new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 19

FreBIS: Frequency-Based Stratification for Neural Implicit Surface Representations

Neural implicit surface representation techniques are in high demand for advancing technologies in augmented reality/virtual reality, digital twins, autonomous navigation, and many other fields. With their ability to model object surfaces in a scene as a continuous function, such techniques have made remarkable strides recently, especially over classical 3D surface reconstruction methods, such as those that use voxels or point clouds. However, these methods struggle with scenes that have varied and complex surfaces principally because they model any given scene with a single encoder network that is tasked to capture all of low through high-surface frequency information in the scene simultaneously. In this work, we propose a novel, neural implicit surface representation approach called FreBIS to overcome this challenge. FreBIS works by stratifying the scene based on the frequency of surfaces into multiple frequency levels, with each level (or a group of levels) encoded by a dedicated encoder. Moreover, FreBIS encourages these encoders to capture complementary information by promoting mutual dissimilarity of the encoded features via a novel, redundancy-aware weighting module. Empirical evaluations on the challenging BlendedMVS dataset indicate that replacing the standard encoder in an off-the-shelf neural surface reconstruction method with our frequency-stratified encoders yields significant improvements. These enhancements are evident both in the quality of the reconstructed 3D surfaces and in the fidelity of their renderings from any viewpoint.

  • 5 authors
·
Apr 28

BioFusionNet: Deep Learning-Based Survival Risk Stratification in ER+ Breast Cancer Through Multifeature and Multimodal Data Fusion

Breast cancer is a significant health concern affecting millions of women worldwide. Accurate survival risk stratification plays a crucial role in guiding personalised treatment decisions and improving patient outcomes. Here we present BioFusionNet, a deep learning framework that fuses image-derived features with genetic and clinical data to achieve a holistic patient profile and perform survival risk stratification of ER+ breast cancer patients. We employ multiple self-supervised feature extractors, namely DINO and MoCoV3, pretrained on histopathology patches to capture detailed histopathological image features. We then utilise a variational autoencoder (VAE) to fuse these features, and harness the latent space of the VAE to feed into a self-attention network, generating patient-level features. Next, we develop a co-dual-cross-attention mechanism to combine the histopathological features with genetic data, enabling the model to capture the interplay between them. Additionally, clinical data is incorporated using a feed-forward network (FFN), further enhancing predictive performance and achieving comprehensive multimodal feature integration. Furthermore, we introduce a weighted Cox loss function, specifically designed to handle imbalanced survival data, which is a common challenge in the field. The proposed model achieves a mean concordance index (C-index) of 0.77 and a time-dependent area under the curve (AUC) of 0.84, outperforming state-of-the-art methods. It predicts risk (high versus low) with prognostic significance for overall survival (OS) in univariate analysis (HR=2.99, 95% CI: 1.88--4.78, p<0.005), and maintains independent significance in multivariate analysis incorporating standard clinicopathological variables (HR=2.91, 95% CI: 1.80--4.68, p<0.005). The proposed method not only improves model performance but also addresses a critical gap in handling imbalanced data.

  • 4 authors
·
Feb 16, 2024

Cognitive Castes: Artificial Intelligence, Epistemic Stratification, and the Dissolution of Democratic Discourse

Artificial intelligence functions not as an epistemic leveller, but as an accelerant of cognitive stratification, entrenching and formalising informational castes within liberal-democratic societies. Synthesising formal epistemology, political theory, algorithmic architecture, and economic incentive structures, the argument traces how contemporary AI systems selectively amplify the reasoning capacity of individuals equipped with recursive abstraction, symbolic logic, and adversarial interrogation, whilst simultaneously pacifying the cognitively untrained through engagement-optimised interfaces. Fluency replaces rigour, immediacy displaces reflection, and procedural reasoning is eclipsed by reactive suggestion. The result is a technocratic realignment of power: no longer grounded in material capital alone, but in the capacity to navigate, deconstruct, and manipulate systems of epistemic production. Information ceases to be a commons; it becomes the substrate through which consent is manufactured and autonomy subdued. Deliberative democracy collapses not through censorship, but through the erosion of interpretive agency. The proposed response is not technocratic regulation, nor universal access, but the reconstruction of rational autonomy as a civic mandate, codified in education, protected by epistemic rights, and structurally embedded within open cognitive infrastructure.

  • 1 authors
·
Jul 16

Stratified GRPO: Handling Structural Heterogeneity in Reinforcement Learning of LLM Search Agents

Large language model (LLM) agents increasingly rely on external tools such as search engines to solve complex, multi-step problems, and reinforcement learning (RL) has become a key paradigm for training them. However, the trajectories of search agents are structurally heterogeneous, where variations in the number, placement, and outcomes of search calls lead to fundamentally different answer directions and reward distributions. Standard policy gradient methods, which use a single global baseline, suffer from what we identify and formalize as cross-stratum bias-an "apples-to-oranges" comparison of heterogeneous trajectories. This cross-stratum bias distorts credit assignment and hinders exploration of complex, multi-step search strategies. To address this, we propose Stratified GRPO, whose central component, Stratified Advantage Normalization (SAN), partitions trajectories into homogeneous strata based on their structural properties and computes advantages locally within each stratum. This ensures that trajectories are evaluated only against their true peers. Our analysis proves that SAN eliminates cross-stratum bias, yields conditionally unbiased unit-variance estimates inside each stratum, and retains the global unbiasedness and unit-variance properties enjoyed by standard normalization, resulting in a more pure and scale-stable learning signal. To improve practical stability under finite-sample regimes, we further linearly blend SAN with the global estimator. Extensive experiments on diverse single-hop and multi-hop question-answering benchmarks demonstrate that Stratified GRPO consistently and substantially outperforms GRPO by up to 11.3 points, achieving higher training rewards, greater training stability, and more effective search policies. These results establish stratification as a principled remedy for structural heterogeneity in RL for LLM search agents.

  • 5 authors
·
Oct 7

Deep SNP: An End-to-end Deep Neural Network with Attention-based Localization for Break-point Detection in SNP Array Genomic data

Diagnosis and risk stratification of cancer and many other diseases require the detection of genomic breakpoints as a prerequisite of calling copy number alterations (CNA). This, however, is still challenging and requires time-consuming manual curation. As deep-learning methods outperformed classical state-of-the-art algorithms in various domains and have also been successfully applied to life science problems including medicine and biology, we here propose Deep SNP, a novel Deep Neural Network to learn from genomic data. Specifically, we used a manually curated dataset from 12 genomic single nucleotide polymorphism array (SNPa) profiles as truth-set and aimed at predicting the presence or absence of genomic breakpoints, an indicator of structural chromosomal variations, in windows of 40,000 probes. We compare our results with well-known neural network models as well as Rawcopy though this tool is designed to predict breakpoints and in addition genomic segments with high sensitivity. We show, that Deep SNP is capable of successfully predicting the presence or absence of a breakpoint in large genomic windows and outperforms state-of-the-art neural network models. Qualitative examples suggest that integration of a localization unit may enable breakpoint detection and prediction of genomic segments, even if the breakpoint coordinates were not provided for network training. These results warrant further evaluation of DeepSNP for breakpoint localization and subsequent calling of genomic segments.

  • 12 authors
·
Jun 22, 2018

Segmentation variability and radiomics stability for predicting Triple-Negative Breast Cancer subtype using Magnetic Resonance Imaging

Most papers caution against using predictive models for disease stratification based on unselected radiomic features, as these features are affected by contouring variability. Instead, they advocate for the use of the Intraclass Correlation Coefficient (ICC) as a measure of stability for feature selection. However, the direct effect of segmentation variability on the predictive models is rarely studied. This study investigates the impact of segmentation variability on feature stability and predictive performance in radiomics-based prediction of Triple-Negative Breast Cancer (TNBC) subtype using Magnetic Resonance Imaging. A total of 244 images from the Duke dataset were used, with segmentation variability introduced through modifications of manual segmentations. For each mask, explainable radiomic features were selected using the Shapley Additive exPlanations method and used to train logistic regression models. Feature stability across segmentations was assessed via ICC, Pearson's correlation, and reliability scores quantifying the relationship between feature stability and segmentation variability. Results indicate that segmentation accuracy does not significantly impact predictive performance. While incorporating peritumoral information may reduce feature reproducibility, it does not diminish feature predictive capability. Moreover, feature selection in predictive models is not inherently tied to feature stability with respect to segmentation, suggesting that an overreliance on ICC or reliability scores for feature selection might exclude valuable predictive features.

  • 7 authors
·
Apr 2

PDRs4All. XII. FUV-driven formation of hydrocarbon radicals and their relation with PAHs

We present subarcsecond-resolution ALMA mosaics of the Orion Bar PDR in [CI] 609 um, C2H (4-3), and C18O (3-2) emission lines, complemented by JWST images of H2 and aromatic infrared band (AIB) emission. The rim of the Bar shows very corrugated structures made of small-scale H2 dissociation fronts (DFs). The [CI] 609 um emission peaks very close (~0.002 pc) to the main H2-emitting DFs, suggesting the presence of gas density gradients. These DFs are also bright and remarkably similar in C2H emission, which traces 'hydrocarbon radical peaks' characterized by very high C2H abundances, reaching up to several x10^-7. The high abundance of C2H and of related hydrocarbon radicals, such as CH3, CH2, and CH, can be attributed to gas-phase reactions driven by elevated temperatures, the presence of C+ and C, and the reactivity of FUV-pumped H2. The hydrocarbon radical peaks roughly coincide with maxima of the 3.4/3.3 um AIB intensity ratio, a proxy for the aliphatic-to-aromatic content of PAHs. This implies that the conditions triggering the formation of simple hydrocarbons also favor the formation (and survival) of PAHs with aliphatic side groups, potentially via the contribution of bottom-up processes in which abundant hydrocarbon radicals react in situ with PAHs. Ahead of the DFs, in the atomic PDR zone (where [H]>>[H2]), the AIB emission is brightest, but small PAHs and carbonaceous grains undergo photo-processing due to the stronger FUV field. Our detection of trace amounts of C2H in this zone may result from the photoerosion of these species. This study provides a spatially resolved view of the chemical stratification of key carbon carriers in a PDR. Overall, both bottom-up and top-down processes appear to link simple hydrocarbon molecules with PAHs in molecular clouds; however, the exact chemical pathways and their relative contributions remain to be quantified.

  • 28 authors
·
Mar 5

SVGenius: Benchmarking LLMs in SVG Understanding, Editing and Generation

Large Language Models (LLMs) and Multimodal LLMs have shown promising capabilities for SVG processing, yet existing benchmarks suffer from limited real-world coverage, lack of complexity stratification, and fragmented evaluation paradigms. We introduce SVGenius, a comprehensive benchmark comprising 2,377 queries across three progressive dimensions: understanding, editing, and generation. Built on real-world data from 24 application domains with systematic complexity stratification, SVGenius evaluates models through 8 task categories and 18 metrics. We assess 22 mainstream models spanning different scales, architectures, training paradigms, and accessibility levels. Our analysis reveals that while proprietary models significantly outperform open-source counterparts, all models exhibit systematic performance degradation with increasing complexity, indicating fundamental limitations in current approaches; however, reasoning-enhanced training proves more effective than pure scaling for overcoming these limitations, though style transfer remains the most challenging capability across all model types. SVGenius establishes the first systematic evaluation framework for SVG processing, providing crucial insights for developing more capable vector graphics models and advancing automated graphic design applications. Appendix and supplementary materials (including all data and code) are available at https://zju-real.github.io/SVGenius.

The Perfect Blend: Redefining RLHF with Mixture of Judges

Reinforcement learning from human feedback (RLHF) has become the leading approach for fine-tuning large language models (LLM). However, RLHF has limitations in multi-task learning (MTL) due to challenges of reward hacking and extreme multi-objective optimization (i.e., trade-off of multiple and/or sometimes conflicting objectives). Applying RLHF for MTL currently requires careful tuning of the weights for reward model and data combinations. This is often done via human intuition and does not generalize. In this work, we introduce a novel post-training paradigm which we called Constrained Generative Policy Optimization (CGPO). The core of CGPO is Mixture of Judges (MoJ) with cost-efficient constrained policy optimization with stratification, which can identify the perfect blend in RLHF in a principled manner. It shows strong empirical results with theoretical guarantees, does not require extensive hyper-parameter tuning, and is plug-and-play in common post-training pipelines. Together, this can detect and mitigate reward hacking behaviors while reaching a pareto-optimal point across an extremely large number of objectives. Our empirical evaluations demonstrate that CGPO significantly outperforms standard RLHF algorithms like PPO and DPO across various tasks including general chat, STEM questions, instruction following, and coding. Specifically, CGPO shows improvements of 7.4% in AlpacaEval-2 (general chat), 12.5% in Arena-Hard (STEM & reasoning), and consistent gains in other domains like math and coding. Notably, PPO, while commonly used, is prone to severe reward hacking in popular coding benchmarks, which CGPO successfully addresses. This breakthrough in RLHF not only tackles reward hacking and extreme multi-objective optimization challenges but also advances the state-of-the-art in aligning general-purpose LLMs for diverse applications.

  • 20 authors
·
Sep 30, 2024

Artificial Intelligence-derived Vascular Age from Photoplethysmography: A Novel Digital Biomarker for Cardiovascular Health

With the increasing availability of wearable devices, photoplethysmography (PPG) has emerged as a promising non-invasive tool for monitoring human hemodynamics. We propose a deep learning framework to estimate vascular age (AI-vascular age) from PPG signals, incorporating a distribution-aware loss to address biases caused by imbalanced data. The model was developed using data from the UK Biobank (UKB), with 98,672 participants in the development cohort and 113,559 participants (144,683 data pairs) for clinical evaluation. After adjusting for key confounders, individuals with a vascular age gap (AI-vascular age minus calendar age) exceeding 9 years had a significantly higher risk of major adverse cardiovascular and cerebrovascular events (MACCE) (HR = 2.37, p < 0.005) and secondary outcomes, including diabetes (HR = 2.69, p < 0.005), hypertension (HR = 2.88, p < 0.005), coronary heart disease (HR = 2.20, p < 0.005), heart failure (HR = 2.15, p < 0.005), myocardial infarction (HR = 2.51, p < 0.005), stroke (HR = 2.55, p < 0.005), and all-cause mortality (HR = 2.51, p < 0.005). Conversely, participants with a vascular age gap below -9 years exhibited a significantly lower incidence of these outcomes. We further evaluated the longitudinal applicability of AI-vascular age using serial PPG data from the UKB, demonstrating its value in risk stratification by leveraging AI-vascular age at two distinct time points to predict future MACCE incidence. External validation was performed on a MIMIC-III-derived cohort (n = 2,343), where each one-year increase in vascular age gap was significantly associated with elevated in-hospital mortality risk (OR = 1.02, p < 0.005). In conclusion, our study establishes AI-vascular age as a novel, non-invasive digital biomarker for cardiovascular health assessment.

  • 5 authors
·
Feb 18

A Multimodal Vision Foundation Model for Clinical Dermatology

Diagnosing and treating skin diseases require advanced visual skills across domains and the ability to synthesize information from multiple imaging modalities. While current deep learning models excel at specific tasks like skin cancer diagnosis from dermoscopic images, they struggle to meet the complex, multimodal requirements of clinical practice. Here, we introduce PanDerm, a multimodal dermatology foundation model pretrained through self-supervised learning on over 2 million real-world skin disease images from 11 clinical institutions across 4 imaging modalities. We evaluated PanDerm on 28 diverse benchmarks, including skin cancer screening, risk stratification, differential diagnosis of common and rare skin conditions, lesion segmentation, longitudinal monitoring, and metastasis prediction and prognosis. PanDerm achieved state-of-the-art performance across all evaluated tasks, often outperforming existing models when using only 10% of labeled data. We conducted three reader studies to assess PanDerm's potential clinical utility. PanDerm outperformed clinicians by 10.2% in early-stage melanoma detection through longitudinal analysis, improved clinicians' skin cancer diagnostic accuracy by 11% on dermoscopy images, and enhanced non-dermatologist healthcare providers' differential diagnosis by 16.5% across 128 skin conditions on clinical photographs. These results demonstrate PanDerm's potential to improve patient care across diverse clinical scenarios and serve as a model for developing multimodal foundation models in other medical specialties, potentially accelerating the integration of AI support in healthcare. The code can be found at https://github.com/SiyuanYan1/PanDerm.

  • 25 authors
·
Oct 19, 2024

A Disease-Centric Vision-Language Foundation Model for Precision Oncology in Kidney Cancer

The non-invasive assessment of increasingly incidentally discovered renal masses is a critical challenge in urologic oncology, where diagnostic uncertainty frequently leads to the overtreatment of benign or indolent tumors. In this study, we developed and validated RenalCLIP using a dataset of 27,866 CT scans from 8,809 patients across nine Chinese medical centers and the public TCIA cohort, a visual-language foundation model for characterization, diagnosis and prognosis of renal mass. The model was developed via a two-stage pre-training strategy that first enhances the image and text encoders with domain-specific knowledge before aligning them through a contrastive learning objective, to create robust representations for superior generalization and diagnostic precision. RenalCLIP achieved better performance and superior generalizability across 10 core tasks spanning the full clinical workflow of kidney cancer, including anatomical assessment, diagnostic classification, and survival prediction, compared with other state-of-the-art general-purpose CT foundation models. Especially, for complicated task like recurrence-free survival prediction in the TCIA cohort, RenalCLIP achieved a C-index of 0.726, representing a substantial improvement of approximately 20% over the leading baselines. Furthermore, RenalCLIP's pre-training imparted remarkable data efficiency; in the diagnostic classification task, it only needs 20% training data to achieve the peak performance of all baseline models even after they were fully fine-tuned on 100% of the data. Additionally, it achieved superior performance in report generation, image-text retrieval and zero-shot diagnosis tasks. Our findings establish that RenalCLIP provides a robust tool with the potential to enhance diagnostic accuracy, refine prognostic stratification, and personalize the management of patients with kidney cancer.

  • 20 authors
·
Aug 22

Multistain Pretraining for Slide Representation Learning in Pathology

Developing self-supervised learning (SSL) models that can learn universal and transferable representations of H&E gigapixel whole-slide images (WSIs) is becoming increasingly valuable in computational pathology. These models hold the potential to advance critical tasks such as few-shot classification, slide retrieval, and patient stratification. Existing approaches for slide representation learning extend the principles of SSL from small images (e.g., 224 x 224 patches) to entire slides, usually by aligning two different augmentations (or views) of the slide. Yet the resulting representation remains constrained by the limited clinical and biological diversity of the views. Instead, we postulate that slides stained with multiple markers, such as immunohistochemistry, can be used as different views to form a rich task-agnostic training signal. To this end, we introduce Madeleine, a multimodal pretraining strategy for slide representation learning. Madeleine is trained with a dual global-local cross-stain alignment objective on large cohorts of breast cancer samples (N=4,211 WSIs across five stains) and kidney transplant samples (N=12,070 WSIs across four stains). We demonstrate the quality of slide representations learned by Madeleine on various downstream evaluations, ranging from morphological and molecular classification to prognostic prediction, comprising 21 tasks using 7,299 WSIs from multiple medical centers. Code is available at https://github.com/mahmoodlab/MADELEINE.

  • 10 authors
·
Aug 5, 2024

Heart Disease Detection using Vision-Based Transformer Models from ECG Images

Heart disease, also known as cardiovascular disease, is a prevalent and critical medical condition characterized by the impairment of the heart and blood vessels, leading to various complications such as coronary artery disease, heart failure, and myocardial infarction. The timely and accurate detection of heart disease is of paramount importance in clinical practice. Early identification of individuals at risk enables proactive interventions, preventive measures, and personalized treatment strategies to mitigate the progression of the disease and reduce adverse outcomes. In recent years, the field of heart disease detection has witnessed notable advancements due to the integration of sophisticated technologies and computational approaches. These include machine learning algorithms, data mining techniques, and predictive modeling frameworks that leverage vast amounts of clinical and physiological data to improve diagnostic accuracy and risk stratification. In this work, we propose to detect heart disease from ECG images using cutting-edge technologies, namely vision transformer models. These models are Google-Vit, Microsoft-Beit, and Swin-Tiny. To the best of our knowledge, this is the initial endeavor concentrating on the detection of heart diseases through image-based ECG data by employing cuttingedge technologies namely, transformer models. To demonstrate the contribution of the proposed framework, the performance of vision transformer models are compared with state-of-the-art studies. Experiment results show that the proposed framework exhibits remarkable classification results.

  • 4 authors
·
Oct 19, 2023