoise sampling training strategies to improve the initial distillation process. The experiments demonstrate that DMDR can achieve leading visual quality, prompt coherence among few-step methods, and even exhibit performance that exceeds the multi-step teacher.
Enhancing Multi-hop Reasoning in Vision-Language Models via Self-Distillation with Multi-Prompt Ensembling
Multi-modal large language models have seen rapid advancement alongside large language models. However, while language models can effectively leverage chain-of-thought prompting for zero or few-shot learning, similar prompting strategies are less effective for multi-modal LLMs due to modality gaps and task complexity. To address this challenge, we explore two prompting approaches: a dual-query method that separates multi-modal input analysis and answer generation into two prompting steps, and an ensemble prompting method that combines multiple prompt variations to arrive at the final answer. Although these approaches enhance the model's reasoning capabilities without fine-tuning, they introduce significant inference overhead. Therefore, building on top of these two prompting techniques, we propose a self-distillation framework such that the model can improve itself without any annotated data. Our self-distillation framework learns representation intervention modules from the reasoning traces collected from ensembled dual-query prompts, in the form of hidden representations. The lightweight intervention modules operate in parallel with the frozen original model, which makes it possible to maintain computational efficiency while significantly improving model capability. We evaluate our method on five widely-used VQA benchmarks, demonstrating its effectiveness in performing multi-hop reasoning for complex tasks.
Inference-Time Diffusion Model Distillation
Diffusion distillation models effectively accelerate reverse sampling by compressing the process into fewer steps. However, these models still exhibit a performance gap compared to their pre-trained diffusion model counterparts, exacerbated by distribution shifts and accumulated errors during multi-step sampling. To address this, we introduce Distillation++, a novel inference-time distillation framework that reduces this gap by incorporating teacher-guided refinement during sampling. Inspired by recent advances in conditional sampling, our approach recasts student model sampling as a proximal optimization problem with a score distillation sampling loss (SDS). To this end, we integrate distillation optimization during reverse sampling, which can be viewed as teacher guidance that drives student sampling trajectory towards the clean manifold using pre-trained diffusion models. Thus, Distillation++ improves the denoising process in real-time without additional source data or fine-tuning. Distillation++ demonstrates substantial improvements over state-of-the-art distillation baselines, particularly in early sampling stages, positioning itself as a robust guided sampling process crafted for diffusion distillation models. Code: https://github.com/geonyeong-park/inference_distillation.
Distilling System 2 into System 1
Large language models (LLMs) can spend extra compute during inference to generate intermediate thoughts, which helps to produce better final responses. Since Chain-of-Thought (Wei et al., 2022), many such System 2 techniques have been proposed such as Rephrase and Respond (Deng et al., 2023a), System 2 Attention (Weston and Sukhbaatar, 2023) and Branch-Solve-Merge (Saha et al., 2023). In this work we investigate self-supervised methods to ``compile'' (distill) higher quality outputs from System 2 techniques back into LLM generations without intermediate reasoning token sequences, as this reasoning has been distilled into System 1. We show that several such techniques can be successfully distilled, resulting in improved results compared to the original System 1 performance, and with less inference cost than System 2. We posit that such System 2 distillation will be an important feature of future continually learning AI systems, enabling them to focus System 2 capabilities on the reasoning tasks that they cannot yet do well.
Unsqueeze [CLS] Bottleneck to Learn Rich Representations
Distillation-based self-supervised learning typically leads to more compressed representations due to its radical clustering process and the implementation of a sharper target distribution. To overcome this limitation and preserve more information from input, we introduce UDI, conceptualized as Unsqueezed Distillation-based self-supervised learning (SSL). UDI enriches the learned representation by encouraging multimodal prediction distilled from a consolidated profile of local predictions that are derived via stratified sampling. Our evaluations show that UDI not only promotes semantically meaningful representations at instance level, delivering superior or competitive results to state-of-the-art SSL methods in image classification, but also effectively preserves the nuisance of input, which yields significant improvement in dense prediction tasks, including object detection and segmentation. Additionally, UDI performs competitively in low-shot image classification, improving the scalability of joint-embedding pipelines. Various visualizations and ablation studies are presented to further elucidate the mechanisms behind UDI. Our source code is available at https://github.com/ISL-CV/udi.
One-Step Diffusion Distillation via Deep Equilibrium Models
Diffusion models excel at producing high-quality samples but naively require hundreds of iterations, prompting multiple attempts to distill the generation process into a faster network. However, many existing approaches suffer from a variety of challenges: the process for distillation training can be complex, often requiring multiple training stages, and the resulting models perform poorly when utilized in single-step generative applications. In this paper, we introduce a simple yet effective means of distilling diffusion models directly from initial noise to the resulting image. Of particular importance to our approach is to leverage a new Deep Equilibrium (DEQ) model as the distilled architecture: the Generative Equilibrium Transformer (GET). Our method enables fully offline training with just noise/image pairs from the diffusion model while achieving superior performance compared to existing one-step methods on comparable training budgets. We demonstrate that the DEQ architecture is crucial to this capability, as GET matches a 5times larger ViT in terms of FID scores while striking a critical balance of computational cost and image quality. Code, checkpoints, and datasets are available.
Pixel-Wise Contrastive Distillation
We present a simple but effective pixel-level self-supervised distillation framework friendly to dense prediction tasks. Our method, called Pixel-Wise Contrastive Distillation (PCD), distills knowledge by attracting the corresponding pixels from student's and teacher's output feature maps. PCD includes a novel design called SpatialAdaptor which ``reshapes'' a part of the teacher network while preserving the distribution of its output features. Our ablation experiments suggest that this reshaping behavior enables more informative pixel-to-pixel distillation. Moreover, we utilize a plug-in multi-head self-attention module that explicitly relates the pixels of student's feature maps to enhance the effective receptive field, leading to a more competitive student. PCD outperforms previous self-supervised distillation methods on various dense prediction tasks. A backbone of ResNet-18-FPN distilled by PCD achieves 37.4 AP^bbox and 34.0 AP^mask on COCO dataset using the detector of Mask R-CNN. We hope our study will inspire future research on how to pre-train a small model friendly to dense prediction tasks in a self-supervised fashion.
AddSR: Accelerating Diffusion-based Blind Super-Resolution with Adversarial Diffusion Distillation
Blind super-resolution methods based on stable diffusion showcase formidable generative capabilities in reconstructing clear high-resolution images with intricate details from low-resolution inputs. However, their practical applicability is often hampered by poor efficiency, stemming from the requirement of thousands or hundreds of sampling steps. Inspired by the efficient adversarial diffusion distillation (ADD), we design~\name~to address this issue by incorporating the ideas of both distillation and ControlNet. Specifically, we first propose a prediction-based self-refinement strategy to provide high-frequency information in the student model output with marginal additional time cost. Furthermore, we refine the training process by employing HR images, rather than LR images, to regulate the teacher model, providing a more robust constraint for distillation. Second, we introduce a timestep-adaptive ADD to address the perception-distortion imbalance problem introduced by original ADD. Extensive experiments demonstrate our~\name~generates better restoration results, while achieving faster speed than previous SD-based state-of-the-art models (e.g., 7times faster than SeeSR).
Phased DMD: Few-step Distribution Matching Distillation via Score Matching within Subintervals
Distribution Matching Distillation (DMD) distills score-based generative models into efficient one-step generators, without requiring a one-to-one correspondence with the sampling trajectories of their teachers. However, limited model capacity causes one-step distilled models underperform on complex generative tasks, e.g., synthesizing intricate object motions in text-to-video generation. Directly extending DMD to multi-step distillation increases memory usage and computational depth, leading to instability and reduced efficiency. While prior works propose stochastic gradient truncation as a potential solution, we observe that it substantially reduces the generation diversity of multi-step distilled models, bringing it down to the level of their one-step counterparts. To address these limitations, we propose Phased DMD, a multi-step distillation framework that bridges the idea of phase-wise distillation with Mixture-of-Experts (MoE), reducing learning difficulty while enhancing model capacity. Phased DMD is built upon two key ideas: progressive distribution matching and score matching within subintervals. First, our model divides the SNR range into subintervals, progressively refining the model to higher SNR levels, to better capture complex distributions. Next, to ensure the training objective within each subinterval is accurate, we have conducted rigorous mathematical derivations. We validate Phased DMD by distilling state-of-the-art image and video generation models, including Qwen-Image (20B parameters) and Wan2.2 (28B parameters). Experimental results demonstrate that Phased DMD preserves output diversity better than DMD while retaining key generative capabilities. We will release our code and models.
Rethinking Large Language Model Distillation: A Constrained Markov Decision Process Perspective
We introduce a novel approach to large language model (LLM) distillation by formulating it as a constrained reinforcement learning problem. While recent work has begun exploring the integration of task-specific rewards into distillation processes, existing methods typically rely on ad-hoc reward weighting. We propose a principled optimization framework that maximizes task-specific rewards while constraining the divergence from the teacher model to remain below a specified threshold. Our approach adapts constrained state augmented reinforcement learning to the distillation setting, introducing a modified reward function that maintains theoretical guarantees of constraint satisfaction without requiring state augmentation or teacher model access during deployment and without the computational overhead of the dual Lagrangian methods. Through extensive experiments on mathematical reasoning tasks, we demonstrate that our method achieves better constraint satisfaction rates and better reasoning compared to the soft Lagrangian relaxation baselines while maintaining competitive task performance. Our framework provides a theoretically grounded and practically efficient solution for reward-aware distillation in resource-constrained settings.
Distilling ODE Solvers of Diffusion Models into Smaller Steps
Distillation techniques have substantially improved the sampling speed of diffusion models, allowing of the generation within only one step or a few steps. However, these distillation methods require extensive training for each dataset, sampler, and network, which limits their practical applicability. To address this limitation, we propose a straightforward distillation approach, Distilled-ODE solvers (D-ODE solvers), that optimizes the ODE solver rather than training the denoising network. D-ODE solvers are formulated by simply applying a single parameter adjustment to existing ODE solvers. Subsequently, D-ODE solvers with smaller steps are optimized by ODE solvers with larger steps through distillation over a batch of samples. Our comprehensive experiments indicate that D-ODE solvers outperform existing ODE solvers, including DDIM, PNDM, DPM-Solver, DEIS, and EDM, especially when generating samples with fewer steps. Our method incur negligible computational overhead compared to previous distillation techniques, enabling simple and rapid integration with previous samplers. Qualitative analysis further shows that D-ODE solvers enhance image quality while preserving the sampling trajectory of ODE solvers.
Lightweight Image Super-Resolution with Information Multi-distillation Network
In recent years, single image super-resolution (SISR) methods using deep convolution neural network (CNN) have achieved impressive results. Thanks to the powerful representation capabilities of the deep networks, numerous previous ways can learn the complex non-linear mapping between low-resolution (LR) image patches and their high-resolution (HR) versions. However, excessive convolutions will limit the application of super-resolution technology in low computing power devices. Besides, super-resolution of any arbitrary scale factor is a critical issue in practical applications, which has not been well solved in the previous approaches. To address these issues, we propose a lightweight information multi-distillation network (IMDN) by constructing the cascaded information multi-distillation blocks (IMDB), which contains distillation and selective fusion parts. Specifically, the distillation module extracts hierarchical features step-by-step, and fusion module aggregates them according to the importance of candidate features, which is evaluated by the proposed contrast-aware channel attention mechanism. To process real images with any sizes, we develop an adaptive cropping strategy (ACS) to super-resolve block-wise image patches using the same well-trained model. Extensive experiments suggest that the proposed method performs favorably against the state-of-the-art SR algorithms in term of visual quality, memory footprint, and inference time. Code is available at https://github.com/Zheng222/IMDN.
Spatial Self-Distillation for Object Detection with Inaccurate Bounding Boxes
Object detection via inaccurate bounding boxes supervision has boosted a broad interest due to the expensive high-quality annotation data or the occasional inevitability of low annotation quality (\eg tiny objects). The previous works usually utilize multiple instance learning (MIL), which highly depends on category information, to select and refine a low-quality box. Those methods suffer from object drift, group prediction and part domination problems without exploring spatial information. In this paper, we heuristically propose a Spatial Self-Distillation based Object Detector (SSD-Det) to mine spatial information to refine the inaccurate box in a self-distillation fashion. SSD-Det utilizes a Spatial Position Self-Distillation (SPSD) module to exploit spatial information and an interactive structure to combine spatial information and category information, thus constructing a high-quality proposal bag. To further improve the selection procedure, a Spatial Identity Self-Distillation (SISD) module is introduced in SSD-Det to obtain spatial confidence to help select the best proposals. Experiments on MS-COCO and VOC datasets with noisy box annotation verify our method's effectiveness and achieve state-of-the-art performance. The code is available at https://github.com/ucas-vg/PointTinyBenchmark/tree/SSD-Det.
Self-Knowledge Distillation with Progressive Refinement of Targets
The generalization capability of deep neural networks has been substantially improved by applying a wide spectrum of regularization methods, e.g., restricting function space, injecting randomness during training, augmenting data, etc. In this work, we propose a simple yet effective regularization method named progressive self-knowledge distillation (PS-KD), which progressively distills a model's own knowledge to soften hard targets (i.e., one-hot vectors) during training. Hence, it can be interpreted within a framework of knowledge distillation as a student becomes a teacher itself. Specifically, targets are adjusted adaptively by combining the ground-truth and past predictions from the model itself. We show that PS-KD provides an effect of hard example mining by rescaling gradients according to difficulty in classifying examples. The proposed method is applicable to any supervised learning tasks with hard targets and can be easily combined with existing regularization methods to further enhance the generalization performance. Furthermore, it is confirmed that PS-KD achieves not only better accuracy, but also provides high quality of confidence estimates in terms of calibration as well as ordinal ranking. Extensive experimental results on three different tasks, image classification, object detection, and machine translation, demonstrate that our method consistently improves the performance of the state-of-the-art baselines. The code is available at https://github.com/lgcnsai/PS-KD-Pytorch.
Adding Additional Control to One-Step Diffusion with Joint Distribution Matching
While diffusion distillation has enabled one-step generation through methods like Variational Score Distillation, adapting distilled models to emerging new controls -- such as novel structural constraints or latest user preferences -- remains challenging. Conventional approaches typically requires modifying the base diffusion model and redistilling it -- a process that is both computationally intensive and time-consuming. To address these challenges, we introduce Joint Distribution Matching (JDM), a novel approach that minimizes the reverse KL divergence between image-condition joint distributions. By deriving a tractable upper bound, JDM decouples fidelity learning from condition learning. This asymmetric distillation scheme enables our one-step student to handle controls unknown to the teacher model and facilitates improved classifier-free guidance (CFG) usage and seamless integration of human feedback learning (HFL). Experimental results demonstrate that JDM surpasses baseline methods such as multi-step ControlNet by mere one-step in most cases, while achieving state-of-the-art performance in one-step text-to-image synthesis through improved usage of CFG or HFL integration.
UNDO: Understanding Distillation as Optimization
Knowledge distillation has emerged as an effective strategy for compressing large language models' (LLMs) knowledge into smaller, more efficient student models. However, standard one-shot distillation methods often produce suboptimal results due to a mismatch between teacher-generated rationales and the student's specific learning requirements. In this paper, we introduce the UNDO: UNderstanding Distillation as Optimization framework, designed to bridge this gap by iteratively identifying the student's errors and prompting the teacher to refine its explanations accordingly. Each iteration directly targets the student's learning deficiencies, motivating the teacher to provide tailored and enhanced rationales that specifically address these weaknesses. Empirical evaluations on various challenging mathematical and commonsense reasoning tasks demonstrate that our iterative distillation method, UNDO, significantly outperforms standard one-step distillation methods, achieving performance gains of up to 20%. Additionally, we show that teacher-generated data refined through our iterative process remains effective even when applied to different student models, underscoring the broad applicability of our approach. Our work fundamentally reframes knowledge distillation as an iterative teacher-student interaction, effectively leveraging dynamic refinement by the teacher for better knowledge distillation.
Self-Supervised Dataset Distillation for Transfer Learning
Dataset distillation methods have achieved remarkable success in distilling a large dataset into a small set of representative samples. However, they are not designed to produce a distilled dataset that can be effectively used for facilitating self-supervised pre-training. To this end, we propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL). We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is biased due to the randomness originating from data augmentations or masking. To address this issue, we propose to minimize the mean squared error (MSE) between a model's representations of the synthetic examples and their corresponding learnable target feature representations for the inner objective, which does not introduce any randomness. Our primary motivation is that the model obtained by the proposed inner optimization can mimic the self-supervised target model. To achieve this, we also introduce the MSE between representations of the inner model and the self-supervised target model on the original full dataset for outer optimization. Lastly, assuming that a feature extractor is fixed, we only optimize a linear head on top of the feature extractor, which allows us to reduce the computational cost and obtain a closed-form solution of the head with kernel ridge regression. We empirically validate the effectiveness of our method on various applications involving transfer learning.
Trajectory Consistency Distillation
Latent Consistency Model (LCM) extends the Consistency Model to the latent space and leverages the guided consistency distillation technique to achieve impressive performance in accelerating text-to-image synthesis. However, we observed that LCM struggles to generate images with both clarity and detailed intricacy. To address this limitation, we initially delve into and elucidate the underlying causes. Our investigation identifies that the primary issue stems from errors in three distinct areas. Consequently, we introduce Trajectory Consistency Distillation (TCD), which encompasses trajectory consistency function and strategic stochastic sampling. The trajectory consistency function diminishes the distillation errors by broadening the scope of the self-consistency boundary condition and endowing the TCD with the ability to accurately trace the entire trajectory of the Probability Flow ODE. Additionally, strategic stochastic sampling is specifically designed to circumvent the accumulated errors inherent in multi-step consistency sampling, which is meticulously tailored to complement the TCD model. Experiments demonstrate that TCD not only significantly enhances image quality at low NFEs but also yields more detailed results compared to the teacher model at high NFEs.
Motion Consistency Model: Accelerating Video Diffusion with Disentangled Motion-Appearance Distillation
Image diffusion distillation achieves high-fidelity generation with very few sampling steps. However, applying these techniques directly to video diffusion often results in unsatisfactory frame quality due to the limited visual quality in public video datasets. This affects the performance of both teacher and student video diffusion models. Our study aims to improve video diffusion distillation while improving frame appearance using abundant high-quality image data. We propose motion consistency model (MCM), a single-stage video diffusion distillation method that disentangles motion and appearance learning. Specifically, MCM includes a video consistency model that distills motion from the video teacher model, and an image discriminator that enhances frame appearance to match high-quality image data. This combination presents two challenges: (1) conflicting frame learning objectives, as video distillation learns from low-quality video frames while the image discriminator targets high-quality images; and (2) training-inference discrepancies due to the differing quality of video samples used during training and inference. To address these challenges, we introduce disentangled motion distillation and mixed trajectory distillation. The former applies the distillation objective solely to the motion representation, while the latter mitigates training-inference discrepancies by mixing distillation trajectories from both the low- and high-quality video domains. Extensive experiments show that our MCM achieves the state-of-the-art video diffusion distillation performance. Additionally, our method can enhance frame quality in video diffusion models, producing frames with high aesthetic scores or specific styles without corresponding video data.
EM Distillation for One-step Diffusion Models
While diffusion models can learn complex distributions, sampling requires a computationally expensive iterative process. Existing distillation methods enable efficient sampling, but have notable limitations, such as performance degradation with very few sampling steps, reliance on training data access, or mode-seeking optimization that may fail to capture the full distribution. We propose EM Distillation (EMD), a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of perceptual quality. Our approach is derived through the lens of Expectation-Maximization (EM), where the generator parameters are updated using samples from the joint distribution of the diffusion teacher prior and inferred generator latents. We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process. We further reveal an interesting connection of our method with existing methods that minimize mode-seeking KL. EMD outperforms existing one-step generative methods in terms of FID scores on ImageNet-64 and ImageNet-128, and compares favorably with prior work on distilling text-to-image diffusion models.
SlimFlow: Training Smaller One-Step Diffusion Models with Rectified Flow
Diffusion models excel in high-quality generation but suffer from slow inference due to iterative sampling. While recent methods have successfully transformed diffusion models into one-step generators, they neglect model size reduction, limiting their applicability in compute-constrained scenarios. This paper aims to develop small, efficient one-step diffusion models based on the powerful rectified flow framework, by exploring joint compression of inference steps and model size. The rectified flow framework trains one-step generative models using two operations, reflow and distillation. Compared with the original framework, squeezing the model size brings two new challenges: (1) the initialization mismatch between large teachers and small students during reflow; (2) the underperformance of naive distillation on small student models. To overcome these issues, we propose Annealing Reflow and Flow-Guided Distillation, which together comprise our SlimFlow framework. With our novel framework, we train a one-step diffusion model with an FID of 5.02 and 15.7M parameters, outperforming the previous state-of-the-art one-step diffusion model (FID=6.47, 19.4M parameters) on CIFAR10. On ImageNet 64times64 and FFHQ 64times64, our method yields small one-step diffusion models that are comparable to larger models, showcasing the effectiveness of our method in creating compact, efficient one-step diffusion models.
What is Dataset Distillation Learning?
Dataset distillation has emerged as a strategy to overcome the hurdles associated with large datasets by learning a compact set of synthetic data that retains essential information from the original dataset. While distilled data can be used to train high performing models, little is understood about how the information is stored. In this study, we posit and answer three questions about the behavior, representativeness, and point-wise information content of distilled data. We reveal distilled data cannot serve as a substitute for real data during training outside the standard evaluation setting for dataset distillation. Additionally, the distillation process retains high task performance by compressing information related to the early training dynamics of real models. Finally, we provide an framework for interpreting distilled data and reveal that individual distilled data points contain meaningful semantic information. This investigation sheds light on the intricate nature of distilled data, providing a better understanding on how they can be effectively utilized.
Evaluating Adversarial Robustness: A Comparison Of FGSM, Carlini-Wagner Attacks, And The Role of Distillation as Defense Mechanism
This technical report delves into an in-depth exploration of adversarial attacks specifically targeted at Deep Neural Networks (DNNs) utilized for image classification. The study also investigates defense mechanisms aimed at bolstering the robustness of machine learning models. The research focuses on comprehending the ramifications of two prominent attack methodologies: the Fast Gradient Sign Method (FGSM) and the Carlini-Wagner (CW) approach. These attacks are examined concerning three pre-trained image classifiers: Resnext50_32x4d, DenseNet-201, and VGG-19, utilizing the Tiny-ImageNet dataset. Furthermore, the study proposes the robustness of defensive distillation as a defense mechanism to counter FGSM and CW attacks. This defense mechanism is evaluated using the CIFAR-10 dataset, where CNN models, specifically resnet101 and Resnext50_32x4d, serve as the teacher and student models, respectively. The proposed defensive distillation model exhibits effectiveness in thwarting attacks such as FGSM. However, it is noted to remain susceptible to more sophisticated techniques like the CW attack. The document presents a meticulous validation of the proposed scheme. It provides detailed and comprehensive results, elucidating the efficacy and limitations of the defense mechanisms employed. Through rigorous experimentation and analysis, the study offers insights into the dynamics of adversarial attacks on DNNs, as well as the effectiveness of defensive strategies in mitigating their impact.
Distilling Diversity and Control in Diffusion Models
Distilled diffusion models suffer from a critical limitation: reduced sample diversity compared to their base counterparts. In this work, we uncover that despite this diversity loss, distilled models retain the fundamental concept representations of base models. We demonstrate control distillation - where control mechanisms like Concept Sliders and LoRAs trained on base models can be seamlessly transferred to distilled models and vice-versa, effectively distilling control without any retraining. This preservation of representational structure prompted our investigation into the mechanisms of diversity collapse during distillation. To understand how distillation affects diversity, we introduce Diffusion Target (DT) Visualization, an analysis and debugging tool that reveals how models predict final outputs at intermediate steps. Through DT-Visualization, we identify generation artifacts, inconsistencies, and demonstrate that initial diffusion timesteps disproportionately determine output diversity, while later steps primarily refine details. Based on these insights, we introduce diversity distillation - a hybrid inference approach that strategically employs the base model for only the first critical timestep before transitioning to the efficient distilled model. Our experiments demonstrate that this simple modification not only restores the diversity capabilities from base to distilled models but surprisingly exceeds it, while maintaining nearly the computational efficiency of distilled inference, all without requiring additional training or model modifications. Our code and data are available at https://distillation.baulab.info
MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers
Pre-trained language models (e.g., BERT (Devlin et al., 2018) and its variants) have achieved remarkable success in varieties of NLP tasks. However, these models usually consist of hundreds of millions of parameters which brings challenges for fine-tuning and online serving in real-life applications due to latency and capacity constraints. In this work, we present a simple and effective approach to compress large Transformer (Vaswani et al., 2017) based pre-trained models, termed as deep self-attention distillation. The small model (student) is trained by deeply mimicking the self-attention module, which plays a vital role in Transformer networks, of the large model (teacher). Specifically, we propose distilling the self-attention module of the last Transformer layer of the teacher, which is effective and flexible for the student. Furthermore, we introduce the scaled dot-product between values in the self-attention module as the new deep self-attention knowledge, in addition to the attention distributions (i.e., the scaled dot-product of queries and keys) that have been used in existing works. Moreover, we show that introducing a teacher assistant (Mirzadeh et al., 2019) also helps the distillation of large pre-trained Transformer models. Experimental results demonstrate that our monolingual model outperforms state-of-the-art baselines in different parameter size of student models. In particular, it retains more than 99% accuracy on SQuAD 2.0 and several GLUE benchmark tasks using 50% of the Transformer parameters and computations of the teacher model. We also obtain competitive results in applying deep self-attention distillation to multilingual pre-trained models.
You Only Need One Step: Fast Super-Resolution with Stable Diffusion via Scale Distillation
In this paper, we introduce YONOS-SR, a novel stable diffusion-based approach for image super-resolution that yields state-of-the-art results using only a single DDIM step. We propose a novel scale distillation approach to train our SR model. Instead of directly training our SR model on the scale factor of interest, we start by training a teacher model on a smaller magnification scale, thereby making the SR problem simpler for the teacher. We then train a student model for a higher magnification scale, using the predictions of the teacher as a target during the training. This process is repeated iteratively until we reach the target scale factor of the final model. The rationale behind our scale distillation is that the teacher aids the student diffusion model training by i) providing a target adapted to the current noise level rather than using the same target coming from ground truth data for all noise levels and ii) providing an accurate target as the teacher has a simpler task to solve. We empirically show that the distilled model significantly outperforms the model trained for high scales directly, specifically with few steps during inference. Having a strong diffusion model that requires only one step allows us to freeze the U-Net and fine-tune the decoder on top of it. We show that the combination of spatially distilled U-Net and fine-tuned decoder outperforms state-of-the-art methods requiring 200 steps with only one single step.
Safeguard Text-to-Image Diffusion Models with Human Feedback Inversion
This paper addresses the societal concerns arising from large-scale text-to-image diffusion models for generating potentially harmful or copyrighted content. Existing models rely heavily on internet-crawled data, wherein problematic concepts persist due to incomplete filtration processes. While previous approaches somewhat alleviate the issue, they often rely on text-specified concepts, introducing challenges in accurately capturing nuanced concepts and aligning model knowledge with human understandings. In response, we propose a framework named Human Feedback Inversion (HFI), where human feedback on model-generated images is condensed into textual tokens guiding the mitigation or removal of problematic images. The proposed framework can be built upon existing techniques for the same purpose, enhancing their alignment with human judgment. By doing so, we simplify the training objective with a self-distillation-based technique, providing a strong baseline for concept removal. Our experimental results demonstrate our framework significantly reduces objectionable content generation while preserving image quality, contributing to the ethical deployment of AI in the public sphere.
Flash Diffusion: Accelerating Any Conditional Diffusion Model for Few Steps Image Generation
In this paper, we propose an efficient, fast, and versatile distillation method to accelerate the generation of pre-trained diffusion models: Flash Diffusion. The method reaches state-of-the-art performances in terms of FID and CLIP-Score for few steps image generation on the COCO2014 and COCO2017 datasets, while requiring only several GPU hours of training and fewer trainable parameters than existing methods. In addition to its efficiency, the versatility of the method is also exposed across several tasks such as text-to-image, inpainting, face-swapping, super-resolution and using different backbones such as UNet-based denoisers (SD1.5, SDXL) or DiT (Pixart-alpha), as well as adapters. In all cases, the method allowed to reduce drastically the number of sampling steps while maintaining very high-quality image generation. The official implementation is available at https://github.com/gojasper/flash-diffusion.
Uni-Instruct: One-step Diffusion Model through Unified Diffusion Divergence Instruction
In this paper, we unify more than 10 existing one-step diffusion distillation approaches, such as Diff-Instruct, DMD, SIM, SiD, f-distill, etc, inside a theory-driven framework which we name the \emph{Uni-Instruct}. Uni-Instruct is motivated by our proposed diffusion expansion theory of the f-divergence family. Then we introduce key theories that overcome the intractability issue of the original expanded f-divergence, resulting in an equivalent yet tractable loss that effectively trains one-step diffusion models by minimizing the expanded f-divergence family. The novel unification introduced by Uni-Instruct not only offers new theoretical contributions that help understand existing approaches from a high-level perspective but also leads to state-of-the-art one-step diffusion generation performances. On the CIFAR10 generation benchmark, Uni-Instruct achieves record-breaking Frechet Inception Distance (FID) values of \emph{1.46} for unconditional generation and \emph{1.38} for conditional generation. On the ImageNet-64times 64 generation benchmark, Uni-Instruct achieves a new SoTA one-step generation FID of \emph{1.02}, which outperforms its 79-step teacher diffusion with a significant improvement margin of 1.33 (1.02 vs 2.35). We also apply Uni-Instruct on broader tasks like text-to-3D generation. For text-to-3D generation, Uni-Instruct gives decent results, which slightly outperforms previous methods, such as SDS and VSD, in terms of both generation quality and diversity. Both the solid theoretical and empirical contributions of Uni-Instruct will potentially help future studies on one-step diffusion distillation and knowledge transferring of diffusion models.
Unlock the Power: Competitive Distillation for Multi-Modal Large Language Models
Recently, multi-modal content generation has attracted lots of attention from researchers by investigating the utilization of visual instruction tuning based on large language models (LLMs). To enhance the performance and generalization ability of such LLMs, the practice of distilling knowledge from pretrained multi-modal models (a.k.a. teachers) to more compact multi-modal LLMs (students) has gained considerable interest. However, the prevailing paradigm of instructiontuning in multi-modal LLMs knowledge distillation is resource-intensive and unidirectional, neglecting the potential for mutual feedback between the student and teacher models. Thus, we propose an innovative Competitive Multi-modal Distillation framework (CoMD), which captures bidirectional feedback between teacher and student models and continually updates the multi-modal capabilities that the student model has learned. It comprises two stages: multi-modal pre-training and multi-modal competitive distillation. The first stage pre-trains the student model on a large number of filtered multi-modal datasets. The second stage facilitates a bidirectional knowledge transfer between the student and teacher models. Our experimental analysis of diverse datasets shows that our knowledge transfer method consistently improves the capabilities of the student model. Finally, the 7B-sized student model after four distillations surpassed the current state-of-the-art model LLaVA-13B on the ScienceQA and LLaVA Test dataset, also outperforms other strong baselines in the zero-shot setting.
Open Vocabulary 3D Scene Understanding via Geometry Guided Self-Distillation
The scarcity of large-scale 3D-text paired data poses a great challenge on open vocabulary 3D scene understanding, and hence it is popular to leverage internet-scale 2D data and transfer their open vocabulary capabilities to 3D models through knowledge distillation. However, the existing distillation-based 3D scene understanding approaches rely on the representation capacity of 2D models, disregarding the exploration of geometric priors and inherent representational advantages offered by 3D data. In this paper, we propose an effective approach, namely Geometry Guided Self-Distillation (GGSD), to learn superior 3D representations from 2D pre-trained models. Specifically, we first design a geometry guided distillation module to distill knowledge from 2D models, and then leverage the 3D geometric priors to alleviate the inherent noise in 2D models and enhance the representation learning process. Due to the advantages of 3D representation, the performance of the distilled 3D student model can significantly surpass that of the 2D teacher model. This motivates us to further leverage the representation advantages of 3D data through self-distillation. As a result, our proposed GGSD approach outperforms the existing open vocabulary 3D scene understanding methods by a large margin, as demonstrated by our experiments on both indoor and outdoor benchmark datasets.
Distilling the Knowledge in Data Pruning
With the increasing size of datasets used for training neural networks, data pruning becomes an attractive field of research. However, most current data pruning algorithms are limited in their ability to preserve accuracy compared to models trained on the full data, especially in high pruning regimes. In this paper we explore the application of data pruning while incorporating knowledge distillation (KD) when training on a pruned subset. That is, rather than relying solely on ground-truth labels, we also use the soft predictions from a teacher network pre-trained on the complete data. By integrating KD into training, we demonstrate significant improvement across datasets, pruning methods, and on all pruning fractions. We first establish a theoretical motivation for employing self-distillation to improve training on pruned data. Then, we empirically make a compelling and highly practical observation: using KD, simple random pruning is comparable or superior to sophisticated pruning methods across all pruning regimes. On ImageNet for example, we achieve superior accuracy despite training on a random subset of only 50% of the data. Additionally, we demonstrate a crucial connection between the pruning factor and the optimal knowledge distillation weight. This helps mitigate the impact of samples with noisy labels and low-quality images retained by typical pruning algorithms. Finally, we make an intriguing observation: when using lower pruning fractions, larger teachers lead to accuracy degradation, while surprisingly, employing teachers with a smaller capacity than the student's may improve results. Our code will be made available.
Distillation Quantification for Large Language Models
Model distillation is a technique for transferring knowledge from large language models (LLMs) to smaller ones, aiming to create resource-efficient yet high-performing models. However, excessive distillation can lead to homogenization, reducing diversity among models and impairing their ability to robustly handle complex or novel tasks. These limitations underscore the need to systematically quantify the distillation process and its impact. In this work, we propose a framework to evaluate and quantify model distillation. Our method addresses two key aspects: (1) Identifying identity cognition contradictions to assess discrepancies in how models perceive and represent identity-related information, and (2) Analyzing multi-granularity response similarities across models to measure the extent of homogenization. Experimental results demonstrate two key insights: (1) Well-known closed-source and open-source LLMs usually exhibit high distillation degrees, except for Claude, Doubao, and Gemini. (2) Base LLMs show higher distillation degrees compared to aligned LLMs. By offering a systematic approach to improve the transparency of LLM data distillation, we call for LLMs with more independent development and more transparent technical reports to improve LLMs' robustness and safety. The code and data are available under https://github.com/Aegis1863/LLMs-Distillation-Quantification.
DOLLAR: Few-Step Video Generation via Distillation and Latent Reward Optimization
Diffusion probabilistic models have shown significant progress in video generation; however, their computational efficiency is limited by the large number of sampling steps required. Reducing sampling steps often compromises video quality or generation diversity. In this work, we introduce a distillation method that combines variational score distillation and consistency distillation to achieve few-step video generation, maintaining both high quality and diversity. We also propose a latent reward model fine-tuning approach to further enhance video generation performance according to any specified reward metric. This approach reduces memory usage and does not require the reward to be differentiable. Our method demonstrates state-of-the-art performance in few-step generation for 10-second videos (128 frames at 12 FPS). The distilled student model achieves a score of 82.57 on VBench, surpassing the teacher model as well as baseline models Gen-3, T2V-Turbo, and Kling. One-step distillation accelerates the teacher model's diffusion sampling by up to 278.6 times, enabling near real-time generation. Human evaluations further validate the superior performance of our 4-step student models compared to teacher model using 50-step DDIM sampling.
SwiftBrush: One-Step Text-to-Image Diffusion Model with Variational Score Distillation
Despite their ability to generate high-resolution and diverse images from text prompts, text-to-image diffusion models often suffer from slow iterative sampling processes. Model distillation is one of the most effective directions to accelerate these models. However, previous distillation methods fail to retain the generation quality while requiring a significant amount of images for training, either from real data or synthetically generated by the teacher model. In response to this limitation, we present a novel image-free distillation scheme named SwiftBrush. Drawing inspiration from text-to-3D synthesis, in which a 3D neural radiance field that aligns with the input prompt can be obtained from a 2D text-to-image diffusion prior via a specialized loss without the use of any 3D data ground-truth, our approach re-purposes that same loss for distilling a pretrained multi-step text-to-image model to a student network that can generate high-fidelity images with just a single inference step. In spite of its simplicity, our model stands as one of the first one-step text-to-image generators that can produce images of comparable quality to Stable Diffusion without reliance on any training image data. Remarkably, SwiftBrush achieves an FID score of 16.67 and a CLIP score of 0.29 on the COCO-30K benchmark, achieving competitive results or even substantially surpassing existing state-of-the-art distillation techniques.
AutoDistil: Few-shot Task-agnostic Neural Architecture Search for Distilling Large Language Models
Knowledge distillation (KD) methods compress large models into smaller students with manually-designed student architectures given pre-specified computational cost. This requires several trials to find a viable student, and further repeating the process for each student or computational budget change. We use Neural Architecture Search (NAS) to automatically distill several compressed students with variable cost from a large model. Current works train a single SuperLM consisting of millions of subnetworks with weight-sharing, resulting in interference between subnetworks of different sizes. Our framework AutoDistil addresses above challenges with the following steps: (a) Incorporates inductive bias and heuristics to partition Transformer search space into K compact sub-spaces (K=3 for typical student sizes of base, small and tiny); (b) Trains one SuperLM for each sub-space using task-agnostic objective (e.g., self-attention distillation) with weight-sharing of students; (c) Lightweight search for the optimal student without re-training. Fully task-agnostic training and search allow students to be reused for fine-tuning on any downstream task. Experiments on GLUE benchmark against state-of-the-art KD and NAS methods demonstrate AutoDistil to outperform leading compression techniques with upto 2.7x reduction in computational cost and negligible loss in task performance.
uDistil-Whisper: Label-Free Data Filtering for Knowledge Distillation in Low-Data Regimes
Recent work on distilling Whisper's knowledge into small models using pseudo-labels shows promising performance while reducing the size by up to 50\%. This results in small, efficient, and dedicated models. However, a critical step of distillation from pseudo-labels involves filtering high-quality predictions and using only those during training. This step requires ground truth labels to compare and filter low-quality examples making the whole process supervised. In addition to that, the distillation process requires a large amount of data thereby limiting the ability to distill models in low-resource settings. To address this challenge, we propose a distillation framework that does not require any labeled data. Through experimentation, we show that our best distilled models outperform the teacher model by 5-7 points in terms of WER compared to those without filtering and are on par with or perform better than similar supervised data filtering setups. When we scale the data, our models significantly outperform all zero-shot and supervised models. We demonstrate that it is possible to distill large Whisper models into relatively small ones without using any labeled data. Our distilled models are also 25-50\% more compute- and memory-efficient while maintaining performance equal to or better than that of the teacher model.
Class-Conditional self-reward mechanism for improved Text-to-Image models
Self-rewarding have emerged recently as a powerful tool in the field of Natural Language Processing (NLP), allowing language models to generate high-quality relevant responses by providing their own rewards during training. This innovative technique addresses the limitations of other methods that rely on human preferences. In this paper, we build upon the concept of self-rewarding models and introduce its vision equivalent for Text-to-Image generative AI models. This approach works by fine-tuning diffusion model on a self-generated self-judged dataset, making the fine-tuning more automated and with better data quality. The proposed mechanism makes use of other pre-trained models such as vocabulary based-object detection, image captioning and is conditioned by the a set of object for which the user might need to improve generated data quality. The approach has been implemented, fine-tuned and evaluated on stable diffusion and has led to a performance that has been evaluated to be at least 60\% better than existing commercial and research Text-to-image models. Additionally, the built self-rewarding mechanism allowed a fully automated generation of images, while increasing the visual quality of the generated images and also more efficient following of prompt instructions. The code used in this work is freely available on https://github.com/safouaneelg/SRT2I.
Imagine Flash: Accelerating Emu Diffusion Models with Backward Distillation
Diffusion models are a powerful generative framework, but come with expensive inference. Existing acceleration methods often compromise image quality or fail under complex conditioning when operating in an extremely low-step regime. In this work, we propose a novel distillation framework tailored to enable high-fidelity, diverse sample generation using just one to three steps. Our approach comprises three key components: (i) Backward Distillation, which mitigates training-inference discrepancies by calibrating the student on its own backward trajectory; (ii) Shifted Reconstruction Loss that dynamically adapts knowledge transfer based on the current time step; and (iii) Noise Correction, an inference-time technique that enhances sample quality by addressing singularities in noise prediction. Through extensive experiments, we demonstrate that our method outperforms existing competitors in quantitative metrics and human evaluations. Remarkably, it achieves performance comparable to the teacher model using only three denoising steps, enabling efficient high-quality generation.
Model compression via distillation and quantization
Deep neural networks (DNNs) continue to make significant advances, solving tasks from image classification to translation or reinforcement learning. One aspect of the field receiving considerable attention is efficiently executing deep models in resource-constrained environments, such as mobile or embedded devices. This paper focuses on this problem, and proposes two new compression methods, which jointly leverage weight quantization and distillation of larger teacher networks into smaller student networks. The first method we propose is called quantized distillation and leverages distillation during the training process, by incorporating distillation loss, expressed with respect to the teacher, into the training of a student network whose weights are quantized to a limited set of levels. The second method, differentiable quantization, optimizes the location of quantization points through stochastic gradient descent, to better fit the behavior of the teacher model. We validate both methods through experiments on convolutional and recurrent architectures. We show that quantized shallow students can reach similar accuracy levels to full-precision teacher models, while providing order of magnitude compression, and inference speedup that is linear in the depth reduction. In sum, our results enable DNNs for resource-constrained environments to leverage architecture and accuracy advances developed on more powerful devices.
Few-step Flow for 3D Generation via Marginal-Data Transport Distillation
Flow-based 3D generation models typically require dozens of sampling steps during inference. Though few-step distillation methods, particularly Consistency Models (CMs), have achieved substantial advancements in accelerating 2D diffusion models, they remain under-explored for more complex 3D generation tasks. In this study, we propose a novel framework, MDT-dist, for few-step 3D flow distillation. Our approach is built upon a primary objective: distilling the pretrained model to learn the Marginal-Data Transport. Directly learning this objective needs to integrate the velocity fields, while this integral is intractable to be implemented. Therefore, we propose two optimizable objectives, Velocity Matching (VM) and Velocity Distillation (VD), to equivalently convert the optimization target from the transport level to the velocity and the distribution level respectively. Velocity Matching (VM) learns to stably match the velocity fields between the student and the teacher, but inevitably provides biased gradient estimates. Velocity Distillation (VD) further enhances the optimization process by leveraging the learned velocity fields to perform probability density distillation. When evaluated on the pioneer 3D generation framework TRELLIS, our method reduces sampling steps of each flow transformer from 25 to 1 or 2, achieving 0.68s (1 step x 2) and 0.94s (2 steps x 2) latency with 9.0x and 6.5x speedup on A800, while preserving high visual and geometric fidelity. Extensive experiments demonstrate that our method significantly outperforms existing CM distillation methods, and enables TRELLIS to achieve superior performance in few-step 3D generation.
DPHuBERT: Joint Distillation and Pruning of Self-Supervised Speech Models
Self-supervised learning (SSL) has achieved notable success in many speech processing tasks, but the large model size and heavy computational cost hinder the deployment. Knowledge distillation trains a small student model to mimic the behavior of a large teacher model. However, the student architecture usually needs to be manually designed and will remain fixed during training, which requires prior knowledge and can lead to suboptimal performance. Inspired by recent success of task-specific structured pruning, we propose DPHuBERT, a novel task-agnostic compression method for speech SSL based on joint distillation and pruning. Experiments on SUPERB show that DPHuBERT outperforms pure distillation methods in almost all tasks. Moreover, DPHuBERT requires little training time and performs well with limited training data, making it suitable for resource-constrained applications. Our method can also be applied to various speech SSL models. Our code and models will be publicly available.
On Teacher Hacking in Language Model Distillation
Post-training of language models (LMs) increasingly relies on the following two stages: (i) knowledge distillation, where the LM is trained to imitate a larger teacher LM, and (ii) reinforcement learning from human feedback (RLHF), where the LM is aligned by optimizing a reward model. In the second RLHF stage, a well-known challenge is reward hacking, where the LM over-optimizes the reward model. Such phenomenon is in line with Goodhart's law and can lead to degraded performance on the true objective. In this paper, we investigate whether a similar phenomenon, that we call teacher hacking, can occur during knowledge distillation. This could arise because the teacher LM is itself an imperfect approximation of the true distribution. To study this, we propose a controlled experimental setup involving: (i) an oracle LM representing the ground-truth distribution, (ii) a teacher LM distilled from the oracle, and (iii) a student LM distilled from the teacher. Our experiments reveal the following insights. When using a fixed offline dataset for distillation, teacher hacking occurs; moreover, we can detect it by observing when the optimization process deviates from polynomial convergence laws. In contrast, employing online data generation techniques effectively mitigates teacher hacking. More precisely, we identify data diversity as the key factor in preventing hacking. Overall, our findings provide a deeper understanding of the benefits and limitations of distillation for building robust and efficient LMs.
Knowledge Distillation: A Survey
In recent years, deep neural networks have been successful in both industry and academia, especially for computer vision tasks. The great success of deep learning is mainly due to its scalability to encode large-scale data and to maneuver billions of model parameters. However, it is a challenge to deploy these cumbersome deep models on devices with limited resources, e.g., mobile phones and embedded devices, not only because of the high computational complexity but also the large storage requirements. To this end, a variety of model compression and acceleration techniques have been developed. As a representative type of model compression and acceleration, knowledge distillation effectively learns a small student model from a large teacher model. It has received rapid increasing attention from the community. This paper provides a comprehensive survey of knowledge distillation from the perspectives of knowledge categories, training schemes, teacher-student architecture, distillation algorithms, performance comparison and applications. Furthermore, challenges in knowledge distillation are briefly reviewed and comments on future research are discussed and forwarded.
Towards Widening The Distillation Bottleneck for Reasoning Models
Large Reasoning Models(LRMs) such as OpenAI o1 and DeepSeek-R1 have shown remarkable reasoning capabilities by scaling test-time compute and generating long Chain-of-Thought(CoT). Distillation--post-training on LRMs-generated data--is a straightforward yet effective method to enhance the reasoning abilities of smaller models, but faces a critical bottleneck: we found that distilled long CoT data poses learning difficulty for small models and leads to the inheritance of biases (i.e. over-thinking) when using Supervised Fine-tuning(SFT) and Reinforcement Learning(RL) methods. To alleviate this bottleneck, we propose constructing tree-based CoT data from scratch via Monte Carlo Tree Search(MCTS). We then exploit a set of CoT-aware approaches, including Thoughts Length Balance, Fine-grained DPO, and Joint Post-training Objective, to enhance SFT and RL on the construted data.
Exploring Target Representations for Masked Autoencoders
Masked autoencoders have become popular training paradigms for self-supervised visual representation learning. These models randomly mask a portion of the input and reconstruct the masked portion according to the target representations. In this paper, we first show that a careful choice of the target representation is unnecessary for learning good representations, since different targets tend to derive similarly behaved models. Driven by this observation, we propose a multi-stage masked distillation pipeline and use a randomly initialized model as the teacher, enabling us to effectively train high-capacity models without any efforts to carefully design target representations. Interestingly, we further explore using teachers of larger capacity, obtaining distilled students with remarkable transferring ability. On different tasks of classification, transfer learning, object detection, and semantic segmentation, the proposed method to perform masked knowledge distillation with bootstrapped teachers (dBOT) outperforms previous self-supervised methods by nontrivial margins. We hope our findings, as well as the proposed method, could motivate people to rethink the roles of target representations in pre-training masked autoencoders.The code and pre-trained models are publicly available at https://github.com/liuxingbin/dbot.
Distilled Protein Backbone Generation
Diffusion- and flow-based generative models have recently demonstrated strong performance in protein backbone generation tasks, offering unprecedented capabilities for de novo protein design. However, while achieving notable performance in generation quality, these models are limited by their generating speed, often requiring hundreds of iterative steps in the reverse-diffusion process. This computational bottleneck limits their practical utility in large-scale protein discovery, where thousands to millions of candidate structures are needed. To address this challenge, we explore the techniques of score distillation, which has shown great success in reducing the number of sampling steps in the vision domain while maintaining high generation quality. However, a straightforward adaptation of these methods results in unacceptably low designability. Through extensive study, we have identified how to appropriately adapt Score identity Distillation (SiD), a state-of-the-art score distillation strategy, to train few-step protein backbone generators which significantly reduce sampling time, while maintaining comparable performance to their pretrained teacher model. In particular, multistep generation combined with inference time noise modulation is key to the success. We demonstrate that our distilled few-step generators achieve more than a 20-fold improvement in sampling speed, while achieving similar levels of designability, diversity, and novelty as the Proteina teacher model. This reduction in inference cost enables large-scale in silico protein design, thereby bringing diffusion-based models closer to real-world protein engineering applications. The PyTorch implementation is available at https://github.com/LY-Xie/SiD_Protein
Conditional Diffusion Distillation
Generative diffusion models provide strong priors for text-to-image generation and thereby serve as a foundation for conditional generation tasks such as image editing, restoration, and super-resolution. However, one major limitation of diffusion models is their slow sampling time. To address this challenge, we present a novel conditional distillation method designed to supplement the diffusion priors with the help of image conditions, allowing for conditional sampling with very few steps. We directly distill the unconditional pre-training in a single stage through joint-learning, largely simplifying the previous two-stage procedures that involve both distillation and conditional finetuning separately. Furthermore, our method enables a new parameter-efficient distillation mechanism that distills each task with only a small number of additional parameters combined with the shared frozen unconditional backbone. Experiments across multiple tasks including super-resolution, image editing, and depth-to-image generation demonstrate that our method outperforms existing distillation techniques for the same sampling time. Notably, our method is the first distillation strategy that can match the performance of the much slower fine-tuned conditional diffusion models.
Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits
Probabilistic Circuits (PCs) are a general and unified computational framework for tractable probabilistic models that support efficient computation of various inference tasks (e.g., computing marginal probabilities). Towards enabling such reasoning capabilities in complex real-world tasks, Liu et al. (2022) propose to distill knowledge (through latent variable assignments) from less tractable but more expressive deep generative models. However, it is still unclear what factors make this distillation work well. In this paper, we theoretically and empirically discover that the performance of a PC can exceed that of its teacher model. Therefore, instead of performing distillation from the most expressive deep generative model, we study what properties the teacher model and the PC should have in order to achieve good distillation performance. This leads to a generic algorithmic improvement as well as other data-type-specific ones over the existing latent variable distillation pipeline. Empirically, we outperform SoTA TPMs by a large margin on challenging image modeling benchmarks. In particular, on ImageNet32, PCs achieve 4.06 bits-per-dimension, which is only 0.34 behind variational diffusion models (Kingma et al., 2021).
Progressive Distillation for Fast Sampling of Diffusion Models
Diffusion models have recently shown great promise for generative modeling, outperforming GANs on perceptual quality and autoregressive models at density estimation. A remaining downside is their slow sampling time: generating high quality samples takes many hundreds or thousands of model evaluations. Here we make two contributions to help eliminate this downside: First, we present new parameterizations of diffusion models that provide increased stability when using few sampling steps. Second, we present a method to distill a trained deterministic diffusion sampler, using many steps, into a new diffusion model that takes half as many sampling steps. We then keep progressively applying this distillation procedure to our model, halving the number of required sampling steps each time. On standard image generation benchmarks like CIFAR-10, ImageNet, and LSUN, we start out with state-of-the-art samplers taking as many as 8192 steps, and are able to distill down to models taking as few as 4 steps without losing much perceptual quality; achieving, for example, a FID of 3.0 on CIFAR-10 in 4 steps. Finally, we show that the full progressive distillation procedure does not take more time than it takes to train the original model, thus representing an efficient solution for generative modeling using diffusion at both train and test time.
POA: Pre-training Once for Models of All Sizes
Large-scale self-supervised pre-training has paved the way for one foundation model to handle many different vision tasks. Most pre-training methodologies train a single model of a certain size at one time. Nevertheless, various computation or storage constraints in real-world scenarios require substantial efforts to develop a series of models with different sizes to deploy. Thus, in this study, we propose a novel tri-branch self-supervised training framework, termed as POA (Pre-training Once for All), to tackle this aforementioned issue. Our approach introduces an innovative elastic student branch into a modern self-distillation paradigm. At each pre-training step, we randomly sample a sub-network from the original student to form the elastic student and train all branches in a self-distilling fashion. Once pre-trained, POA allows the extraction of pre-trained models of diverse sizes for downstream tasks. Remarkably, the elastic student facilitates the simultaneous pre-training of multiple models with different sizes, which also acts as an additional ensemble of models of various sizes to enhance representation learning. Extensive experiments, including k-nearest neighbors, linear probing evaluation and assessments on multiple downstream tasks demonstrate the effectiveness and advantages of our POA. It achieves state-of-the-art performance using ViT, Swin Transformer and ResNet backbones, producing around a hundred models with different sizes through a single pre-training session. The code is available at: https://github.com/Qichuzyy/POA.
Thinking with DistilQwen: A Tale of Four Distilled Reasoning and Reward Model Series
Recently, the demand for small and efficient reasoning models to support real-world applications has driven the development of knowledge distillation techniques that balance reasoning performance and inference speed. In this paper, we further extend the DistilQwen model family, initialized from the Qwen models, by introducing four model series specifically designed to meet industrial requirements. The distilled model collection comprises: (1) slow-thinking models, optimized for reasoning tasks that require high accuracy; (2) two series of adaptive-thinking models, which dynamically adjust reasoning strategies based on input tasks to maximize efficiency across diverse scenarios; and (3) distilled reward models, which enable further reinforcement learning of reasoning models using distilled knowledge. Comprehensive evaluations across multiple benchmarks demonstrate both high inference efficiency and strong reasoning performance for these models, as well as the practical utility of distilled reward models. We further show that these models support industry practitioners by providing scalable training and inference functionalities on the Alibaba Cloud PAI (Platform for Artificial Intelligence) platform.
Your Student is Better Than Expected: Adaptive Teacher-Student Collaboration for Text-Conditional Diffusion Models
Knowledge distillation methods have recently shown to be a promising direction to speedup the synthesis of large-scale diffusion models by requiring only a few inference steps. While several powerful distillation methods were recently proposed, the overall quality of student samples is typically lower compared to the teacher ones, which hinders their practical usage. In this work, we investigate the relative quality of samples produced by the teacher text-to-image diffusion model and its distilled student version. As our main empirical finding, we discover that a noticeable portion of student samples exhibit superior fidelity compared to the teacher ones, despite the ``approximate'' nature of the student. Based on this finding, we propose an adaptive collaboration between student and teacher diffusion models for effective text-to-image synthesis. Specifically, the distilled model produces the initial sample, and then an oracle decides whether it needs further improvements with a slow teacher model. Extensive experiments demonstrate that the designed pipeline surpasses state-of-the-art text-to-image alternatives for various inference budgets in terms of human preference. Furthermore, the proposed approach can be naturally used in popular applications such as text-guided image editing and controllable generation.
Self-Data Distillation for Recovering Quality in Pruned Large Language Models
Large language models have driven significant progress in natural language processing, but their deployment requires substantial compute and memory resources. As models scale, compression techniques become essential for balancing model quality with computational efficiency. Structured pruning, which removes less critical components of the model, is a promising strategy for reducing complexity. However, one-shot pruning often results in significant quality degradation, particularly in tasks requiring multi-step reasoning. To recover lost quality, supervised fine-tuning (SFT) is commonly applied, but it can lead to catastrophic forgetting by shifting the model's learned data distribution. Therefore, addressing the degradation from both pruning and SFT is essential to preserve the original model's quality. In this work, we utilize self-data distilled fine-tuning to address these challenges. Our approach leverages the original, unpruned model to generate a distilled dataset that preserves semantic richness and mitigates catastrophic forgetting by maintaining alignment with the base model's knowledge. Empirically, we demonstrate that self-data distillation consistently outperforms standard SFT, improving average accuracy by up to 8% on the HuggingFace OpenLLM Leaderboard v1. Specifically, when pruning six decoder blocks on Llama3.1-8B Instruct (i.e., 32 to 26 layers, reducing the model size from 8.03B to 6.72B parameters), our method retains 91.2% of the original model's accuracy compared to 81.7% with SFT, while reducing real-world FLOPs by 16.3%. Furthermore, combining self-data distilled models through model merging yields enhanced quality retention. Additionally, leveraging these pruned models in speculative decoding increases token acceptance rates, thereby improving inference efficiency in applied settings.
BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping
Diffusion models have demonstrated excellent potential for generating diverse images. However, their performance often suffers from slow generation due to iterative denoising. Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few without significant quality degradation. However, existing distillation methods either require significant amounts of offline computation for generating synthetic training data from the teacher model or need to perform expensive online learning with the help of real data. In this work, we present a novel technique called BOOT, that overcomes these limitations with an efficient data-free distillation algorithm. The core idea is to learn a time-conditioned model that predicts the output of a pre-trained diffusion model teacher given any time step. Such a model can be efficiently trained based on bootstrapping from two consecutive sampled steps. Furthermore, our method can be easily adapted to large-scale text-to-image diffusion models, which are challenging for conventional methods given the fact that the training sets are often large and difficult to access. We demonstrate the effectiveness of our approach on several benchmark datasets in the DDIM setting, achieving comparable generation quality while being orders of magnitude faster than the diffusion teacher. The text-to-image results show that the proposed approach is able to handle highly complex distributions, shedding light on more efficient generative modeling.
Distilled Self-Critique of LLMs with Synthetic Data: a Bayesian Perspective
This paper proposes an interpretation of RLAIF as Bayesian inference by introducing distilled Self-Critique (dSC), which refines the outputs of a LLM through a Gibbs sampler that is later distilled into a fine-tuned model. Only requiring synthetic data, dSC is exercised in experiments regarding safety, sentiment, and privacy control, showing it can be a viable and cheap alternative to align LLMs. Code released at https://github.com/vicgalle/distilled-self-critique.
UNIC: Universal Classification Models via Multi-teacher Distillation
Pretrained models have become a commodity and offer strong results on a broad range of tasks. In this work, we focus on classification and seek to learn a unique encoder able to take from several complementary pretrained models. We aim at even stronger generalization across a variety of classification tasks. We propose to learn such an encoder via multi-teacher distillation. We first thoroughly analyse standard distillation when driven by multiple strong teachers with complementary strengths. Guided by this analysis, we gradually propose improvements to the basic distillation setup. Among those, we enrich the architecture of the encoder with a ladder of expendable projectors, which increases the impact of intermediate features during distillation, and we introduce teacher dropping, a regularization mechanism that better balances the teachers' influence. Our final distillation strategy leads to student models of the same capacity as any of the teachers, while retaining or improving upon the performance of the best teacher for each task. Project page and code: https://europe.naverlabs.com/unic
Video-BLADE: Block-Sparse Attention Meets Step Distillation for Efficient Video Generation
Diffusion transformers currently lead the field in high-quality video generation, but their slow iterative denoising process and prohibitive quadratic attention costs for long sequences create significant inference bottlenecks. While both step distillation and sparse attention mechanisms have shown promise as independent acceleration strategies, effectively combining these approaches presents critical challenges -- training-free integration yields suboptimal results, while separately training sparse attention after step distillation requires prohibitively expensive high-quality video data. To overcome these limitations, we propose BLADE, an innovative data-free joint training framework that introduces: (1) an Adaptive Block-Sparse Attention (ASA) mechanism for dynamically generating content-aware sparsity masks to focus computation on salient spatiotemporal features, and (2) a sparsity-aware step distillation paradigm built upon Trajectory Distribution Matching (TDM) that directly incorporates sparsity into the distillation process rather than treating it as a separate compression step, with fast convergence. We validate BLADE on text-to-video models like CogVideoX-5B and Wan2.1-1.3B. Our framework demonstrates remarkable efficiency gains across different scales. On Wan2.1-1.3B, BLADE achieves a 14.10x end-to-end inference acceleration over a 50-step baseline. Moreover, on models such as CogVideoX-5B with short video sequence lengths, our framework delivers a robust 8.89x speedup. Crucially, the acceleration is accompanied by a consistent quality improvement. On the VBench-2.0 benchmark, BLADE boosts the score of CogVideoX-5B to 0.569 (from 0.534) and Wan2.1-1.3B to 0.570 (from 0.563), results that are further corroborated by superior ratings in human evaluations. Our code and model weights are publicly available at: http://ziplab.co/BLADE-Homepage/.
Mind the Gap: Examining the Self-Improvement Capabilities of Large Language Models
Self-improvement is a mechanism in Large Language Model (LLM) pre-training, post-training and test-time inference. We explore a framework where the model verifies its own outputs, filters or reweights data based on this verification, and distills the filtered data. Despite several empirical successes, a fundamental understanding is still lacking. In this work, we initiate a comprehensive, modular and controlled study on LLM self-improvement. We provide a mathematical formulation for self-improvement, which is largely governed by a quantity which we formalize as the generation-verification gap. Through experiments with various model families and tasks, we discover a scaling phenomenon of self-improvement -- a variant of the generation-verification gap scales monotonically with the model pre-training flops. We also examine when self-improvement is possible, an iterative self-improvement procedure, and ways to improve its performance. Our findings not only advance understanding of LLM self-improvement with practical implications, but also open numerous avenues for future research into its capabilities and boundaries.
Simple and Fast Distillation of Diffusion Models
Diffusion-based generative models have demonstrated their powerful performance across various tasks, but this comes at a cost of the slow sampling speed. To achieve both efficient and high-quality synthesis, various distillation-based accelerated sampling methods have been developed recently. However, they generally require time-consuming fine tuning with elaborate designs to achieve satisfactory performance in a specific number of function evaluation (NFE), making them difficult to employ in practice. To address this issue, we propose Simple and Fast Distillation (SFD) of diffusion models, which simplifies the paradigm used in existing methods and largely shortens their fine-tuning time up to 1000times. We begin with a vanilla distillation-based sampling method and boost its performance to state of the art by identifying and addressing several small yet vital factors affecting the synthesis efficiency and quality. Our method can also achieve sampling with variable NFEs using a single distilled model. Extensive experiments demonstrate that SFD strikes a good balance between the sample quality and fine-tuning costs in few-step image generation task. For example, SFD achieves 4.53 FID (NFE=2) on CIFAR-10 with only 0.64 hours of fine-tuning on a single NVIDIA A100 GPU. Our code is available at https://github.com/zju-pi/diff-sampler.
On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes
Knowledge distillation (KD) is widely used for compressing a teacher model to reduce its inference cost and memory footprint, by training a smaller student model. However, current KD methods for auto-regressive sequence models suffer from distribution mismatch between output sequences seen during training and those generated by the student during inference. To address this issue, we introduce Generalized Knowledge Distillation (GKD). Instead of solely relying on a fixed set of output sequences, GKD trains the student on its self-generated output sequences by leveraging feedback from the teacher on such sequences. Unlike supervised KD approaches, GKD also offers the flexibility to employ alternative loss functions between the student and teacher, which can be useful when the student lacks the expressivity to mimic the teacher's distribution. Furthermore, GKD facilitates the seamless integration of distillation with RL fine-tuning (RLHF). We demonstrate the efficacy of GKD for distilling auto-regressive language models on summarization, translation, and arithmetic reasoning tasks, and task-agnostic distillation for instruction-tuning.
Single Trajectory Distillation for Accelerating Image and Video Style Transfer
Diffusion-based stylization methods typically denoise from a specific partial noise state for image-to-image and video-to-video tasks. This multi-step diffusion process is computationally expensive and hinders real-world application. A promising solution to speed up the process is to obtain few-step consistency models through trajectory distillation. However, current consistency models only force the initial-step alignment between the probability flow ODE (PF-ODE) trajectories of the student and the imperfect teacher models. This training strategy can not ensure the consistency of whole trajectories. To address this issue, we propose single trajectory distillation (STD) starting from a specific partial noise state. We introduce a trajectory bank to store the teacher model's trajectory states, mitigating the time cost during training. Besides, we use an asymmetric adversarial loss to enhance the style and quality of the generated images. Extensive experiments on image and video stylization demonstrate that our method surpasses existing acceleration models in terms of style similarity and aesthetic evaluations. Our code and results will be available on the project page: https://single-trajectory-distillation.github.io.
Beyond Scaling Law: A Data-Efficient Distillation Framework for Reasoning
Large language models (LLMs) demonstrate remarkable reasoning capabilities in tasks such as algorithmic coding and mathematical problem-solving. Recent methods have improved reasoning through expanded corpus and multistage training combining reinforcement learning and supervised fine-tuning. Although some methods suggest that small but targeted dataset can incentivize reasoning via only distillation, a reasoning scaling laws is still taking shape, increasing computational costs. To address this, we propose a data-efficient distillation framework (DED) that optimizes the Pareto frontier of reasoning distillation. Inspired by the on-policy learning and diverse roll-out strategies of reinforcement learning, the key idea of our approach is threefold: (1) We identify that benchmark scores alone do not determine an effective teacher model. Through comprehensive comparisons of leading reasoning LLMs, we develop a method to select an optimal teacher model. (2) While scaling distillation can enhance reasoning, it often degrades out-of-domain performance. A carefully curated, smaller corpus achieves a balanced trade-off between in-domain and out-of-domain capabilities. (3) Diverse reasoning trajectories encourage the student model to develop robust reasoning skills. We validate our method through evaluations on mathematical reasoning (AIME 2024/2025, MATH-500) and code generation (LiveCodeBench), achieving state-of-the-art results with only 0.8k carefully curated examples, bypassing the need for extensive scaling. Our systematic analysis demonstrates that DED outperforms existing methods by considering factors beyond superficial hardness, token length, or teacher model capability. This work offers a practical and efficient pathway to advanced reasoning while preserving general capabilities.
Self-Corrected Flow Distillation for Consistent One-Step and Few-Step Text-to-Image Generation
Flow matching has emerged as a promising framework for training generative models, demonstrating impressive empirical performance while offering relative ease of training compared to diffusion-based models. However, this method still requires numerous function evaluations in the sampling process. To address these limitations, we introduce a self-corrected flow distillation method that effectively integrates consistency models and adversarial training within the flow-matching framework. This work is a pioneer in achieving consistent generation quality in both few-step and one-step sampling. Our extensive experiments validate the effectiveness of our method, yielding superior results both quantitatively and qualitatively on CelebA-HQ and zero-shot benchmarks on the COCO dataset. Our implementation is released at https://github.com/VinAIResearch/SCFlow
Consistency Trajectory Matching for One-Step Generative Super-Resolution
Current diffusion-based super-resolution (SR) approaches achieve commendable performance at the cost of high inference overhead. Therefore, distillation techniques are utilized to accelerate the multi-step teacher model into one-step student model. Nevertheless, these methods significantly raise training costs and constrain the performance of the student model by the teacher model. To overcome these tough challenges, we propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step. Concretely, we first formulate a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory to establish a deterministic mapping from low-resolution (LR) images with noise to high-resolution (HR) images. Then we apply the Consistency Training (CT) strategy to directly learn the mapping in one step, eliminating the necessity of pre-trained diffusion model. To further enhance the performance and better leverage the ground-truth during the training process, we aim to align the distribution of SR results more closely with that of the natural images. To this end, we propose to minimize the discrepancy between their respective PF-ODE trajectories from the LR image distribution by our meticulously designed Distribution Trajectory Matching (DTM) loss, resulting in improved realism of our recovered HR images. Comprehensive experimental results demonstrate that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets while maintaining minimal inference latency.
Mirage: Model-Agnostic Graph Distillation for Graph Classification
GNNs, like other deep learning models, are data and computation hungry. There is a pressing need to scale training of GNNs on large datasets to enable their usage on low-resource environments. Graph distillation is an effort in that direction with the aim to construct a smaller synthetic training set from the original training data without significantly compromising model performance. While initial efforts are promising, this work is motivated by two key observations: (1) Existing graph distillation algorithms themselves rely on training with the full dataset, which undermines the very premise of graph distillation. (2) The distillation process is specific to the target GNN architecture and hyper-parameters and thus not robust to changes in the modeling pipeline. We circumvent these limitations by designing a distillation algorithm called Mirage for graph classification. Mirage is built on the insight that a message-passing GNN decomposes the input graph into a multiset of computation trees. Furthermore, the frequency distribution of computation trees is often skewed in nature, enabling us to condense this data into a concise distilled summary. By compressing the computation data itself, as opposed to emulating gradient flows on the original training set-a prevalent approach to date-Mirage transforms into an unsupervised and architecture-agnostic distillation algorithm. Extensive benchmarking on real-world datasets underscores Mirage's superiority, showcasing enhanced generalization accuracy, data compression, and distillation efficiency when compared to state-of-the-art baselines.
DREAM: Efficient Dataset Distillation by Representative Matching
Dataset distillation aims to synthesize small datasets with little information loss from original large-scale ones for reducing storage and training costs. Recent state-of-the-art methods mainly constrain the sample synthesis process by matching synthetic images and the original ones regarding gradients, embedding distributions, or training trajectories. Although there are various matching objectives, currently the strategy for selecting original images is limited to naive random sampling. We argue that random sampling overlooks the evenness of the selected sample distribution, which may result in noisy or biased matching targets. Besides, the sample diversity is also not constrained by random sampling. These factors together lead to optimization instability in the distilling process and degrade the training efficiency. Accordingly, we propose a novel matching strategy named as Dataset distillation by REpresentAtive Matching (DREAM), where only representative original images are selected for matching. DREAM is able to be easily plugged into popular dataset distillation frameworks and reduce the distilling iterations by more than 8 times without performance drop. Given sufficient training time, DREAM further provides significant improvements and achieves state-of-the-art performances.
InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation
Diffusion models have revolutionized text-to-image generation with its exceptional quality and creativity. However, its multi-step sampling process is known to be slow, often requiring tens of inference steps to obtain satisfactory results. Previous attempts to improve its sampling speed and reduce computational costs through distillation have been unsuccessful in achieving a functional one-step model. In this paper, we explore a recent method called Rectified Flow, which, thus far, has only been applied to small datasets. The core of Rectified Flow lies in its reflow procedure, which straightens the trajectories of probability flows, refines the coupling between noises and images, and facilitates the distillation process with student models. We propose a novel text-conditioned pipeline to turn Stable Diffusion (SD) into an ultra-fast one-step model, in which we find reflow plays a critical role in improving the assignment between noise and images. Leveraging our new pipeline, we create, to the best of our knowledge, the first one-step diffusion-based text-to-image generator with SD-level image quality, achieving an FID (Frechet Inception Distance) of 23.3 on MS COCO 2017-5k, surpassing the previous state-of-the-art technique, progressive distillation, by a significant margin (37.2 rightarrow 23.3 in FID). By utilizing an expanded network with 1.7B parameters, we further improve the FID to 22.4. We call our one-step models InstaFlow. On MS COCO 2014-30k, InstaFlow yields an FID of 13.1 in just 0.09 second, the best in leq 0.1 second regime, outperforming the recent StyleGAN-T (13.9 in 0.1 second). Notably, the training of InstaFlow only costs 199 A100 GPU days. Project page:~https://github.com/gnobitab/InstaFlow.
Cross-Tokenizer Distillation via Approximate Likelihood Matching
Distillation has shown remarkable success in transferring knowledge from a Large Language Model (LLM) teacher to a student LLM. However, current distillation methods predominantly require the same tokenizer between the teacher and the student, restricting their applicability to only a small subset of teacher-student pairs. In this work, we develop a cross-tokenizer distillation method to solve this crucial deficiency. Our method is the first to enable cross-tokenizer distillation without a next-token prediction loss as the main objective, instead purely maximizing the student predictions' similarity to the teacher's predictions (known as pure distillation), while also being robust to large mismatches between the teacher and the student tokenizer function and vocabulary. Empirically, our method enables substantially improved performance as tested on two use cases. First, we show that viewing tokenizer transfer as self-distillation enables unprecedently effective transfer across tokenizers. We transfer (subword-level) Llama and Gemma models to byte-level tokenization more effectively than prior methods transfer to a similar subword tokenizer under a comparable training budget. Transferring different base models to the same tokenizer also enables ensembling them (e.g., via averaging their predicted probabilities) which boosts performance. Second, we use our cross-tokenizer distillation method to distil a large maths-specialized LLM into a smaller model, achieving competitive maths problem-solving performance. Overall, our results make substantial strides toward better adaptability and enhanced interaction between different LLMs.
Noise Consistency Training: A Native Approach for One-Step Generator in Learning Additional Controls
The pursuit of efficient and controllable high-quality content generation remains a central challenge in artificial intelligence-generated content (AIGC). While one-step generators, enabled by diffusion distillation techniques, offer excellent generation quality and computational efficiency, adapting them to new control conditions--such as structural constraints, semantic guidelines, or external inputs--poses a significant challenge. Conventional approaches often necessitate computationally expensive modifications to the base model and subsequent diffusion distillation. This paper introduces Noise Consistency Training (NCT), a novel and lightweight approach to directly integrate new control signals into pre-trained one-step generators without requiring access to original training images or retraining the base diffusion model. NCT operates by introducing an adapter module and employs a noise consistency loss in the noise space of the generator. This loss aligns the adapted model's generation behavior across noises that are conditionally dependent to varying degrees, implicitly guiding it to adhere to the new control. Theoretically, this training objective can be understood as minimizing the distributional distance between the adapted generator and the conditional distribution induced by the new conditions. NCT is modular, data-efficient, and easily deployable, relying only on the pre-trained one-step generator and a control signal model. Extensive experiments demonstrate that NCT achieves state-of-the-art controllable generation in a single forward pass, surpassing existing multi-step and distillation-based methods in both generation quality and computational efficiency. Code is available at https://github.com/Luo-Yihong/NCT
Object-level Self-Distillation for Vision Pretraining
State-of-the-art vision pretraining methods rely on image-level self-distillation from object-centric datasets such as ImageNet, implicitly assuming each image contains a single object. This assumption does not always hold: many ImageNet images already contain multiple objects. Further, it limits scalability to scene-centric datasets that better mirror real-world complexity. We address these challenges by introducing Object-level Self-DIStillation (ODIS), a pretraining approach that shifts the self-distillation granularity from whole images to individual objects. Using object-aware cropping and masked attention, ODIS isolates object-specific regions, guiding the transformer toward semantically meaningful content and transforming a noisy, scene-level task into simpler object-level sub-tasks. We show that this approach improves visual representations both at the image and patch levels. Using masks at inference time, our method achieves an impressive 82.6% k-NN accuracy on ImageNet1k with ViT-Large.
V_kD: Improving Knowledge Distillation using Orthogonal Projections
Knowledge distillation is an effective method for training small and efficient deep learning models. However, the efficacy of a single method can degenerate when transferring to other tasks, modalities, or even other architectures. To address this limitation, we propose a novel constrained feature distillation method. This method is derived from a small set of core principles, which results in two emerging components: an orthogonal projection and a task-specific normalisation. Equipped with both of these components, our transformer models can outperform all previous methods on ImageNet and reach up to a 4.4% relative improvement over the previous state-of-the-art methods. To further demonstrate the generality of our method, we apply it to object detection and image generation, whereby we obtain consistent and substantial performance improvements over state-of-the-art. Code and models are publicly available: https://github.com/roymiles/vkd
Deconstructing Long Chain-of-Thought: A Structured Reasoning Optimization Framework for Long CoT Distillation
Recent advancements in large language models (LLMs) have demonstrated remarkable reasoning capabilities through long chain-of-thought (CoT) reasoning. The R1 distillation scheme has emerged as a promising approach for training cost-effective models with enhanced reasoning abilities. However, the underlying mechanisms driving its effectiveness remain unclear. This study examines the universality of distillation data and identifies key components that enable the efficient transfer of long-chain reasoning capabilities in LLM distillation. Our findings reveal that the effectiveness of long CoT reasoning distillation from teacher models like Qwen-QwQ degrades significantly on nonhomologous models, challenging the assumed universality of current distillation methods. To gain deeper insights into the structure and patterns of long CoT reasoning, we propose DLCoT (Deconstructing Long Chain-of-Thought), a distillation data enhancement framework. DLCoT consists of three key steps: (1) data segmentation to decompose complex long CoT structures, (2) simplification by eliminating unsolvable and redundant solutions, and (3) optimization of intermediate error states. Our approach significantly improves model performance and token efficiency, facilitating the development of high-performance LLMs.
Is Retain Set All You Need in Machine Unlearning? Restoring Performance of Unlearned Models with Out-Of-Distribution Images
In this paper, we introduce Selective-distillation for Class and Architecture-agnostic unleaRning (SCAR), a novel approximate unlearning method. SCAR efficiently eliminates specific information while preserving the model's test accuracy without using a retain set, which is a key component in state-of-the-art approximate unlearning algorithms. Our approach utilizes a modified Mahalanobis distance to guide the unlearning of the feature vectors of the instances to be forgotten, aligning them to the nearest wrong class distribution. Moreover, we propose a distillation-trick mechanism that distills the knowledge of the original model into the unlearning model with out-of-distribution images for retaining the original model's test performance without using any retain set. Importantly, we propose a self-forget version of SCAR that unlearns without having access to the forget set. We experimentally verified the effectiveness of our method, on three public datasets, comparing it with state-of-the-art methods. Our method obtains performance higher than methods that operate without the retain set and comparable w.r.t the best methods that rely on the retain set.
DisWOT: Student Architecture Search for Distillation WithOut Training
Knowledge distillation (KD) is an effective training strategy to improve the lightweight student models under the guidance of cumbersome teachers. However, the large architecture difference across the teacher-student pairs limits the distillation gains. In contrast to previous adaptive distillation methods to reduce the teacher-student gap, we explore a novel training-free framework to search for the best student architectures for a given teacher. Our work first empirically show that the optimal model under vanilla training cannot be the winner in distillation. Secondly, we find that the similarity of feature semantics and sample relations between random-initialized teacher-student networks have good correlations with final distillation performances. Thus, we efficiently measure similarity matrixs conditioned on the semantic activation maps to select the optimal student via an evolutionary algorithm without any training. In this way, our student architecture search for Distillation WithOut Training (DisWOT) significantly improves the performance of the model in the distillation stage with at least 180times training acceleration. Additionally, we extend similarity metrics in DisWOT as new distillers and KD-based zero-proxies. Our experiments on CIFAR, ImageNet and NAS-Bench-201 demonstrate that our technique achieves state-of-the-art results on different search spaces. Our project and code are available at https://lilujunai.github.io/DisWOT-CVPR2023/.
Optimal Stepsize for Diffusion Sampling
Diffusion models achieve remarkable generation quality but suffer from computational intensive sampling due to suboptimal step discretization. While existing works focus on optimizing denoising directions, we address the principled design of stepsize schedules. This paper proposes Optimal Stepsize Distillation, a dynamic programming framework that extracts theoretically optimal schedules by distilling knowledge from reference trajectories. By reformulating stepsize optimization as recursive error minimization, our method guarantees global discretization bounds through optimal substructure exploitation. Crucially, the distilled schedules demonstrate strong robustness across architectures, ODE solvers, and noise schedules. Experiments show 10x accelerated text-to-image generation while preserving 99.4% performance on GenEval. Our code is available at https://github.com/bebebe666/OptimalSteps.
Self-Training with Direct Preference Optimization Improves Chain-of-Thought Reasoning
Effective training of language models (LMs) for mathematical reasoning tasks demands high-quality supervised fine-tuning data. Besides obtaining annotations from human experts, a common alternative is sampling from larger and more powerful LMs. However, this knowledge distillation approach can be costly and unstable, particularly when relying on closed-source, proprietary LMs like GPT-4, whose behaviors are often unpredictable. In this work, we demonstrate that the reasoning abilities of small-scale LMs can be enhanced through self-training, a process where models learn from their own outputs. We also show that the conventional self-training can be further augmented by a preference learning algorithm called Direct Preference Optimization (DPO). By integrating DPO into self-training, we leverage preference data to guide LMs towards more accurate and diverse chain-of-thought reasoning. We evaluate our method across various mathematical reasoning tasks using different base models. Our experiments show that this approach not only improves LMs' reasoning performance but also offers a more cost-effective and scalable solution compared to relying on large proprietary LMs.
StreamDiT: Real-Time Streaming Text-to-Video Generation
Recently, great progress has been achieved in text-to-video (T2V) generation by scaling transformer-based diffusion models to billions of parameters, which can generate high-quality videos. However, existing models typically produce only short clips offline, restricting their use cases in interactive and real-time applications. This paper addresses these challenges by proposing StreamDiT, a streaming video generation model. StreamDiT training is based on flow matching by adding a moving buffer. We design mixed training with different partitioning schemes of buffered frames to boost both content consistency and visual quality. StreamDiT modeling is based on adaLN DiT with varying time embedding and window attention. To practice the proposed method, we train a StreamDiT model with 4B parameters. In addition, we propose a multistep distillation method tailored for StreamDiT. Sampling distillation is performed in each segment of a chosen partitioning scheme. After distillation, the total number of function evaluations (NFEs) is reduced to the number of chunks in a buffer. Finally, our distilled model reaches real-time performance at 16 FPS on one GPU, which can generate video streams at 512p resolution. We evaluate our method through both quantitative metrics and human evaluation. Our model enables real-time applications, e.g. streaming generation, interactive generation, and video-to-video. We provide video results and more examples in our project website: <a href="https://cumulo-autumn.github.io/StreamDiT/">this https URL.</a>
PaD: Program-aided Distillation Specializes Large Models in Reasoning
While Large Language Models (LLMs) excel in several natural language processing tasks, their size and inaccessibility present challenges for extensive practical application. Previous studies acquire specialized skills through distillation on LLMs, which result in trading generic abilities, called model specialization. As for reasoning ability, chain-of-thought was synthesized to subsequent distillation. However, due to hallucination, synthetic chain-of-thought from LLMs contains faulty reasoning. These incorrect reasoning steps damage the reasoning capability. To tackle above issues, we propose Program-aided Distillation (PaD), which distills LLMs to obtain specialized small models in reasoning tasks. In PaD, we strengthen specialized models with program-aided reasoning, and help them overcome faulty reasoning steps with automated error checking. Experimental results demonstrate that, on the GSM8K benchmark, a 0.06B model using PaD can not only outperform certain LLMs (e.g., LLaMA), but also achieves a 10% improvement over baselines with a significantly smaller scale of parameters and data. Data pruning analysis reveals that PaD possesses higher training efficiency.
Accelerating Video Diffusion Models via Distribution Matching
Generative models, particularly diffusion models, have made significant success in data synthesis across various modalities, including images, videos, and 3D assets. However, current diffusion models are computationally intensive, often requiring numerous sampling steps that limit their practical application, especially in video generation. This work introduces a novel framework for diffusion distillation and distribution matching that dramatically reduces the number of inference steps while maintaining-and potentially improving-generation quality. Our approach focuses on distilling pre-trained diffusion models into a more efficient few-step generator, specifically targeting video generation. By leveraging a combination of video GAN loss and a novel 2D score distribution matching loss, we demonstrate the potential to generate high-quality video frames with substantially fewer sampling steps. To be specific, the proposed method incorporates a denoising GAN discriminator to distil from the real data and a pre-trained image diffusion model to enhance the frame quality and the prompt-following capabilities. Experimental results using AnimateDiff as the teacher model showcase the method's effectiveness, achieving superior performance in just four sampling steps compared to existing techniques.
Invertible Consistency Distillation for Text-Guided Image Editing in Around 7 Steps
Diffusion distillation represents a highly promising direction for achieving faithful text-to-image generation in a few sampling steps. However, despite recent successes, existing distilled models still do not provide the full spectrum of diffusion abilities, such as real image inversion, which enables many precise image manipulation methods. This work aims to enrich distilled text-to-image diffusion models with the ability to effectively encode real images into their latent space. To this end, we introduce invertible Consistency Distillation (iCD), a generalized consistency distillation framework that facilitates both high-quality image synthesis and accurate image encoding in only 3-4 inference steps. Though the inversion problem for text-to-image diffusion models gets exacerbated by high classifier-free guidance scales, we notice that dynamic guidance significantly reduces reconstruction errors without noticeable degradation in generation performance. As a result, we demonstrate that iCD equipped with dynamic guidance may serve as a highly effective tool for zero-shot text-guided image editing, competing with more expensive state-of-the-art alternatives.
AMD: Automatic Multi-step Distillation of Large-scale Vision Models
Transformer-based architectures have become the de-facto standard models for diverse vision tasks owing to their superior performance. As the size of the models continues to scale up, model distillation becomes extremely important in various real applications, particularly on devices limited by computational resources. However, prevailing knowledge distillation methods exhibit diminished efficacy when confronted with a large capacity gap between the teacher and the student, e.g, 10x compression rate. In this paper, we present a novel approach named Automatic Multi-step Distillation (AMD) for large-scale vision model compression. In particular, our distillation process unfolds across multiple steps. Initially, the teacher undergoes distillation to form an intermediate teacher-assistant model, which is subsequently distilled further to the student. An efficient and effective optimization framework is introduced to automatically identify the optimal teacher-assistant that leads to the maximal student performance. We conduct extensive experiments on multiple image classification datasets, including CIFAR-10, CIFAR-100, and ImageNet. The findings consistently reveal that our approach outperforms several established baselines, paving a path for future knowledge distillation methods on large-scale vision models.
Improved Distribution Matching Distillation for Fast Image Synthesis
Recent approaches have shown promises distilling diffusion models into efficient one-step generators. Among them, Distribution Matching Distillation (DMD) produces one-step generators that match their teacher in distribution, without enforcing a one-to-one correspondence with the sampling trajectories of their teachers. However, to ensure stable training, DMD requires an additional regression loss computed using a large set of noise-image pairs generated by the teacher with many steps of a deterministic sampler. This is costly for large-scale text-to-image synthesis and limits the student's quality, tying it too closely to the teacher's original sampling paths. We introduce DMD2, a set of techniques that lift this limitation and improve DMD training. First, we eliminate the regression loss and the need for expensive dataset construction. We show that the resulting instability is due to the fake critic not estimating the distribution of generated samples accurately and propose a two time-scale update rule as a remedy. Second, we integrate a GAN loss into the distillation procedure, discriminating between generated samples and real images. This lets us train the student model on real data, mitigating the imperfect real score estimation from the teacher model, and enhancing quality. Lastly, we modify the training procedure to enable multi-step sampling. We identify and address the training-inference input mismatch problem in this setting, by simulating inference-time generator samples during training time. Taken together, our improvements set new benchmarks in one-step image generation, with FID scores of 1.28 on ImageNet-64x64 and 8.35 on zero-shot COCO 2014, surpassing the original teacher despite a 500X reduction in inference cost. Further, we show our approach can generate megapixel images by distilling SDXL, demonstrating exceptional visual quality among few-step methods.
Self Forcing: Bridging the Train-Test Gap in Autoregressive Video Diffusion
We introduce Self Forcing, a novel training paradigm for autoregressive video diffusion models. It addresses the longstanding issue of exposure bias, where models trained on ground-truth context must generate sequences conditioned on their own imperfect outputs during inference. Unlike prior methods that denoise future frames based on ground-truth context frames, Self Forcing conditions each frame's generation on previously self-generated outputs by performing autoregressive rollout with key-value (KV) caching during training. This strategy enables supervision through a holistic loss at the video level that directly evaluates the quality of the entire generated sequence, rather than relying solely on traditional frame-wise objectives. To ensure training efficiency, we employ a few-step diffusion model along with a stochastic gradient truncation strategy, effectively balancing computational cost and performance. We further introduce a rolling KV cache mechanism that enables efficient autoregressive video extrapolation. Extensive experiments demonstrate that our approach achieves real-time streaming video generation with sub-second latency on a single GPU, while matching or even surpassing the generation quality of significantly slower and non-causal diffusion models. Project website: http://self-forcing.github.io/
Inverse Bridge Matching Distillation
Learning diffusion bridge models is easy; making them fast and practical is an art. Diffusion bridge models (DBMs) are a promising extension of diffusion models for applications in image-to-image translation. However, like many modern diffusion and flow models, DBMs suffer from the problem of slow inference. To address it, we propose a novel distillation technique based on the inverse bridge matching formulation and derive the tractable objective to solve it in practice. Unlike previously developed DBM distillation techniques, the proposed method can distill both conditional and unconditional types of DBMs, distill models in a one-step generator, and use only the corrupted images for training. We evaluate our approach for both conditional and unconditional types of bridge matching on a wide set of setups, including super-resolution, JPEG restoration, sketch-to-image, and other tasks, and show that our distillation technique allows us to accelerate the inference of DBMs from 4x to 100x and even provide better generation quality than used teacher model depending on particular setup.
Self-supervised Learning to Bring Dual Reversed Rolling Shutter Images Alive
Modern consumer cameras usually employ the rolling shutter (RS) mechanism, where images are captured by scanning scenes row-by-row, yielding RS distortions for dynamic scenes. To correct RS distortions, existing methods adopt a fully supervised learning manner, where high framerate global shutter (GS) images should be collected as ground-truth supervision. In this paper, we propose a Self-supervised learning framework for Dual reversed RS distortions Correction (SelfDRSC), where a DRSC network can be learned to generate a high framerate GS video only based on dual RS images with reversed distortions. In particular, a bidirectional distortion warping module is proposed for reconstructing dual reversed RS images, and then a self-supervised loss can be deployed to train DRSC network by enhancing the cycle consistency between input and reconstructed dual reversed RS images. Besides start and end RS scanning time, GS images at arbitrary intermediate scanning time can also be supervised in SelfDRSC, thus enabling the learned DRSC network to generate a high framerate GS video. Moreover, a simple yet effective self-distillation strategy is introduced in self-supervised loss for mitigating boundary artifacts in generated GS images. On synthetic dataset, SelfDRSC achieves better or comparable quantitative metrics in comparison to state-of-the-art methods trained in the full supervision manner. On real-world RS cases, our SelfDRSC can produce high framerate GS videos with finer correction textures and better temporary consistency. The source code and trained models are made publicly available at https://github.com/shangwei5/SelfDRSC.
Learning Effective Representations for Retrieval Using Self-Distillation with Adaptive Relevance Margins
Representation-based retrieval models, so-called biencoders, estimate the relevance of a document to a query by calculating the similarity of their respective embeddings. Current state-of-the-art biencoders are trained using an expensive training regime involving knowledge distillation from a teacher model and batch-sampling. Instead of relying on a teacher model, we contribute a novel parameter-free loss function for self-supervision that exploits the pre-trained language modeling capabilities of the encoder model as a training signal, eliminating the need for batch sampling by performing implicit hard negative mining. We investigate the capabilities of our proposed approach through extensive ablation studies, demonstrating that self-distillation can match the effectiveness of teacher distillation using only 13.5% of the data, while offering a speedup in training time between 3x and 15x compared to parametrized losses. Code and data is made openly available.
Relational Knowledge Distillation
Knowledge distillation aims at transferring knowledge acquired in one model (a teacher) to another model (a student) that is typically smaller. Previous approaches can be expressed as a form of training the student to mimic output activations of individual data examples represented by the teacher. We introduce a novel approach, dubbed relational knowledge distillation (RKD), that transfers mutual relations of data examples instead. For concrete realizations of RKD, we propose distance-wise and angle-wise distillation losses that penalize structural differences in relations. Experiments conducted on different tasks show that the proposed method improves educated student models with a significant margin. In particular for metric learning, it allows students to outperform their teachers' performance, achieving the state of the arts on standard benchmark datasets.
LoRA-Enhanced Distillation on Guided Diffusion Models
Diffusion models, such as Stable Diffusion (SD), offer the ability to generate high-resolution images with diverse features, but they come at a significant computational and memory cost. In classifier-free guided diffusion models, prolonged inference times are attributed to the necessity of computing two separate diffusion models at each denoising step. Recent work has shown promise in improving inference time through distillation techniques, teaching the model to perform similar denoising steps with reduced computations. However, the application of distillation introduces additional memory overhead to these already resource-intensive diffusion models, making it less practical. To address these challenges, our research explores a novel approach that combines Low-Rank Adaptation (LoRA) with model distillation to efficiently compress diffusion models. This approach not only reduces inference time but also mitigates memory overhead, and notably decreases memory consumption even before applying distillation. The results are remarkable, featuring a significant reduction in inference time due to the distillation process and a substantial 50% reduction in memory consumption. Our examination of the generated images underscores that the incorporation of LoRA-enhanced distillation maintains image quality and alignment with the provided prompts. In summary, while conventional distillation tends to increase memory consumption, LoRA-enhanced distillation offers optimization without any trade-offs or compromises in quality.
Self-Judge: Selective Instruction Following with Alignment Self-Evaluation
Pre-trained large language models (LLMs) can be tailored to adhere to human instructions through instruction tuning. However, due to shifts in the distribution of test-time data, they may not always execute instructions accurately, potentially generating factual errors or misaligned content when acting as chat assistants. To enhance the reliability of LLMs in following instructions, we propose the study of selective instruction following, whereby the system declines to execute instructions if the anticipated response quality is low. We train judge models that can predict numerical quality scores for model responses. To address data scarcity, we introduce Self-J, a novel self-training framework for developing judge models without needing human-annotated quality scores. Our method leverages the model's inherent self-evaluation capability to extract information about response quality from labeled instruction-tuning data. It incorporates a gold reference answer to facilitate self-evaluation and recalibrates by assessing the semantic similarity between the response sample and the gold reference. During the training phase, we implement self-distillation as a regularization technique to enhance the capability of reference-free estimation. To validate alignment evaluation on general instruction-following tasks, we collect large-scale high-quality instructions from Hugging Face for model training and evaluation. Extensive experiments on five open-source models show that our method correlates much more with GPT-4 than strong baselines, e.g., supervised models distilled from GPT-4 and GPT-3.5-turbo. Our analysis shows our model's strong generalization across domains. Additionally, our judge models serve as good reward models, e.g., boosting WizardLM-13B-V1.2 from 89.17 to 92.48 and from 12.03 to 15.90 in version v1 and v2 of AlpacaEval respectively using best-of-32 sampling with our judge models.
Swing Distillation: A Privacy-Preserving Knowledge Distillation Framework
Knowledge distillation (KD) has been widely used for model compression and knowledge transfer. Typically, a big teacher model trained on sufficient data transfers knowledge to a small student model. However, despite the success of KD, little effort has been made to study whether KD leaks the training data of the teacher model. In this paper, we experimentally reveal that KD suffers from the risk of privacy leakage. To alleviate this issue, we propose a novel knowledge distillation method, swing distillation, which can effectively protect the private information of the teacher model from flowing to the student model. In our framework, the temperature coefficient is dynamically and adaptively adjusted according to the degree of private information contained in the data, rather than a predefined constant hyperparameter. It assigns different temperatures to tokens according to the likelihood that a token in a position contains private information. In addition, we inject noise into soft targets provided to the student model, in order to avoid unshielded knowledge transfer. Experiments on multiple datasets and tasks demonstrate that the proposed swing distillation can significantly reduce (by over 80% in terms of canary exposure) the risk of privacy leakage in comparison to KD with competitive or better performance. Furthermore, swing distillation is robust against the increasing privacy budget.
Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation
Diffusion models are the main driver of progress in image and video synthesis, but suffer from slow inference speed. Distillation methods, like the recently introduced adversarial diffusion distillation (ADD) aim to shift the model from many-shot to single-step inference, albeit at the cost of expensive and difficult optimization due to its reliance on a fixed pretrained DINOv2 discriminator. We introduce Latent Adversarial Diffusion Distillation (LADD), a novel distillation approach overcoming the limitations of ADD. In contrast to pixel-based ADD, LADD utilizes generative features from pretrained latent diffusion models. This approach simplifies training and enhances performance, enabling high-resolution multi-aspect ratio image synthesis. We apply LADD to Stable Diffusion 3 (8B) to obtain SD3-Turbo, a fast model that matches the performance of state-of-the-art text-to-image generators using only four unguided sampling steps. Moreover, we systematically investigate its scaling behavior and demonstrate LADD's effectiveness in various applications such as image editing and inpainting.
EchoDistill: Bidirectional Concept Distillation for One-Step Diffusion Personalization
Recent advances in accelerating text-to-image (T2I) diffusion models have enabled the synthesis of high-fidelity images even in a single step. However, personalizing these models to incorporate novel concepts remains a challenge due to the limited capacity of one-step models to capture new concept distributions effectively. We propose a bidirectional concept distillation framework, EchoDistill, to enable one-step diffusion personalization (1-SDP). Our approach involves an end-to-end training process where a multi-step diffusion model (teacher) and a one-step diffusion model (student) are trained simultaneously. The concept is first distilled from the teacher model to the student, and then echoed back from the student to the teacher. During the EchoDistill, we share the text encoder between the two models to ensure consistent semantic understanding. Following this, the student model is optimized with adversarial losses to align with the real image distribution and with alignment losses to maintain consistency with the teacher's output. Furthermore, we introduce the bidirectional echoing refinement strategy, wherein the student model leverages its faster generation capability to feedback to the teacher model. This bidirectional concept distillation mechanism not only enhances the student ability to personalize novel concepts but also improves the generative quality of the teacher model. Our experiments demonstrate that this collaborative framework significantly outperforms existing personalization methods over the 1-SDP setup, establishing a novel paradigm for rapid and effective personalization in T2I diffusion models.
One Step Diffusion-based Super-Resolution with Time-Aware Distillation
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts. However, these approaches typically require tens or even hundreds of iterative samplings, resulting in significant latency. Recently, techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation. Nonetheless, when aligning the knowledge of student and teacher models, these solutions either solely rely on pixel-level loss constraints or neglect the fact that diffusion models prioritize varying levels of information at different time steps. To accomplish effective and efficient image super-resolution, we propose a time-aware diffusion distillation method, named TAD-SR. Specifically, we introduce a novel score distillation strategy to align the data distribution between the outputs of the student and teacher models after minor noise perturbation. This distillation strategy enables the student network to concentrate more on the high-frequency details. Furthermore, to mitigate performance limitations stemming from distillation, we integrate a latent adversarial loss and devise a time-aware discriminator that leverages diffusion priors to effectively distinguish between real images and generated images. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the proposed method achieves comparable or even superior performance compared to both previous state-of-the-art (SOTA) methods and the teacher model in just one sampling step. Codes are available at https://github.com/LearningHx/TAD-SR.
Large Scale Diffusion Distillation via Score-Regularized Continuous-Time Consistency
This work represents the first effort to scale up continuous-time consistency distillation to general application-level image and video diffusion models. Although continuous-time consistency model (sCM) is theoretically principled and empirically powerful for accelerating academic-scale diffusion, its applicability to large-scale text-to-image and video tasks remains unclear due to infrastructure challenges in Jacobian-vector product (JVP) computation and the limitations of standard evaluation benchmarks. We first develop a parallelism-compatible FlashAttention-2 JVP kernel, enabling sCM training on models with over 10 billion parameters and high-dimensional video tasks. Our investigation reveals fundamental quality limitations of sCM in fine-detail generation, which we attribute to error accumulation and the "mode-covering" nature of its forward-divergence objective. To remedy this, we propose the score-regularized continuous-time consistency model (rCM), which incorporates score distillation as a long-skip regularizer. This integration complements sCM with the "mode-seeking" reverse divergence, effectively improving visual quality while maintaining high generation diversity. Validated on large-scale models (Cosmos-Predict2, Wan2.1) up to 14B parameters and 5-second videos, rCM matches or surpasses the state-of-the-art distillation method DMD2 on quality metrics while offering notable advantages in diversity, all without GAN tuning or extensive hyperparameter searches. The distilled models generate high-fidelity samples in only 1sim4 steps, accelerating diffusion sampling by 15timessim50times. These results position rCM as a practical and theoretically grounded framework for advancing large-scale diffusion distillation.
SNOOPI: Supercharged One-step Diffusion Distillation with Proper Guidance
Recent approaches have yielded promising results in distilling multi-step text-to-image diffusion models into one-step ones. The state-of-the-art efficient distillation technique, i.e., SwiftBrushv2 (SBv2), even surpasses the teacher model's performance with limited resources. However, our study reveals its instability when handling different diffusion model backbones due to using a fixed guidance scale within the Variational Score Distillation (VSD) loss. Another weakness of the existing one-step diffusion models is the missing support for negative prompt guidance, which is crucial in practical image generation. This paper presents SNOOPI, a novel framework designed to address these limitations by enhancing the guidance in one-step diffusion models during both training and inference. First, we effectively enhance training stability through Proper Guidance-SwiftBrush (PG-SB), which employs a random-scale classifier-free guidance approach. By varying the guidance scale of both teacher models, we broaden their output distributions, resulting in a more robust VSD loss that enables SB to perform effectively across diverse backbones while maintaining competitive performance. Second, we propose a training-free method called Negative-Away Steer Attention (NASA), which integrates negative prompts into one-step diffusion models via cross-attention to suppress undesired elements in generated images. Our experimental results show that our proposed methods significantly improve baseline models across various metrics. Remarkably, we achieve an HPSv2 score of 31.08, setting a new state-of-the-art benchmark for one-step diffusion models.
ERNIE-Tiny : A Progressive Distillation Framework for Pretrained Transformer Compression
Pretrained language models (PLMs) such as BERT adopt a training paradigm which first pretrain the model in general data and then finetune the model on task-specific data, and have recently achieved great success. However, PLMs are notorious for their enormous parameters and hard to be deployed on real-life applications. Knowledge distillation has been prevailing to address this problem by transferring knowledge from a large teacher to a much smaller student over a set of data. We argue that the selection of thee three key components, namely teacher, training data, and learning objective, is crucial to the effectiveness of distillation. We, therefore, propose a four-stage progressive distillation framework ERNIE-Tiny to compress PLM, which varies the three components gradually from general level to task-specific level. Specifically, the first stage, General Distillation, performs distillation with guidance from pretrained teacher, gerenal data and latent distillation loss. Then, General-Enhanced Distillation changes teacher model from pretrained teacher to finetuned teacher. After that, Task-Adaptive Distillation shifts training data from general data to task-specific data. In the end, Task-Specific Distillation, adds two additional losses, namely Soft-Label and Hard-Label loss onto the last stage. Empirical results demonstrate the effectiveness of our framework and generalization gain brought by ERNIE-Tiny.In particular, experiments show that a 4-layer ERNIE-Tiny maintains over 98.0%performance of its 12-layer teacher BERT base on GLUE benchmark, surpassing state-of-the-art (SOTA) by 1.0% GLUE score with the same amount of parameters. Moreover, ERNIE-Tiny achieves a new compression SOTA on five Chinese NLP tasks, outperforming BERT base by 0.4% accuracy with 7.5x fewer parameters and9.4x faster inference speed.
Information-Preserving Reformulation of Reasoning Traces for Antidistillation
Recent advances in Large Language Models (LLMs) show that extending the length of reasoning chains significantly improves performance on complex tasks. While revealing these reasoning traces helps users better follow, verify, and learn from the model's problem-solving process, it also makes them highly vulnerable to unauthorized distillation. To mitigate this risk, proprietary model providers often adopt aggressive protection strategies, such as replacing detailed reasoning with brief summaries, which deprive users of valuable intermediate information. To address this trade-off, we propose PART, an information-preserving antidistillation reformulation of reasoning traces. Motivated by the difference between how humans understand reasoning traces and how LLMs exploit them for supervised fine-tuning, we design a simple but effective two-step reformulation: removing self-talk behaviors and reordering sub-conclusions. A small auxiliary model is trained to perform this reformulation, incurring minimal computational overhead. Extensive experiments demonstrate that PART consistently disrupts distillation across student models of different sizes and types on various reasoning benchmarks. For instance, when training on reformulated traces, even the performance of a large 32B student model decreases from 54.17 to 46.88 on AIME 2024, corresponding to a 13.5% degradation.
From Correction to Mastery: Reinforced Distillation of Large Language Model Agents
Large Language Model agents excel at solving complex tasks through iterative reasoning and tool use, but typically depend on ultra-large, costly backbones. Existing distillation approaches train smaller students to imitate full teacher trajectories, yet reasoning and knowledge gaps between the teacher and student often lead to compounding errors. We propose SCoRe, a student-centered framework in which the student generates trajectories and the teacher intervenes only at the first critical error, producing training data matched to the student's ability and exposing specific weaknesses. The student is first fine-tuned on corrected trajectories. Subsequently, short-horizon reinforcement learning starts from the verified prefix before the first critical error, with target rewards assigned at that step. This design encourages autonomous problem-solving beyond imitation and improves training stability. Particularly, on 12 challenging benchmarks, a 7B-parameter student distilled with SCoRe matches the agentic performance of a 72B-parameter teacher.
Discriminator-Cooperated Feature Map Distillation for GAN Compression
Despite excellent performance in image generation, Generative Adversarial Networks (GANs) are notorious for its requirements of enormous storage and intensive computation. As an awesome ''performance maker'', knowledge distillation is demonstrated to be particularly efficacious in exploring low-priced GANs. In this paper, we investigate the irreplaceability of teacher discriminator and present an inventive discriminator-cooperated distillation, abbreviated as DCD, towards refining better feature maps from the generator. In contrast to conventional pixel-to-pixel match methods in feature map distillation, our DCD utilizes teacher discriminator as a transformation to drive intermediate results of the student generator to be perceptually close to corresponding outputs of the teacher generator. Furthermore, in order to mitigate mode collapse in GAN compression, we construct a collaborative adversarial training paradigm where the teacher discriminator is from scratch established to co-train with student generator in company with our DCD. Our DCD shows superior results compared with existing GAN compression methods. For instance, after reducing over 40x MACs and 80x parameters of CycleGAN, we well decrease FID metric from 61.53 to 48.24 while the current SoTA method merely has 51.92. This work's source code has been made accessible at https://github.com/poopit/DCD-official.
Distilling LLM Agent into Small Models with Retrieval and Code Tools
Large language models (LLMs) excel at complex reasoning tasks but remain computationally expensive, limiting their practical deployment. To address this, recent works have focused on distilling reasoning capabilities into smaller language models (sLMs) using chain-of-thought (CoT) traces from teacher LLMs. However, this approach struggles in scenarios requiring rare factual knowledge or precise computation, where sLMs often hallucinate due to limited capability. In this work, we propose Agent Distillation, a framework for transferring not only reasoning capability but full task-solving behavior from LLM-based agents into sLMs with retrieval and code tools. We improve agent distillation along two complementary axes: (1) we introduce a prompting method called first-thought prefix to enhance the quality of teacher-generated trajectories; and (2) we propose a self-consistent action generation for improving test-time robustness of small agents. We evaluate our method on eight reasoning tasks across factual and mathematical domains, covering both in-domain and out-of-domain generalization. Our results show that sLMs as small as 0.5B, 1.5B, 3B parameters can achieve performance competitive with next-tier larger 1.5B, 3B, 7B models fine-tuned using CoT distillation, demonstrating the potential of agent distillation for building practical, tool-using small agents. Our code is available at https://github.com/Nardien/agent-distillation.
Talking Models: Distill Pre-trained Knowledge to Downstream Models via Interactive Communication
Many recent breakthroughs in machine learning have been enabled by the pre-trained foundation models. By scaling up model parameters, training data, and computation resources, foundation models have significantly advanced the state-of-the-art in many applications. However, it is still an open question of how to use these models to perform downstream tasks efficiently. Knowledge distillation (KD) has been explored to tackle this challenge. KD transfers knowledge from a large teacher model to a smaller student model. While KD has been successful in improving student model performance, recent research has discovered that a powerful teacher does not necessarily lead to a powerful student, due to their huge capacity gap. In addition, the potential distribution shifts between the pre-training data and downstream tasks can make knowledge transfer in KD sub-optimal for improving downstream task performance. In this paper, we extend KD with an interactive communication process to help students of downstream tasks learn effectively from pre-trained foundation models. Our design is inspired by the way humans learn from teachers who can explain knowledge in a way that meets the students' needs. Specifically, we let each model (i.e., student and teacher) train two components: (1) an encoder encoding the model's hidden states to a message and (2) a decoder decoding any messages to its own hidden states. With encoder and decoder, not only can the teacher transfer rich information by encoding its hidden states, but also the student can send messages with information of downstream tasks to the teacher. Therefore, knowledge passing from teacher to student can be tailored to the student's capacity and downstream tasks' distributions. We conducted experiments on benchmark datasets to show that our communication mechanism outperforms state-of-the-art distillation techniques.
No Other Representation Component Is Needed: Diffusion Transformers Can Provide Representation Guidance by Themselves
Recent studies have demonstrated that learning a meaningful internal representation can both accelerate generative training and enhance the generation quality of diffusion transformers. However, existing approaches necessitate to either introduce an external and complex representation training framework or rely on a large-scale, pre-trained representation foundation model to provide representation guidance during the original generative training process. In this study, we posit that the unique discriminative process inherent to diffusion transformers enables them to offer such guidance without requiring external representation components. We therefore propose Self-Representation Alignment (SRA), a simple yet straightforward method that obtains representation guidance through a self-distillation manner. Specifically, SRA aligns the output latent representation of the diffusion transformer in the earlier layer with higher noise to that in the later layer with lower noise to progressively enhance the overall representation learning during only the generative training process. Experimental results indicate that applying SRA to DiTs and SiTs yields consistent performance improvements. Moreover, SRA not only significantly outperforms approaches relying on auxiliary, complex representation training frameworks but also achieves performance comparable to methods that are heavily dependent on powerful external representation priors.
Tuning Timestep-Distilled Diffusion Model Using Pairwise Sample Optimization
Recent advancements in timestep-distilled diffusion models have enabled high-quality image generation that rivals non-distilled multi-step models, but with significantly fewer inference steps. While such models are attractive for applications due to the low inference cost and latency, fine-tuning them with a naive diffusion objective would result in degraded and blurry outputs. An intuitive alternative is to repeat the diffusion distillation process with a fine-tuned teacher model, which produces good results but is cumbersome and computationally intensive; the distillation training usually requires magnitude higher of training compute compared to fine-tuning for specific image styles. In this paper, we present an algorithm named pairwise sample optimization (PSO), which enables the direct fine-tuning of an arbitrary timestep-distilled diffusion model. PSO introduces additional reference images sampled from the current time-step distilled model, and increases the relative likelihood margin between the training images and reference images. This enables the model to retain its few-step generation ability, while allowing for fine-tuning of its output distribution. We also demonstrate that PSO is a generalized formulation which can be flexibly extended to both offline-sampled and online-sampled pairwise data, covering various popular objectives for diffusion model preference optimization. We evaluate PSO in both preference optimization and other fine-tuning tasks, including style transfer and concept customization. We show that PSO can directly adapt distilled models to human-preferred generation with both offline and online-generated pairwise preference image data. PSO also demonstrates effectiveness in style transfer and concept customization by directly tuning timestep-distilled diffusion models.
Diffusion Distillation With Direct Preference Optimization For Efficient 3D LiDAR Scene Completion
The application of diffusion models in 3D LiDAR scene completion is limited due to diffusion's slow sampling speed. Score distillation accelerates diffusion sampling but with performance degradation, while post-training with direct policy optimization (DPO) boosts performance using preference data. This paper proposes Distillation-DPO, a novel diffusion distillation framework for LiDAR scene completion with preference aligment. First, the student model generates paired completion scenes with different initial noises. Second, using LiDAR scene evaluation metrics as preference, we construct winning and losing sample pairs. Such construction is reasonable, since most LiDAR scene metrics are informative but non-differentiable to be optimized directly. Third, Distillation-DPO optimizes the student model by exploiting the difference in score functions between the teacher and student models on the paired completion scenes. Such procedure is repeated until convergence. Extensive experiments demonstrate that, compared to state-of-the-art LiDAR scene completion diffusion models, Distillation-DPO achieves higher-quality scene completion while accelerating the completion speed by more than 5-fold. Our method is the first to explore adopting preference learning in distillation to the best of our knowledge and provide insights into preference-aligned distillation. Our code is public available on https://github.com/happyw1nd/DistillationDPO.
Knowledge Injection via Prompt Distillation
In many practical applications, large language models (LLMs) need to incorporate new knowledge not present in their pre-training data. The primary methods for this are fine-tuning and retrieval-augmented generation (RAG). Although RAG has emerged as the industry standard for knowledge injection, fine-tuning has not yet achieved comparable success. In this paper, we propose a new fine-tuning technique for learning new knowledge and show that it can reach the performance of RAG. The proposed method is based on the self-distillation approach, which we call prompt distillation. First, we generate question-answer pairs about the new knowledge. Then, we fine-tune a student model on the question-answer pairs to imitate the output distributions of a teacher model, which additionally receives the new knowledge in its prompt. The student model is identical to the teacher, except it is equipped with a LoRA adapter. This training procedure facilitates distilling the new knowledge from the teacher's prompt into the student's weights.
Multi-dimensional Visual Prompt Enhanced Image Restoration via Mamba-Transformer Aggregation
Recent efforts on image restoration have focused on developing "all-in-one" models that can handle different degradation types and levels within single model. However, most of mainstream Transformer-based ones confronted with dilemma between model capabilities and computation burdens, since self-attention mechanism quadratically increase in computational complexity with respect to image size, and has inadequacies in capturing long-range dependencies. Most of Mamba-related ones solely scanned feature map in spatial dimension for global modeling, failing to fully utilize information in channel dimension. To address aforementioned problems, this paper has proposed to fully utilize complementary advantages from Mamba and Transformer without sacrificing computation efficiency. Specifically, the selective scanning mechanism of Mamba is employed to focus on spatial modeling, enabling capture long-range spatial dependencies under linear complexity. The self-attention mechanism of Transformer is applied to focus on channel modeling, avoiding high computation burdens that are in quadratic growth with image's spatial dimensions. Moreover, to enrich informative prompts for effective image restoration, multi-dimensional prompt learning modules are proposed to learn prompt-flows from multi-scale encoder/decoder layers, benefiting for revealing underlying characteristic of various degradations from both spatial and channel perspectives, therefore, enhancing the capabilities of "all-in-one" model to solve various restoration tasks. Extensive experiment results on several image restoration benchmark tasks such as image denoising, dehazing, and deraining, have demonstrated that the proposed method can achieve new state-of-the-art performance, compared with many popular mainstream methods. Related source codes and pre-trained parameters will be public on github https://github.com/12138-chr/MTAIR.
MiniLMv2: Multi-Head Self-Attention Relation Distillation for Compressing Pretrained Transformers
We generalize deep self-attention distillation in MiniLM (Wang et al., 2020) by only using self-attention relation distillation for task-agnostic compression of pretrained Transformers. In particular, we define multi-head self-attention relations as scaled dot-product between the pairs of query, key, and value vectors within each self-attention module. Then we employ the above relational knowledge to train the student model. Besides its simplicity and unified principle, more favorably, there is no restriction in terms of the number of student's attention heads, while most previous work has to guarantee the same head number between teacher and student. Moreover, the fine-grained self-attention relations tend to fully exploit the interaction knowledge learned by Transformer. In addition, we thoroughly examine the layer selection strategy for teacher models, rather than just relying on the last layer as in MiniLM. We conduct extensive experiments on compressing both monolingual and multilingual pretrained models. Experimental results demonstrate that our models distilled from base-size and large-size teachers (BERT, RoBERTa and XLM-R) outperform the state-of-the-art.
Revisiting Label Smoothing and Knowledge Distillation Compatibility: What was Missing?
This work investigates the compatibility between label smoothing (LS) and knowledge distillation (KD). Contemporary findings addressing this thesis statement take dichotomous standpoints: Muller et al. (2019) and Shen et al. (2021b). Critically, there is no effort to understand and resolve these contradictory findings, leaving the primal question -- to smooth or not to smooth a teacher network? -- unanswered. The main contributions of our work are the discovery, analysis and validation of systematic diffusion as the missing concept which is instrumental in understanding and resolving these contradictory findings. This systematic diffusion essentially curtails the benefits of distilling from an LS-trained teacher, thereby rendering KD at increased temperatures ineffective. Our discovery is comprehensively supported by large-scale experiments, analyses and case studies including image classification, neural machine translation and compact student distillation tasks spanning across multiple datasets and teacher-student architectures. Based on our analysis, we suggest practitioners to use an LS-trained teacher with a low-temperature transfer to achieve high performance students. Code and models are available at https://keshik6.github.io/revisiting-ls-kd-compatibility/
Learning Few-Step Diffusion Models by Trajectory Distribution Matching
Accelerating diffusion model sampling is crucial for efficient AIGC deployment. While diffusion distillation methods -- based on distribution matching and trajectory matching -- reduce sampling to as few as one step, they fall short on complex tasks like text-to-image generation. Few-step generation offers a better balance between speed and quality, but existing approaches face a persistent trade-off: distribution matching lacks flexibility for multi-step sampling, while trajectory matching often yields suboptimal image quality. To bridge this gap, we propose learning few-step diffusion models by Trajectory Distribution Matching (TDM), a unified distillation paradigm that combines the strengths of distribution and trajectory matching. Our method introduces a data-free score distillation objective, aligning the student's trajectory with the teacher's at the distribution level. Further, we develop a sampling-steps-aware objective that decouples learning targets across different steps, enabling more adjustable sampling. This approach supports both deterministic sampling for superior image quality and flexible multi-step adaptation, achieving state-of-the-art performance with remarkable efficiency. Our model, TDM, outperforms existing methods on various backbones, such as SDXL and PixArt-alpha, delivering superior quality and significantly reduced training costs. In particular, our method distills PixArt-alpha into a 4-step generator that outperforms its teacher on real user preference at 1024 resolution. This is accomplished with 500 iterations and 2 A800 hours -- a mere 0.01% of the teacher's training cost. In addition, our proposed TDM can be extended to accelerate text-to-video diffusion. Notably, TDM can outperform its teacher model (CogVideoX-2B) by using only 4 NFE on VBench, improving the total score from 80.91 to 81.65. Project page: https://tdm-t2x.github.io/
Embedding Self-Correction as an Inherent Ability in Large Language Models for Enhanced Mathematical Reasoning
Accurate mathematical reasoning with Large Language Models (LLMs) is crucial in revolutionizing domains that heavily rely on such reasoning. However, LLMs often encounter difficulties in certain aspects of mathematical reasoning, leading to flawed reasoning and erroneous results. To mitigate these issues, we introduce a novel mechanism, the Chain of Self-Correction (CoSC), specifically designed to embed self-correction as an inherent ability in LLMs, enabling them to validate and rectify their own results. The CoSC mechanism operates through a sequence of self-correction stages. In each stage, the LLMs generate a program to address a given problem, execute this program using program-based tools to obtain an output, subsequently verify this output. Based on the verification, the LLMs either proceed to the next correction stage or finalize the answer. This iterative self-correction process allows the LLMs to refine their reasoning steps and improve the accuracy of their mathematical reasoning. To enable the CoSC mechanism at a low cost, we employ a two-phase finetuning approach. In the first phase, the LLMs are trained with a relatively small volume of seeding data generated from GPT-4, establishing an initial CoSC capability. In the second phase, the CoSC capability is further enhanced by training with a larger volume of self-generated data using the trained model in the first phase, without relying on the paid GPT-4. Our comprehensive experiments demonstrate that CoSC significantly improves performance on traditional mathematical datasets among existing open-source LLMs. Notably, our CoSC-Code-34B model achieved a 53.5% score on MATH, the most challenging mathematical reasoning dataset in the public domain, surpassing the performance of well-established models such as ChatGPT, GPT-4, and even multi-modal LLMs like GPT-4V, Gemini-1.0 Pro, and Gemini-1.0 Ultra.
AgentDistill: Training-Free Agent Distillation with Generalizable MCP Boxes
While knowledge distillation has become a mature field for compressing large language models (LLMs) into smaller ones by aligning their outputs or internal representations, the distillation of LLM-based agents, which involve planning, memory, and tool use, remains relatively underexplored. Existing agent distillation methods typically replay full teacher trajectories or imitate step-by-step teacher tool usage, but they often struggle to train student agents to dynamically plan and act in novel environments. We propose AgentDistill, a novel, training-free agent distillation framework that enables efficient and scalable knowledge transfer via direct reuse of Model-Context-Protocols (MCPs), which are structured and reusable task-solving modules autonomously generated by teacher agents. The reuse of these distilled MCPs enables student agents to generalize their capabilities across domains and solve new problems with minimal supervision or human intervention. Experiments on biomedical and mathematical benchmarks demonstrate that our distilled student agents, built on small language models, can achieve performance comparable to advanced systems using large LLMs such as OctoTools (GPT-4o), highlighting the effectiveness of our framework in building scalable and cost-efficient intelligent agents.
Towards Self-Improvement of LLMs via MCTS: Leveraging Stepwise Knowledge with Curriculum Preference Learning
Monte Carlo Tree Search (MCTS) has recently emerged as a powerful technique for enhancing the reasoning capabilities of LLMs. Techniques such as SFT or DPO have enabled LLMs to distill high-quality behaviors from MCTS, improving their reasoning performance. However, existing distillation methods underutilize the rich trajectory information generated by MCTS, limiting the potential for improvements in LLM reasoning. In this paper, we propose AlphaLLM-CPL, a novel pairwise training framework that enables LLMs to self-improve through MCTS behavior distillation. AlphaLLM-CPL efficiently leverages MCTS trajectories via two key innovations: (1) AlphaLLM-CPL constructs stepwise trajectory pairs from child nodes sharing the same parent in the search tree, providing step-level information for more effective MCTS behavior distillation. (2) AlphaLLM-CPL introduces curriculum preference learning, dynamically adjusting the training sequence of trajectory pairs in each offline training epoch to prioritize critical learning steps and mitigate overfitting. Experimental results on mathematical reasoning tasks demonstrate that AlphaLLM-CPL significantly outperforms previous MCTS behavior distillation methods, substantially boosting the reasoning capabilities of LLMs.
Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes
Deploying large language models (LLMs) is challenging because they are memory inefficient and compute-intensive for practical applications. In reaction, researchers train smaller task-specific models by either finetuning with human labels or distilling using LLM-generated labels. However, finetuning and distillation require large amounts of training data to achieve comparable performance to LLMs. We introduce Distilling step-by-step, a new mechanism that (a) trains smaller models that outperform LLMs, and (b) achieves so by leveraging less training data needed by finetuning or distillation. Our method extracts LLM rationales as additional supervision for training small models within a multi-task framework. We present three findings across 4 NLP benchmarks: First, compared to both finetuning and distillation, our mechanism achieves better performance with much fewer labeled/unlabeled training examples. Second, compared to few-shot prompted LLMs, we achieve better performance using substantially smaller model sizes. Third, we reduce both the model size and the amount of data required to outperform LLMs; our finetuned 770M T5 model outperforms the few-shot prompted 540B PaLM model using only 80% of available data on a benchmark, whereas standard finetuning the same T5 model struggles to match even by using 100% of the dataset. We release the code at: https://github.com/google-research/distilling-step-by-step .
pi-Flow: Policy-Based Few-Step Generation via Imitation Distillation
Few-step diffusion or flow-based generative models typically distill a velocity-predicting teacher into a student that predicts a shortcut towards denoised data. This format mismatch has led to complex distillation procedures that often suffer from a quality-diversity trade-off. To address this, we propose policy-based flow models (pi-Flow). pi-Flow modifies the output layer of a student flow model to predict a network-free policy at one timestep. The policy then produces dynamic flow velocities at future substeps with negligible overhead, enabling fast and accurate ODE integration on these substeps without extra network evaluations. To match the policy's ODE trajectory to the teacher's, we introduce a novel imitation distillation approach, which matches the policy's velocity to the teacher's along the policy's trajectory using a standard ell_2 flow matching loss. By simply mimicking the teacher's behavior, pi-Flow enables stable and scalable training and avoids the quality-diversity trade-off. On ImageNet 256^2, it attains a 1-NFE FID of 2.85, outperforming MeanFlow of the same DiT architecture. On FLUX.1-12B and Qwen-Image-20B at 4 NFEs, pi-Flow achieves substantially better diversity than state-of-the-art few-step methods, while maintaining teacher-level quality.
Bespoke Solvers for Generative Flow Models
Diffusion or flow-based models are powerful generative paradigms that are notoriously hard to sample as samples are defined as solutions to high-dimensional Ordinary or Stochastic Differential Equations (ODEs/SDEs) which require a large Number of Function Evaluations (NFE) to approximate well. Existing methods to alleviate the costly sampling process include model distillation and designing dedicated ODE solvers. However, distillation is costly to train and sometimes can deteriorate quality, while dedicated solvers still require relatively large NFE to produce high quality samples. In this paper we introduce "Bespoke solvers", a novel framework for constructing custom ODE solvers tailored to the ODE of a given pre-trained flow model. Our approach optimizes an order consistent and parameter-efficient solver (e.g., with 80 learnable parameters), is trained for roughly 1% of the GPU time required for training the pre-trained model, and significantly improves approximation and generation quality compared to dedicated solvers. For example, a Bespoke solver for a CIFAR10 model produces samples with Fr\'echet Inception Distance (FID) of 2.73 with 10 NFE, and gets to 1% of the Ground Truth (GT) FID (2.59) for this model with only 20 NFE. On the more challenging ImageNet-64times64, Bespoke samples at 2.2 FID with 10 NFE, and gets within 2% of GT FID (1.71) with 20 NFE.
Black-Box On-Policy Distillation of Large Language Models
Black-box distillation creates student large language models (LLMs) by learning from a proprietary teacher model's text outputs alone, without access to its internal logits or parameters. In this work, we introduce Generative Adversarial Distillation (GAD), which enables on-policy and black-box distillation. GAD frames the student LLM as a generator and trains a discriminator to distinguish its responses from the teacher LLM's, creating a minimax game. The discriminator acts as an on-policy reward model that co-evolves with the student, providing stable, adaptive feedback. Experimental results show that GAD consistently surpasses the commonly used sequence-level knowledge distillation. In particular, Qwen2.5-14B-Instruct (student) trained with GAD becomes comparable to its teacher, GPT-5-Chat, on the LMSYS-Chat automatic evaluation. The results establish GAD as a promising and effective paradigm for black-box LLM distillation.
Presto! Distilling Steps and Layers for Accelerating Music Generation
Despite advances in diffusion-based text-to-music (TTM) methods, efficient, high-quality generation remains a challenge. We introduce Presto!, an approach to inference acceleration for score-based diffusion transformers via reducing both sampling steps and cost per step. To reduce steps, we develop a new score-based distribution matching distillation (DMD) method for the EDM-family of diffusion models, the first GAN-based distillation method for TTM. To reduce the cost per step, we develop a simple, but powerful improvement to a recent layer distillation method that improves learning via better preserving hidden state variance. Finally, we combine our step and layer distillation methods together for a dual-faceted approach. We evaluate our step and layer distillation methods independently and show each yield best-in-class performance. Our combined distillation method can generate high-quality outputs with improved diversity, accelerating our base model by 10-18x (230/435ms latency for 32 second mono/stereo 44.1kHz, 15x faster than comparable SOTA) -- the fastest high-quality TTM to our knowledge. Sound examples can be found at https://presto-music.github.io/web/.
Personalised Distillation: Empowering Open-Sourced LLMs with Adaptive Learning for Code Generation
With the rise of powerful closed-sourced LLMs (ChatGPT, GPT-4), there are increasing interests in distilling the capabilies of close-sourced LLMs to smaller open-sourced LLMs. Previous distillation methods usually prompt ChatGPT to generate a set of instructions and answers, for the student model to learn. However, such standard distillation approach neglects the merits and conditions of the student model. Inspired by modern teaching principles, we design a personalised distillation process, in which the student attempts to solve a task first, then the teacher provides an adaptive refinement for the student to improve. Instead of feeding the student with teacher's prior, personalised distillation enables personalised learning for the student model, as it only learns on examples it makes mistakes upon and learns to improve its own solution. On code generation, personalised distillation consistently outperforms standard distillation with only one third of the data. With only 2.5-3K personalised examples that incur a data-collection cost of 4-6$, we boost CodeGen-mono-16B by 7% to achieve 36.4% pass@1 and StarCoder by 12.2% to achieve 45.8% pass@1 on HumanEval.
Three Pillars improving Vision Foundation Model Distillation for Lidar
Self-supervised image backbones can be used to address complex 2D tasks (e.g., semantic segmentation, object discovery) very efficiently and with little or no downstream supervision. Ideally, 3D backbones for lidar should be able to inherit these properties after distillation of these powerful 2D features. The most recent methods for image-to-lidar distillation on autonomous driving data show promising results, obtained thanks to distillation methods that keep improving. Yet, we still notice a large performance gap when measuring the quality of distilled and fully supervised features by linear probing. In this work, instead of focusing only on the distillation method, we study the effect of three pillars for distillation: the 3D backbone, the pretrained 2D backbones, and the pretraining dataset. In particular, thanks to our scalable distillation method named ScaLR, we show that scaling the 2D and 3D backbones and pretraining on diverse datasets leads to a substantial improvement of the feature quality. This allows us to significantly reduce the gap between the quality of distilled and fully-supervised 3D features, and to improve the robustness of the pretrained backbones to domain gaps and perturbations.
Self-Ablating Transformers: More Interpretability, Less Sparsity
A growing intuition in machine learning suggests a link between sparsity and interpretability. We introduce a novel self-ablation mechanism to investigate this connection ante-hoc in the context of language transformers. Our approach dynamically enforces a k-winner-takes-all constraint, forcing the model to demonstrate selective activation across neuron and attention units. Unlike post-hoc methods that analyze already-trained models, our approach integrates interpretability directly into model training, promoting feature localization from inception. Training small models on the TinyStories dataset and employing interpretability tests, we find that self-ablation leads to more localized circuits, concentrated feature representations, and increased neuron specialization without compromising language modelling performance. Surprisingly, our method also decreased overall sparsity, indicating that self-ablation promotes specialization rather than widespread inactivity. This reveals a complex interplay between sparsity and interpretability, where decreased global sparsity can coexist with increased local specialization, leading to enhanced interpretability. To facilitate reproducibility, we make our code available at https://github.com/keenanpepper/self-ablating-transformers.
Consistent Flow Distillation for Text-to-3D Generation
Score Distillation Sampling (SDS) has made significant strides in distilling image-generative models for 3D generation. However, its maximum-likelihood-seeking behavior often leads to degraded visual quality and diversity, limiting its effectiveness in 3D applications. In this work, we propose Consistent Flow Distillation (CFD), which addresses these limitations. We begin by leveraging the gradient of the diffusion ODE or SDE sampling process to guide the 3D generation. From the gradient-based sampling perspective, we find that the consistency of 2D image flows across different viewpoints is important for high-quality 3D generation. To achieve this, we introduce multi-view consistent Gaussian noise on the 3D object, which can be rendered from various viewpoints to compute the flow gradient. Our experiments demonstrate that CFD, through consistent flows, significantly outperforms previous methods in text-to-3D generation.
PLD: A Choice-Theoretic List-Wise Knowledge Distillation
Knowledge distillation is a model compression technique in which a compact "student" network is trained to replicate the predictive behavior of a larger "teacher" network. In logit-based knowledge distillation, it has become the de facto approach to augment cross-entropy with a distillation term. Typically, this term is either a KL divergence that matches marginal probabilities or a correlation-based loss that captures intra- and inter-class relationships. In every case, it acts as an additional term to cross-entropy. This term has its own weight, which must be carefully tuned. In this paper, we adopt a choice-theoretic perspective and recast knowledge distillation under the Plackett-Luce model by interpreting teacher logits as "worth" scores. We introduce "Plackett-Luce Distillation (PLD)", a weighted list-wise ranking loss. In PLD, the teacher model transfers knowledge of its full ranking of classes, weighting each ranked choice by its own confidence. PLD directly optimizes a single "teacher-optimal" ranking. The true label is placed first, followed by the remaining classes in descending teacher confidence. This process yields a convex and translation-invariant surrogate that subsumes weighted cross-entropy. Empirically, across CIFAR-100, ImageNet-1K, and MS-COCO, PLD achieves consistent gains across diverse architectures and distillation objectives, including divergence-based, correlation-based, and feature-based methods, in both homogeneous and heterogeneous teacher-student pairs.
Self-Enhanced Reasoning Training: Activating Latent Reasoning in Small Models for Enhanced Reasoning Distillation
The rapid advancement of large language models (LLMs) has significantly enhanced their reasoning abilities, enabling increasingly complex tasks. However, these capabilities often diminish in smaller, more computationally efficient models like GPT-2. Recent research shows that reasoning distillation can help small models acquire reasoning capabilities, but most existing methods focus primarily on improving teacher-generated reasoning paths. Our observations reveal that small models can generate high-quality reasoning paths during sampling, even without chain-of-thought prompting, though these paths are often latent due to their low probability under standard decoding strategies. To address this, we propose Self-Enhanced Reasoning Training (SERT), which activates and leverages latent reasoning capabilities in small models through self-training on filtered, self-generated reasoning paths under zero-shot conditions. Experiments using OpenAI's GPT-3.5 as the teacher model and GPT-2 models as the student models demonstrate that SERT enhances the reasoning abilities of small models, improving their performance in reasoning distillation.
Contrastive Representation Distillation via Multi-Scale Feature Decoupling
Knowledge distillation is a technique aimed at enhancing the performance of a smaller student network without increasing its parameter size by transferring knowledge from a larger, pre-trained teacher network. Previous approaches have predominantly focused on distilling global feature information while overlooking the importance of disentangling the diverse types of information embedded within different regions of the feature. In this work, we introduce multi-scale decoupling in the feature transfer process for the first time, where the decoupled local features are individually processed and integrated with contrastive learning. Moreover, compared to previous contrastive learning-based distillation methods, our approach not only reduces computational costs but also enhances efficiency, enabling performance improvements for the student network using only single-batch samples. Extensive evaluations on CIFAR-100 and ImageNet demonstrate our method's superiority, with some student networks distilled using our method even surpassing the performance of their pre-trained teacher networks. These results underscore the effectiveness of our approach in enabling student networks to thoroughly absorb knowledge from teacher networks.
One-step Diffusion with Distribution Matching Distillation
Diffusion models generate high-quality images but require dozens of forward passes. We introduce Distribution Matching Distillation (DMD), a procedure to transform a diffusion model into a one-step image generator with minimal impact on image quality. We enforce the one-step image generator match the diffusion model at distribution level, by minimizing an approximate KL divergence whose gradient can be expressed as the difference between 2 score functions, one of the target distribution and the other of the synthetic distribution being produced by our one-step generator. The score functions are parameterized as two diffusion models trained separately on each distribution. Combined with a simple regression loss matching the large-scale structure of the multi-step diffusion outputs, our method outperforms all published few-step diffusion approaches, reaching 2.62 FID on ImageNet 64x64 and 11.49 FID on zero-shot COCO-30k, comparable to Stable Diffusion but orders of magnitude faster. Utilizing FP16 inference, our model generates images at 20 FPS on modern hardware.
System-1.5 Reasoning: Traversal in Language and Latent Spaces with Dynamic Shortcuts
Chain-of-thought (CoT) reasoning enables large language models (LLMs) to move beyond fast System-1 responses and engage in deliberative System-2 reasoning. However, this comes at the cost of significant inefficiency due to verbose intermediate output. Recent latent-space reasoning methods improve efficiency by operating on hidden states without decoding into language, yet they treat all steps uniformly, failing to distinguish critical deductions from auxiliary steps and resulting in suboptimal use of computational resources. In this paper, we propose System-1.5 Reasoning, an adaptive reasoning framework that dynamically allocates computation across reasoning steps through shortcut paths in latent space. Specifically, System-1.5 Reasoning introduces two types of dynamic shortcuts. The model depth shortcut (DS) adaptively reasons along the vertical depth by early exiting non-critical tokens through lightweight adapter branches, while allowing critical tokens to continue through deeper Transformer layers. The step shortcut (SS) reuses hidden states across the decoding steps to skip trivial steps and reason horizontally in latent space. Training System-1.5 Reasoning involves a two-stage self-distillation process: first distilling natural language CoT into latent-space continuous thought, and then distilling full-path System-2 latent reasoning into adaptive shortcut paths (System-1.5 Reasoning). Experiments on reasoning tasks demonstrate the superior performance of our method. For example, on GSM8K, System-1.5 Reasoning achieves reasoning performance comparable to traditional CoT fine-tuning methods while accelerating inference by over 20x and reducing token generation by 92.31% on average.
Antidistillation Sampling
Frontier models that generate extended reasoning traces inadvertently produce rich token sequences that can facilitate model distillation. Recognizing this vulnerability, model owners may seek sampling strategies that limit the effectiveness of distillation without compromising model performance. Antidistillation sampling provides exactly this capability. By strategically modifying a model's next-token probability distribution, antidistillation sampling poisons reasoning traces, rendering them significantly less effective for distillation while preserving the model's practical utility. For further details, see https://antidistillation.com.
Aligning Logits Generatively for Principled Black-Box Knowledge Distillation
Black-Box Knowledge Distillation (B2KD) is a formulated problem for cloud-to-edge model compression with invisible data and models hosted on the server. B2KD faces challenges such as limited Internet exchange and edge-cloud disparity of data distributions. In this paper, we formalize a two-step workflow consisting of deprivatization and distillation, and theoretically provide a new optimization direction from logits to cell boundary different from direct logits alignment. With its guidance, we propose a new method Mapping-Emulation KD (MEKD) that distills a black-box cumbersome model into a lightweight one. Our method does not differentiate between treating soft or hard responses, and consists of: 1) deprivatization: emulating the inverse mapping of the teacher function with a generator, and 2) distillation: aligning low-dimensional logits of the teacher and student models by reducing the distance of high-dimensional image points. For different teacher-student pairs, our method yields inspiring distillation performance on various benchmarks, and outperforms the previous state-of-the-art approaches.
One-step Diffusion Models with f-Divergence Distribution Matching
Sampling from diffusion models involves a slow iterative process that hinders their practical deployment, especially for interactive applications. To accelerate generation speed, recent approaches distill a multi-step diffusion model into a single-step student generator via variational score distillation, which matches the distribution of samples generated by the student to the teacher's distribution. However, these approaches use the reverse Kullback-Leibler (KL) divergence for distribution matching which is known to be mode seeking. In this paper, we generalize the distribution matching approach using a novel f-divergence minimization framework, termed f-distill, that covers different divergences with different trade-offs in terms of mode coverage and training variance. We derive the gradient of the f-divergence between the teacher and student distributions and show that it is expressed as the product of their score differences and a weighting function determined by their density ratio. This weighting function naturally emphasizes samples with higher density in the teacher distribution, when using a less mode-seeking divergence. We observe that the popular variational score distillation approach using the reverse-KL divergence is a special case within our framework. Empirically, we demonstrate that alternative f-divergences, such as forward-KL and Jensen-Shannon divergences, outperform the current best variational score distillation methods across image generation tasks. In particular, when using Jensen-Shannon divergence, f-distill achieves current state-of-the-art one-step generation performance on ImageNet64 and zero-shot text-to-image generation on MS-COCO. Project page: https://research.nvidia.com/labs/genair/f-distill
Detecting Distillation Data from Reasoning Models
Reasoning distillation has emerged as an efficient and powerful paradigm for enhancing the reasoning capabilities of large language models. However, reasoning distillation may inadvertently cause benchmark contamination, where evaluation data included in distillation datasets can inflate performance metrics of distilled models. In this work, we formally define the task of distillation data detection, which is uniquely challenging due to the partial availability of distillation data. Then, we propose a novel and effective method Token Probability Deviation (TBD), which leverages the probability patterns of the generated output tokens. Our method is motivated by the analysis that distilled models tend to generate near-deterministic tokens for seen questions, while producing more low-probability tokens for unseen questions. Our key idea behind TBD is to quantify how far the generated tokens' probabilities deviate from a high reference probability. In effect, our method achieves competitive detection performance by producing lower scores for seen questions than for unseen questions. Extensive experiments demonstrate the effectiveness of our method, achieving an AUC of 0.918 and a TPR@1% FPR of 0.470 on the S1 dataset.
DistiLLM: Towards Streamlined Distillation for Large Language Models
Knowledge distillation (KD) is widely used for compressing a teacher model to a smaller student model, reducing its inference cost and memory footprint while preserving model capabilities. However, current KD methods for auto-regressive sequence models (e.g., large language models) suffer from missing a standardized objective function. Moreover, the recent use of student-generated outputs to address training-inference mismatches has significantly escalated computational costs. To tackle these issues, we introduce DistiLLM, a more effective and efficient KD framework for auto-regressive language models. DistiLLM comprises two components: (1) a novel skew Kullback-Leibler divergence loss, where we unveil and leverage its theoretical properties, and (2) an adaptive off-policy approach designed to enhance the efficiency in utilizing student-generated outputs. Extensive experiments, including instruction-following tasks, demonstrate the effectiveness of DistiLLM in building high-performing student models while achieving up to 4.3times speedup compared to recent KD methods.
A Closer Look at Self-Supervised Lightweight Vision Transformers
Self-supervised learning on large-scale Vision Transformers (ViTs) as pre-training methods has achieved promising downstream performance. Yet, how much these pre-training paradigms promote lightweight ViTs' performance is considerably less studied. In this work, we develop and benchmark several self-supervised pre-training methods on image classification tasks and some downstream dense prediction tasks. We surprisingly find that if proper pre-training is adopted, even vanilla lightweight ViTs show comparable performance to previous SOTA networks with delicate architecture design. It breaks the recently popular conception that vanilla ViTs are not suitable for vision tasks in lightweight regimes. We also point out some defects of such pre-training, e.g., failing to benefit from large-scale pre-training data and showing inferior performance on data-insufficient downstream tasks. Furthermore, we analyze and clearly show the effect of such pre-training by analyzing the properties of the layer representation and attention maps for related models. Finally, based on the above analyses, a distillation strategy during pre-training is developed, which leads to further downstream performance improvement for MAE-based pre-training. Code is available at https://github.com/wangsr126/mae-lite.
Self-Distillation for Gaussian Process Regression and Classification
We propose two approaches to extend the notion of knowledge distillation to Gaussian Process Regression (GPR) and Gaussian Process Classification (GPC); data-centric and distribution-centric. The data-centric approach resembles most current distillation techniques for machine learning, and refits a model on deterministic predictions from the teacher, while the distribution-centric approach, re-uses the full probabilistic posterior for the next iteration. By analyzing the properties of these approaches, we show that the data-centric approach for GPR closely relates to known results for self-distillation of kernel ridge regression and that the distribution-centric approach for GPR corresponds to ordinary GPR with a very particular choice of hyperparameters. Furthermore, we demonstrate that the distribution-centric approach for GPC approximately corresponds to data duplication and a particular scaling of the covariance and that the data-centric approach for GPC requires redefining the model from a Binomial likelihood to a continuous Bernoulli likelihood to be well-specified. To the best of our knowledge, our proposed approaches are the first to formulate knowledge distillation specifically for Gaussian Process models.
Baby Llama: knowledge distillation from an ensemble of teachers trained on a small dataset with no performance penalty
We present our proposed solution to the BabyLM challenge [arXiv:2301.11796], whose goal was to improve the sample efficiency of language models. We trained an ensemble consisting of a GPT-2 and small LLaMA models on the developmentally-plausible, 10M-word BabyLM dataset, then distilled it into a small, 58M-parameter LLaMA model, which exceeds in performance both of its teachers as well as a similar model trained without distillation. This suggests that distillation can not only retain the full performance of the teacher model when the latter is trained on a sufficiently small dataset; it can exceed it, and lead to significantly better performance than direct training.
Harnessing Negative Signals: Reinforcement Distillation from Teacher Data for LLM Reasoning
Recent advances in model distillation demonstrate that data from advanced reasoning models (e.g., DeepSeek-R1, OpenAI's o1) can effectively transfer complex reasoning abilities to smaller, efficient student models. However, standard practices employ rejection sampling, discarding incorrect reasoning examples -- valuable, yet often underutilized data. This paper addresses the critical question: How can both positive and negative distilled reasoning traces be effectively leveraged to maximize LLM reasoning performance in an offline setting? To this end, We propose Reinforcement Distillation (REDI), a two-stage framework. Stage 1 learns from positive traces via Supervised Fine-Tuning (SFT). Stage 2 further refines the model using both positive and negative traces through our proposed REDI objective. This novel objective is a simple, reference-free loss function that outperforms established methods like DPO and SimPO in this distillation context. Our empirical evaluations demonstrate REDI's superiority over baseline Rejection Sampling SFT or SFT combined with DPO/SimPO on mathematical reasoning tasks. Notably, the Qwen-REDI-1.5B model, post-trained on just 131k positive and negative examples from the open Open-R1 dataset, achieves an 83.1% score on MATH-500 (pass@1). Its performance matches or surpasses that of DeepSeek-R1-Distill-Qwen-1.5B (a model post-trained on 800k proprietary data) across various mathematical reasoning benchmarks, establishing a new state-of-the-art for 1.5B models post-trained offline with openly available data.
Understanding Self-attention Mechanism via Dynamical System Perspective
The self-attention mechanism (SAM) is widely used in various fields of artificial intelligence and has successfully boosted the performance of different models. However, current explanations of this mechanism are mainly based on intuitions and experiences, while there still lacks direct modeling for how the SAM helps performance. To mitigate this issue, in this paper, based on the dynamical system perspective of the residual neural network, we first show that the intrinsic stiffness phenomenon (SP) in the high-precision solution of ordinary differential equations (ODEs) also widely exists in high-performance neural networks (NN). Thus the ability of NN to measure SP at the feature level is necessary to obtain high performance and is an important factor in the difficulty of training NN. Similar to the adaptive step-size method which is effective in solving stiff ODEs, we show that the SAM is also a stiffness-aware step size adaptor that can enhance the model's representational ability to measure intrinsic SP by refining the estimation of stiffness information and generating adaptive attention values, which provides a new understanding about why and how the SAM can benefit the model performance. This novel perspective can also explain the lottery ticket hypothesis in SAM, design new quantitative metrics of representational ability, and inspire a new theoretic-inspired approach, StepNet. Extensive experiments on several popular benchmarks demonstrate that StepNet can extract fine-grained stiffness information and measure SP accurately, leading to significant improvements in various visual tasks.
Scale-wise Distillation of Diffusion Models
We present SwD, a scale-wise distillation framework for diffusion models (DMs), which effectively employs next-scale prediction ideas for diffusion-based few-step generators. In more detail, SwD is inspired by the recent insights relating diffusion processes to the implicit spectral autoregression. We suppose that DMs can initiate generation at lower data resolutions and gradually upscale the samples at each denoising step without loss in performance while significantly reducing computational costs. SwD naturally integrates this idea into existing diffusion distillation methods based on distribution matching. Also, we enrich the family of distribution matching approaches by introducing a novel patch loss enforcing finer-grained similarity to the target distribution. When applied to state-of-the-art text-to-image diffusion models, SwD approaches the inference times of two full resolution steps and significantly outperforms the counterparts under the same computation budget, as evidenced by automated metrics and human preference studies.
A Self-Refining Framework for Enhancing ASR Using TTS-Synthesized Data
We propose a self-refining framework that enhances ASR performance with only unlabeled datasets. The process starts with an existing ASR model generating pseudo-labels on unannotated speech, which are then used to train a high-fidelity text-to-speech (TTS) system. Then, synthesized speech text pairs are bootstrapped into the original ASR system, completing the closed-loop self-improvement cycle. We demonstrated the effectiveness of the framework on Taiwanese Mandarin speech. Leveraging 6,000 hours of unlabeled speech, a moderate amount of text data, and synthetic content from the AI models, we adapt Whisper-large-v2 into a specialized model, Twister. Twister reduces error rates by up to 20% on Mandarin and 50% on Mandarin-English code-switching benchmarks compared to Whisper. Results highlight the framework as a compelling alternative to pseudo-labeling self-distillation approaches and provides a practical pathway for improving ASR performance in low-resource or domain-specific settings.
Dancing with Still Images: Video Distillation via Static-Dynamic Disentanglement
Recently, dataset distillation has paved the way towards efficient machine learning, especially for image datasets. However, the distillation for videos, characterized by an exclusive temporal dimension, remains an underexplored domain. In this work, we provide the first systematic study of video distillation and introduce a taxonomy to categorize temporal compression. Our investigation reveals that the temporal information is usually not well learned during distillation, and the temporal dimension of synthetic data contributes little. The observations motivate our unified framework of disentangling the dynamic and static information in the videos. It first distills the videos into still images as static memory and then compensates the dynamic and motion information with a learnable dynamic memory block. Our method achieves state-of-the-art on video datasets at different scales, with a notably smaller memory storage budget. Our code is available at https://github.com/yuz1wan/video_distillation.
From Knowledge Distillation to Self-Knowledge Distillation: A Unified Approach with Normalized Loss and Customized Soft Labels
Knowledge Distillation (KD) uses the teacher's prediction logits as soft labels to guide the student, while self-KD does not need a real teacher to require the soft labels. This work unifies the formulations of the two tasks by decomposing and reorganizing the generic KD loss into a Normalized KD (NKD) loss and customized soft labels for both target class (image's category) and non-target classes named Universal Self-Knowledge Distillation (USKD). We decompose the KD loss and find the non-target loss from it forces the student's non-target logits to match the teacher's, but the sum of the two non-target logits is different, preventing them from being identical. NKD normalizes the non-target logits to equalize their sum. It can be generally used for KD and self-KD to better use the soft labels for distillation loss. USKD generates customized soft labels for both target and non-target classes without a teacher. It smooths the target logit of the student as the soft target label and uses the rank of the intermediate feature to generate the soft non-target labels with Zipf's law. For KD with teachers, our NKD achieves state-of-the-art performance on CIFAR-100 and ImageNet datasets, boosting the ImageNet Top-1 accuracy of ResNet18 from 69.90% to 71.96% with a ResNet-34 teacher. For self-KD without teachers, USKD is the first self-KD method that can be effectively applied to both CNN and ViT models with negligible additional time and memory cost, resulting in new state-of-the-art results, such as 1.17% and 0.55% accuracy gains on ImageNet for MobileNet and DeiT-Tiny, respectively. Our codes are available at https://github.com/yzd-v/cls_KD.
MV-MR: multi-views and multi-representations for self-supervised learning and knowledge distillation
We present a new method of self-supervised learning and knowledge distillation based on the multi-views and multi-representations (MV-MR). The MV-MR is based on the maximization of dependence between learnable embeddings from augmented and non-augmented views, jointly with the maximization of dependence between learnable embeddings from augmented view and multiple non-learnable representations from non-augmented view. We show that the proposed method can be used for efficient self-supervised classification and model-agnostic knowledge distillation. Unlike other self-supervised techniques, our approach does not use any contrastive learning, clustering, or stop gradients. MV-MR is a generic framework allowing the incorporation of constraints on the learnable embeddings via the usage of image multi-representations as regularizers. Along this line, knowledge distillation is considered a particular case of such a regularization. MV-MR provides the state-of-the-art performance on the STL10 and ImageNet-1K datasets among non-contrastive and clustering-free methods. We show that a lower complexity ResNet50 model pretrained using proposed knowledge distillation based on the CLIP ViT model achieves state-of-the-art performance on STL10 linear evaluation. The code is available at: https://github.com/vkinakh/mv-mr
Dynamic Temperature Scheduler for Knowledge Distillation
Knowledge Distillation (KD) trains a smaller student model using a large, pre-trained teacher model, with temperature as a key hyperparameter controlling the softness of output probabilities. Traditional methods use a fixed temperature throughout training, which is suboptimal. Moreover, architectural differences between teacher and student often result in mismatched logit magnitudes. We demonstrate that students benefit from softer probabilities early in training but require sharper probabilities in later stages. We introduce Dynamic Temperature Scheduler (DTS), which adjusts temperature dynamically based on the cross-entropy loss gap between teacher and student. To our knowledge, this is the first temperature scheduling method that adapts based on the divergence between teacher and student distributions. Our method integrates seamlessly with existing KD frameworks. We validate DTS across multiple KD strategies on vision (CIFAR-100, Tiny-ImageNet) and NLP tasks (GLUE, Dolly, SelfIns, UnNI, S-NI), consistently outperforming static-temperature baselines. Code is available at https://github.com/Sibgat-Ul/DTS.
Efficient Distillation of Classifier-Free Guidance using Adapters
While classifier-free guidance (CFG) is essential for conditional diffusion models, it doubles the number of neural function evaluations (NFEs) per inference step. To mitigate this inefficiency, we introduce adapter guidance distillation (AGD), a novel approach that simulates CFG in a single forward pass. AGD leverages lightweight adapters to approximate CFG, effectively doubling the sampling speed while maintaining or even improving sample quality. Unlike prior guidance distillation methods that tune the entire model, AGD keeps the base model frozen and only trains minimal additional parameters (sim2%) to significantly reduce the resource requirement of the distillation phase. Additionally, this approach preserves the original model weights and enables the adapters to be seamlessly combined with other checkpoints derived from the same base model. We also address a key mismatch between training and inference in existing guidance distillation methods by training on CFG-guided trajectories instead of standard diffusion trajectories. Through extensive experiments, we show that AGD achieves comparable or superior FID to CFG across multiple architectures with only half the NFEs. Notably, our method enables the distillation of large models (sim2.6B parameters) on a single consumer GPU with 24 GB of VRAM, making it more accessible than previous approaches that require multiple high-end GPUs. We will publicly release the implementation of our method.
Score-of-Mixture Training: Training One-Step Generative Models Made Simple via Score Estimation of Mixture Distributions
We propose Score-of-Mixture Training (SMT), a novel framework for training one-step generative models by minimizing a class of divergences called the alpha-skew Jensen-Shannon divergence. At its core, SMT estimates the score of mixture distributions between real and fake samples across multiple noise levels. Similar to consistency models, our approach supports both training from scratch (SMT) and distillation using a pretrained diffusion model, which we call Score-of-Mixture Distillation (SMD). It is simple to implement, requires minimal hyperparameter tuning, and ensures stable training. Experiments on CIFAR-10 and ImageNet 64x64 show that SMT/SMD are competitive with and can even outperform existing methods.
FADA: Fast Diffusion Avatar Synthesis with Mixed-Supervised Multi-CFG Distillation
Diffusion-based audio-driven talking avatar methods have recently gained attention for their high-fidelity, vivid, and expressive results. However, their slow inference speed limits practical applications. Despite the development of various distillation techniques for diffusion models, we found that naive diffusion distillation methods do not yield satisfactory results. Distilled models exhibit reduced robustness with open-set input images and a decreased correlation between audio and video compared to teacher models, undermining the advantages of diffusion models. To address this, we propose FADA (Fast Diffusion Avatar Synthesis with Mixed-Supervised Multi-CFG Distillation). We first designed a mixed-supervised loss to leverage data of varying quality and enhance the overall model capability as well as robustness. Additionally, we propose a multi-CFG distillation with learnable tokens to utilize the correlation between audio and reference image conditions, reducing the threefold inference runs caused by multi-CFG with acceptable quality degradation. Extensive experiments across multiple datasets show that FADA generates vivid videos comparable to recent diffusion model-based methods while achieving an NFE speedup of 4.17-12.5 times. Demos are available at our webpage http://fadavatar.github.io.
SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two Seconds
Text-to-image diffusion models can create stunning images from natural language descriptions that rival the work of professional artists and photographers. However, these models are large, with complex network architectures and tens of denoising iterations, making them computationally expensive and slow to run. As a result, high-end GPUs and cloud-based inference are required to run diffusion models at scale. This is costly and has privacy implications, especially when user data is sent to a third party. To overcome these challenges, we present a generic approach that, for the first time, unlocks running text-to-image diffusion models on mobile devices in less than 2 seconds. We achieve so by introducing efficient network architecture and improving step distillation. Specifically, we propose an efficient UNet by identifying the redundancy of the original model and reducing the computation of the image decoder via data distillation. Further, we enhance the step distillation by exploring training strategies and introducing regularization from classifier-free guidance. Our extensive experiments on MS-COCO show that our model with 8 denoising steps achieves better FID and CLIP scores than Stable Diffusion v1.5 with 50 steps. Our work democratizes content creation by bringing powerful text-to-image diffusion models to the hands of users.
Distiller: A Systematic Study of Model Distillation Methods in Natural Language Processing
We aim to identify how different components in the KD pipeline affect the resulting performance and how much the optimal KD pipeline varies across different datasets/tasks, such as the data augmentation policy, the loss function, and the intermediate representation for transferring the knowledge between teacher and student. To tease apart their effects, we propose Distiller, a meta KD framework that systematically combines a broad range of techniques across different stages of the KD pipeline, which enables us to quantify each component's contribution. Within Distiller, we unify commonly used objectives for distillation of intermediate representations under a universal mutual information (MI) objective and propose a class of MI-alpha objective functions with better bias/variance trade-off for estimating the MI between the teacher and the student. On a diverse set of NLP datasets, the best Distiller configurations are identified via large-scale hyperparameter optimization. Our experiments reveal the following: 1) the approach used to distill the intermediate representations is the most important factor in KD performance, 2) among different objectives for intermediate distillation, MI-alpha performs the best, and 3) data augmentation provides a large boost for small training datasets or small student networks. Moreover, we find that different datasets/tasks prefer different KD algorithms, and thus propose a simple AutoDistiller algorithm that can recommend a good KD pipeline for a new dataset.
Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video
Self-supervised learning has unlocked the potential of scaling up pretraining to billions of images, since annotation is unnecessary. But are we making the best use of data? How more economical can we be? In this work, we attempt to answer this question by making two contributions. First, we investigate first-person videos and introduce a "Walking Tours" dataset. These videos are high-resolution, hours-long, captured in a single uninterrupted take, depicting a large number of objects and actions with natural scene transitions. They are unlabeled and uncurated, thus realistic for self-supervision and comparable with human learning. Second, we introduce a novel self-supervised image pretraining method tailored for learning from continuous videos. Existing methods typically adapt image-based pretraining approaches to incorporate more frames. Instead, we advocate a "tracking to learn to recognize" approach. Our method called DoRA, leads to attention maps that Discover and tRAck objects over time in an end-to-end manner, using transformer cross-attention. We derive multiple views from the tracks and use them in a classical self-supervised distillation loss. Using our novel approach, a single Walking Tours video remarkably becomes a strong competitor to ImageNet for several image and video downstream tasks.
PointDistiller: Structured Knowledge Distillation Towards Efficient and Compact 3D Detection
The remarkable breakthroughs in point cloud representation learning have boosted their usage in real-world applications such as self-driving cars and virtual reality. However, these applications usually have an urgent requirement for not only accurate but also efficient 3D object detection. Recently, knowledge distillation has been proposed as an effective model compression technique, which transfers the knowledge from an over-parameterized teacher to a lightweight student and achieves consistent effectiveness in 2D vision. However, due to point clouds' sparsity and irregularity, directly applying previous image-based knowledge distillation methods to point cloud detectors usually leads to unsatisfactory performance. To fill the gap, this paper proposes PointDistiller, a structured knowledge distillation framework for point clouds-based 3D detection. Concretely, PointDistiller includes local distillation which extracts and distills the local geometric structure of point clouds with dynamic graph convolution and reweighted learning strategy, which highlights student learning on the crucial points or voxels to improve knowledge distillation efficiency. Extensive experiments on both voxels-based and raw points-based detectors have demonstrated the effectiveness of our method over seven previous knowledge distillation methods. For instance, our 4X compressed PointPillars student achieves 2.8 and 3.4 mAP improvements on BEV and 3D object detection, outperforming its teacher by 0.9 and 1.8 mAP, respectively. Codes have been released at https://github.com/RunpeiDong/PointDistiller.
On the Diversity and Realism of Distilled Dataset: An Efficient Dataset Distillation Paradigm
Contemporary machine learning requires training large neural networks on massive datasets and thus faces the challenges of high computational demands. Dataset distillation, as a recent emerging strategy, aims to compress real-world datasets for efficient training. However, this line of research currently struggle with large-scale and high-resolution datasets, hindering its practicality and feasibility. To this end, we re-examine the existing dataset distillation methods and identify three properties required for large-scale real-world applications, namely, realism, diversity, and efficiency. As a remedy, we propose RDED, a novel computationally-efficient yet effective data distillation paradigm, to enable both diversity and realism of the distilled data. Extensive empirical results over various neural architectures and datasets demonstrate the advancement of RDED: we can distill the full ImageNet-1K to a small dataset comprising 10 images per class within 7 minutes, achieving a notable 42% top-1 accuracy with ResNet-18 on a single RTX-4090 GPU (while the SOTA only achieves 21% but requires 6 hours).
Dataset Distillation
Model distillation aims to distill the knowledge of a complex model into a simpler one. In this paper, we consider an alternative formulation called dataset distillation: we keep the model fixed and instead attempt to distill the knowledge from a large training dataset into a small one. The idea is to synthesize a small number of data points that do not need to come from the correct data distribution, but will, when given to the learning algorithm as training data, approximate the model trained on the original data. For example, we show that it is possible to compress 60,000 MNIST training images into just 10 synthetic distilled images (one per class) and achieve close to original performance with only a few gradient descent steps, given a fixed network initialization. We evaluate our method in various initialization settings and with different learning objectives. Experiments on multiple datasets show the advantage of our approach compared to alternative methods.
SODA: Bottleneck Diffusion Models for Representation Learning
We introduce SODA, a self-supervised diffusion model, designed for representation learning. The model incorporates an image encoder, which distills a source view into a compact representation, that, in turn, guides the generation of related novel views. We show that by imposing a tight bottleneck between the encoder and a denoising decoder, and leveraging novel view synthesis as a self-supervised objective, we can turn diffusion models into strong representation learners, capable of capturing visual semantics in an unsupervised manner. To the best of our knowledge, SODA is the first diffusion model to succeed at ImageNet linear-probe classification, and, at the same time, it accomplishes reconstruction, editing and synthesis tasks across a wide range of datasets. Further investigation reveals the disentangled nature of its emergent latent space, that serves as an effective interface to control and manipulate the model's produced images. All in all, we aim to shed light on the exciting and promising potential of diffusion models, not only for image generation, but also for learning rich and robust representations.
Few-Step Diffusion via Score identity Distillation
Diffusion distillation has emerged as a promising strategy for accelerating text-to-image (T2I) diffusion models by distilling a pretrained score network into a one- or few-step generator. While existing methods have made notable progress, they often rely on real or teacher-synthesized images to perform well when distilling high-resolution T2I diffusion models such as Stable Diffusion XL (SDXL), and their use of classifier-free guidance (CFG) introduces a persistent trade-off between text-image alignment and generation diversity. We address these challenges by optimizing Score identity Distillation (SiD) -- a data-free, one-step distillation framework -- for few-step generation. Backed by theoretical analysis that justifies matching a uniform mixture of outputs from all generation steps to the data distribution, our few-step distillation algorithm avoids step-specific networks and integrates seamlessly into existing pipelines, achieving state-of-the-art performance on SDXL at 1024x1024 resolution. To mitigate the alignment-diversity trade-off when real text-image pairs are available, we introduce a Diffusion GAN-based adversarial loss applied to the uniform mixture and propose two new guidance strategies: Zero-CFG, which disables CFG in the teacher and removes text conditioning in the fake score network, and Anti-CFG, which applies negative CFG in the fake score network. This flexible setup improves diversity without sacrificing alignment. Comprehensive experiments on SD1.5 and SDXL demonstrate state-of-the-art performance in both one-step and few-step generation settings, along with robustness to the absence of real images. Our efficient PyTorch implementation, along with the resulting one- and few-step distilled generators, will be released publicly as a separate branch at https://github.com/mingyuanzhou/SiD-LSG.
ChemDFM-R: An Chemical Reasoner LLM Enhanced with Atomized Chemical Knowledge
While large language models (LLMs) have achieved impressive progress, their application in scientific domains such as chemistry remains hindered by shallow domain understanding and limited reasoning capabilities. In this work, we focus on the specific field of chemistry and develop a Chemical Reasoner LLM, ChemDFM-R. We first construct a comprehensive dataset of atomized knowledge points to enhance the model's understanding of the fundamental principles and logical structure of chemistry. Then, we propose a mix-sourced distillation strategy that integrates expert-curated knowledge with general-domain reasoning skills, followed by domain-specific reinforcement learning to enhance chemical reasoning. Experiments on diverse chemical benchmarks demonstrate that ChemDFM-R achieves state-of-the-art performance while providing interpretable, rationale-driven outputs. Further case studies illustrate how explicit reasoning chains significantly improve the reliability, transparency, and practical utility of the model in real-world human-AI collaboration scenarios.
Momentum-GS: Momentum Gaussian Self-Distillation for High-Quality Large Scene Reconstruction
3D Gaussian Splatting has demonstrated notable success in large-scale scene reconstruction, but challenges persist due to high training memory consumption and storage overhead. Hybrid representations that integrate implicit and explicit features offer a way to mitigate these limitations. However, when applied in parallelized block-wise training, two critical issues arise since reconstruction accuracy deteriorates due to reduced data diversity when training each block independently, and parallel training restricts the number of divided blocks to the available number of GPUs. To address these issues, we propose Momentum-GS, a novel approach that leverages momentum-based self-distillation to promote consistency and accuracy across the blocks while decoupling the number of blocks from the physical GPU count. Our method maintains a teacher Gaussian decoder updated with momentum, ensuring a stable reference during training. This teacher provides each block with global guidance in a self-distillation manner, promoting spatial consistency in reconstruction. To further ensure consistency across the blocks, we incorporate block weighting, dynamically adjusting each block's weight according to its reconstruction accuracy. Extensive experiments on large-scale scenes show that our method consistently outperforms existing techniques, achieving a 12.8% improvement in LPIPS over CityGaussian with much fewer divided blocks and establishing a new state of the art. Project page: https://jixuan-fan.github.io/Momentum-GS_Page/
Knowledge distillation from language model to acoustic model: a hierarchical multi-task learning approach
The remarkable performance of the pre-trained language model (LM) using self-supervised learning has led to a major paradigm shift in the study of natural language processing. In line with these changes, leveraging the performance of speech recognition systems with massive deep learning-based LMs is a major topic of speech recognition research. Among the various methods of applying LMs to speech recognition systems, in this paper, we focus on a cross-modal knowledge distillation method that transfers knowledge between two types of deep neural networks with different modalities. We propose an acoustic model structure with multiple auxiliary output layers for cross-modal distillation and demonstrate that the proposed method effectively compensates for the shortcomings of the existing label-interpolation-based distillation method. In addition, we extend the proposed method to a hierarchical distillation method using LMs trained in different units (senones, monophones, and subwords) and reveal the effectiveness of the hierarchical distillation method through an ablation study.
Towards the Law of Capacity Gap in Distilling Language Models
Language model (LM) distillation is a trending area that aims to distil the knowledge resided in a large teacher LM to a small student one. While various methods have been proposed to push the distillation to its limits, it is still a pain distilling LMs when a large capacity gap is exhibited between the teacher and the student LMs. The pain is mainly resulted by the curse of capacity gap, which describes that a larger teacher LM cannot always lead to a better student LM than one distilled from a smaller teacher LM due to the affect of capacity gap increment. That is, there is likely an optimal point yielding the best student LM along the scaling course of the teacher LM. Even worse, the curse of capacity gap can be only partly yet not fully lifted as indicated in previous studies. However, the tale is not ever one-sided. Although a larger teacher LM has better performance than a smaller teacher LM, it is much more resource-demanding especially in the context of recent large LMs (LLMs). Consequently, instead of sticking to lifting the curse, leaving the curse as is should be arguably fine. Even better, in this paper, we reveal that the optimal capacity gap is almost consistent across different student scales and architectures, fortunately turning the curse into the law of capacity gap. The law later guides us to distil a 3B student LM (termed MiniMA) from a 7B teacher LM (adapted LLaMA2-7B). MiniMA is demonstrated to yield a new compute-performance pareto frontier among existing 3B LMs on commonly used benchmarks, and its instruction-tuned version (termed MiniChat) outperforms a wide range of 3B competitors in GPT4 evaluation and could even compete with several 7B chat models.
DreamMapping: High-Fidelity Text-to-3D Generation via Variational Distribution Mapping
Score Distillation Sampling (SDS) has emerged as a prevalent technique for text-to-3D generation, enabling 3D content creation by distilling view-dependent information from text-to-2D guidance. However, they frequently exhibit shortcomings such as over-saturated color and excess smoothness. In this paper, we conduct a thorough analysis of SDS and refine its formulation, finding that the core design is to model the distribution of rendered images. Following this insight, we introduce a novel strategy called Variational Distribution Mapping (VDM), which expedites the distribution modeling process by regarding the rendered images as instances of degradation from diffusion-based generation. This special design enables the efficient training of variational distribution by skipping the calculations of the Jacobians in the diffusion U-Net. We also introduce timestep-dependent Distribution Coefficient Annealing (DCA) to further improve distilling precision. Leveraging VDM and DCA, we use Gaussian Splatting as the 3D representation and build a text-to-3D generation framework. Extensive experiments and evaluations demonstrate the capability of VDM and DCA to generate high-fidelity and realistic assets with optimization efficiency.
Classroom-Inspired Multi-Mentor Distillation with Adaptive Learning Strategies
We propose ClassroomKD, a novel multi-mentor knowledge distillation framework inspired by classroom environments to enhance knowledge transfer between the student and multiple mentors with different knowledge levels. Unlike traditional methods that rely on fixed mentor-student relationships, our framework dynamically selects and adapts the teaching strategies of diverse mentors based on their effectiveness for each data sample. ClassroomKD comprises two main modules: the Knowledge Filtering (KF) module and the Mentoring module. The KF Module dynamically ranks mentors based on their performance for each input, activating only high-quality mentors to minimize error accumulation and prevent information loss. The Mentoring Module adjusts the distillation strategy by tuning each mentor's influence according to the dynamic performance gap between the student and mentors, effectively modulating the learning pace. Extensive experiments on image classification (CIFAR-100 and ImageNet) and 2D human pose estimation (COCO Keypoints and MPII Human Pose) demonstrate that ClassroomKD outperforms existing knowledge distillation methods for different network architectures. Our results highlight that a dynamic and adaptive approach to mentor selection and guidance leads to more effective knowledge transfer, paving the way for enhanced model performance through distillation.
Understanding and Improving Knowledge Distillation
Knowledge Distillation (KD) is a model-agnostic technique to improve model quality while having a fixed capacity budget. It is a commonly used technique for model compression, where a larger capacity teacher model with better quality is used to train a more compact student model with better inference efficiency. Through distillation, one hopes to benefit from student's compactness, without sacrificing too much on model quality. Despite the large success of knowledge distillation, better understanding of how it benefits student model's training dynamics remains under-explored. In this paper, we categorize teacher's knowledge into three hierarchical levels and study its effects on knowledge distillation: (1) knowledge of the `universe', where KD brings a regularization effect through label smoothing; (2) domain knowledge, where teacher injects class relationships prior to student's logit layer geometry; and (3) instance specific knowledge, where teacher rescales student model's per-instance gradients based on its measurement on the event difficulty. Using systematic analyses and extensive empirical studies on both synthetic and real-world datasets, we confirm that the aforementioned three factors play a major role in knowledge distillation. Furthermore, based on our findings, we diagnose some of the failure cases of applying KD from recent studies.
Unilogit: Robust Machine Unlearning for LLMs Using Uniform-Target Self-Distillation
This paper introduces Unilogit, a novel self-distillation method for machine unlearning in Large Language Models. Unilogit addresses the challenge of selectively forgetting specific information while maintaining overall model utility, a critical task in compliance with data privacy regulations like GDPR. Unlike prior methods that rely on static hyperparameters or starting model outputs, Unilogit dynamically adjusts target logits to achieve a uniform probability for the target token, leveraging the current model's outputs for more accurate self-distillation targets. This approach not only eliminates the need for additional hyperparameters but also enhances the model's ability to approximate the golden targets. Extensive experiments on public benchmarks and an in-house e-commerce dataset demonstrate Unilogit's superior performance in balancing forget and retain objectives, outperforming state-of-the-art methods such as NPO and UnDIAL. Our analysis further reveals Unilogit's robustness across various scenarios, highlighting its practical applicability and effectiveness in achieving efficacious machine unlearning.
Why Distillation can Outperform Zero-RL: The Role of Flexible Reasoning
Reinforcement learning (RL) has played an important role in improving the reasoning ability of large language models (LLMs). Some studies apply RL directly to smaller base models (known as zero-RL) and also achieve notable progress. However, in this paper, we show that using only 920 examples, a simple distillation method based on the base model can clearly outperform zero-RL, which typically requires much more data and computational cost. By analyzing the token frequency in model outputs, we find that the distilled model shows more flexible reasoning. It uses anthropomorphic tokens and logical connectors much more often than the zero-RL model. Further analysis reveals that distillation enhances the presence of two advanced cognitive behaviors: Multi-Perspective Thinking or Attempting and Metacognitive Awareness. Frequent occurrences of these two advanced cognitive behaviors give rise to flexible reasoning, which is essential for solving complex reasoning problems, while zero-RL fails to significantly boost the frequency of these behaviors.
