Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEfficient Online Data Mixing For Language Model Pre-Training
The data used to pretrain large language models has a decisive impact on a model's downstream performance, which has led to a large body of work on data selection methods that aim to automatically determine the most suitable data to use for pretraining. Existing data selection methods suffer from slow and computationally expensive processes, a problem amplified by the increasing size of models and of pretraining datasets. Data mixing, on the other hand, reduces the complexity of data selection by grouping data points together and determining sampling probabilities across entire groups. However, data mixing proportions are typically fixed before training and therefore cannot adapt to changing training dynamics. To address these limitations, we develop an efficient algorithm for Online Data Mixing (ODM) that combines elements from both data selection and data mixing. Based on multi-armed bandit algorithms, our online approach optimizes the data mixing proportions during training. Remarkably, our method trains a model that reaches the final perplexity of the next best method with 19\% fewer training iterations, and improves performance on the 5-shot MMLU benchmark by 1.9% relative accuracy, while adding negligible wall-clock time during pretraining.
Unsupervised Topic Models are Data Mixers for Pre-training Language Models
The performance of large language models (LLMs) is significantly affected by the quality and composition of their pre-training data, which is inherently diverse, spanning various domains, sources, and topics. Effectively integrating these heterogeneous data sources is crucial for optimizing LLM performance. Previous research has predominantly concentrated on domain-based data mixing, often neglecting the nuanced topic-level characteristics of the data. To address this gap, we propose a simple yet effective topic-based data mixing strategy that utilizes fine-grained topics generated through our topic modeling method, DataWeave. DataWeave employs a multi-stage clustering process to group semantically similar documents and utilizes LLMs to generate detailed topics, thereby facilitating a more nuanced understanding of dataset composition. Our strategy employs heuristic methods to upsample or downsample specific topics, which significantly enhances LLM performance on downstream tasks, achieving superior results compared to previous, more complex data mixing approaches. Furthermore, we confirm that the topics Science and Relationships are particularly effective, yielding the most substantial performance improvements. We will make our code and datasets publicly available.
Token-Label Alignment for Vision Transformers
Data mixing strategies (e.g., CutMix) have shown the ability to greatly improve the performance of convolutional neural networks (CNNs). They mix two images as inputs for training and assign them with a mixed label with the same ratio. While they are shown effective for vision transformers (ViTs), we identify a token fluctuation phenomenon that has suppressed the potential of data mixing strategies. We empirically observe that the contributions of input tokens fluctuate as forward propagating, which might induce a different mixing ratio in the output tokens. The training target computed by the original data mixing strategy can thus be inaccurate, resulting in less effective training. To address this, we propose a token-label alignment (TL-Align) method to trace the correspondence between transformed tokens and the original tokens to maintain a label for each token. We reuse the computed attention at each layer for efficient token-label alignment, introducing only negligible additional training costs. Extensive experiments demonstrate that our method improves the performance of ViTs on image classification, semantic segmentation, objective detection, and transfer learning tasks. Code is available at: https://github.com/Euphoria16/TL-Align.
Maximize Your Data's Potential: Enhancing LLM Accuracy with Two-Phase Pretraining
Pretraining large language models effectively requires strategic data selection, blending and ordering. However, key details about data mixtures especially their scalability to longer token horizons and larger model sizes remain underexplored due to limited disclosure by model developers. To address this, we formalize the concept of two-phase pretraining and conduct an extensive systematic study on how to select and mix data to maximize model accuracies for the two phases. Our findings illustrate that a two-phase approach for pretraining outperforms random data ordering and natural distribution of tokens by 3.4% and 17% on average accuracies. We provide in-depth guidance on crafting optimal blends based on quality of the data source and the number of epochs to be seen. We propose to design blends using downsampled data at a smaller scale of 1T tokens and then demonstrate effective scaling of our approach to larger token horizon of 15T tokens and larger model size of 25B model size. These insights provide a series of steps practitioners can follow to design and scale their data blends.
R&B: Domain Regrouping and Data Mixture Balancing for Efficient Foundation Model Training
Data mixing strategies have successfully reduced the costs involved in training language models. While promising, such methods suffer from two flaws. First, they rely on predetermined data domains (e.g., data sources, task types), which may fail to capture critical semantic nuances, leaving performance on the table. Second, these methods scale with the number of domains in a computationally prohibitive way. We address these challenges via R&B, a framework that re-partitions training data based on semantic similarity (Regroup) to create finer-grained domains, and efficiently optimizes the data composition (Balance) by leveraging a Gram matrix induced by domain gradients obtained throughout training. Unlike prior works, it removes the need for additional compute to obtain evaluation information such as losses or gradients. We analyze this technique under standard regularity conditions and provide theoretical insights that justify R&B's effectiveness compared to non-adaptive mixing approaches. Empirically, we demonstrate the effectiveness of R&B on five diverse datasets ranging from natural language to reasoning and multimodal tasks. With as little as 0.01% additional compute overhead, R&B matches or exceeds the performance of state-of-the-art data mixing strategies.
Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance
Pretraining data of large language models composes multiple domains (e.g., web texts, academic papers, codes), whose mixture proportions crucially impact the competence of outcome models. While existing endeavors rely on heuristics or qualitative strategies to tune the proportions, we discover the quantitative predictability of model performance regarding the mixture proportions in function forms, which we refer to as the data mixing laws. Fitting such functions on sample mixtures unveils model performance on unseen mixtures before actual runs, thus guiding the selection of an ideal data mixture. Furthermore, we propose nested use of the scaling laws of training steps, model sizes, and our data mixing law to enable predicting the performance of large models trained on massive data under various mixtures with only small-scale training. Moreover, experimental results verify that our method effectively optimizes the training mixture of a 1B model trained for 100B tokens in RedPajama, reaching a performance comparable to the one trained for 48% more steps on the default mixture. Extending the application of data mixing laws to continual training accurately predicts the critical mixture proportion that avoids catastrophic forgetting and outlooks the potential for dynamic data schedules
JustDense: Just using Dense instead of Sequence Mixer for Time Series analysis
Sequence and channel mixers, the core mechanism in sequence models, have become the de facto standard in time series analysis (TSA). However, recent studies have questioned the necessity of complex sequence mixers, such as attention mechanisms, demonstrating that simpler architectures can achieve comparable or even superior performance. This suggests that the benefits attributed to complex sequencemixers might instead emerge from other architectural or optimization factors. Based on this observation, we pose a central question: Are common sequence mixers necessary for time-series analysis? Therefore, we propose JustDense, an empirical study that systematically replaces sequence mixers in various well-established TSA models with dense layers. Grounded in the MatrixMixer framework, JustDense treats any sequence mixer as a mixing matrix and replaces it with a dense layer. This substitution isolates the mixing operation, enabling a clear theoretical foundation for understanding its role. Therefore, we conducted extensive experiments on 29 benchmarks covering five representative TSA tasks using seven state-of-the-art TSA models to address our research question. The results show that replacing sequence mixers with dense layers yields comparable or even superior performance. In the cases where dedicated sequence mixers still offer benefits, JustDense challenges the assumption that "deeper and more complex architectures are inherently better" in TSA.
TiKMiX: Take Data Influence into Dynamic Mixture for Language Model Pre-training
The data mixture used in the pre-training of a language model is a cornerstone of its final performance. However, a static mixing strategy is suboptimal, as the model's learning preferences for various data domains shift dynamically throughout training. Crucially, observing these evolving preferences in a computationally efficient manner remains a significant challenge. To address this, we propose TiKMiX, a method that dynamically adjusts the data mixture according to the model's evolving preferences. TiKMiX introduces Group Influence, an efficient metric for evaluating the impact of data domains on the model. This metric enables the formulation of the data mixing problem as a search for an optimal, influence-maximizing distribution. We solve this via two approaches: TiKMiX-D for direct optimization, and TiKMiX-M, which uses a regression model to predict a superior mixture. We trained models with different numbers of parameters, on up to 1 trillion tokens. TiKMiX-D exceeds the performance of state-of-the-art methods like REGMIX while using just 20% of the computational resources. TiKMiX-M leads to an average performance gain of 2% across 9 downstream benchmarks. Our experiments reveal that a model's data preferences evolve with training progress and scale, and we demonstrate that dynamically adjusting the data mixture based on Group Influence, a direct measure of these preferences, significantly improves performance by mitigating the underdigestion of data seen with static ratios.
Data Mixing Made Efficient: A Bivariate Scaling Law for Language Model Pretraining
Large language models exhibit exceptional generalization capabilities, primarily attributed to the utilization of diversely sourced data. However, conventional practices in integrating this diverse data heavily rely on heuristic schemes, lacking theoretical guidance. This research tackles these limitations by investigating strategies based on low-cost proxies for data mixtures, with the aim of streamlining data curation to enhance training efficiency. Specifically, we propose a unified scaling law, termed BiMix, which accurately models the bivariate scaling behaviors of both data quantity and mixing proportions. We conduct systematic experiments and provide empirical evidence for the predictive power and fundamental principles of BiMix. Notably, our findings reveal that entropy-driven training-free data mixtures can achieve comparable or even better performance than more resource-intensive methods. We hope that our quantitative insights can shed light on further judicious research and development in cost-effective language modeling.
SampleMix: A Sample-wise Pre-training Data Mixing Strategey by Coordinating Data Quality and Diversity
Existing pretraining data mixing methods for large language models (LLMs) typically follow a domain-wise methodology, a top-down process that first determines domain weights and then performs uniform data sampling across each domain. However, these approaches neglect significant inter-domain overlaps and commonalities, failing to control the global diversity of the constructed training dataset. Further, uniform sampling within domains ignores fine-grained sample-specific features, potentially leading to suboptimal data distribution. To address these shortcomings, we propose a novel sample-wise data mixture approach based on a bottom-up paradigm. This method performs global cross-domain sampling by systematically evaluating the quality and diversity of each sample, thereby dynamically determining the optimal domain distribution. Comprehensive experiments across multiple downstream tasks and perplexity assessments demonstrate that SampleMix surpasses existing domain-based methods. Meanwhile, SampleMix requires 1.4x to 2.1x training steps to achieves the baselines' performance, highlighting the substantial potential of SampleMix to optimize pre-training data.
MixMix: All You Need for Data-Free Compression Are Feature and Data Mixing
User data confidentiality protection is becoming a rising challenge in the present deep learning research. Without access to data, conventional data-driven model compression faces a higher risk of performance degradation. Recently, some works propose to generate images from a specific pretrained model to serve as training data. However, the inversion process only utilizes biased feature statistics stored in one model and is from low-dimension to high-dimension. As a consequence, it inevitably encounters the difficulties of generalizability and inexact inversion, which leads to unsatisfactory performance. To address these problems, we propose MixMix based on two simple yet effective techniques: (1) Feature Mixing: utilizes various models to construct a universal feature space for generalized inversion; (2) Data Mixing: mixes the synthesized images and labels to generate exact label information. We prove the effectiveness of MixMix from both theoretical and empirical perspectives. Extensive experiments show that MixMix outperforms existing methods on the mainstream compression tasks, including quantization, knowledge distillation, and pruning. Specifically, MixMix achieves up to 4% and 20% accuracy uplift on quantization and pruning, respectively, compared to existing data-free compression work.
Aioli: A Unified Optimization Framework for Language Model Data Mixing
Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity. To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to solving a common optimization problem: minimize average loss subject to a method-specific mixing law -- an implicit assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity of a method's mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.012 test perplexity points.
A Survey on Mixup Augmentations and Beyond
As Deep Neural Networks have achieved thrilling breakthroughs in the past decade, data augmentations have garnered increasing attention as regularization techniques when massive labeled data are unavailable. Among existing augmentations, Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted because they yield high performances by generating data-dependent virtual data while easily migrating to various domains. This survey presents a comprehensive review of foundational mixup methods and their applications. We first elaborate on the training pipeline with mixup augmentations as a unified framework containing modules. A reformulated framework could contain various mixup methods and give intuitive operational procedures. Then, we systematically investigate the applications of mixup augmentations on vision downstream tasks, various data modalities, and some analysis \& theorems of mixup. Meanwhile, we conclude the current status and limitations of mixup research and point out further work for effective and efficient mixup augmentations. This survey can provide researchers with the current state of the art in mixup methods and provide some insights and guidance roles in the mixup arena. An online project with this survey is available at https://github.com/Westlake-AI/Awesome-Mixup.
SeedEdit 3.0: Fast and High-Quality Generative Image Editing
We introduce SeedEdit 3.0, in companion with our T2I model Seedream 3.0, which significantly improves over our previous SeedEdit versions in both aspects of edit instruction following and image content (e.g., ID/IP) preservation on real image inputs. Additional to model upgrading with T2I, in this report, we present several key improvements. First, we develop an enhanced data curation pipeline with a meta-info paradigm and meta-info embedding strategy that help mix images from multiple data sources. This allows us to scale editing data effectively, and meta information is helpfult to connect VLM with diffusion model more closely. Second, we introduce a joint learning pipeline for computing a diffusion loss and reward losses. Finally, we evaluate SeedEdit 3.0 on our testing benchmarks, for real/synthetic image editing, where it achieves a best trade-off between multiple aspects, yielding a high usability rate of 56.1%, compared to SeedEdit 1.6 (38.4%), GPT4o (37.1%) and Gemini 2.0 (30.3%).
Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources
Traditionally, data selection has been studied in settings where all samples from prospective sources are fully revealed to a machine learning developer. However, in practical data exchange scenarios, data providers often reveal only a limited subset of samples before an acquisition decision is made. Recently, there have been efforts to fit scaling laws that predict model performance at any size and data source composition using the limited available samples. However, these scaling functions are black-box, computationally expensive to fit, highly susceptible to overfitting, or/and difficult to optimize for data selection. This paper proposes a framework called <projektor>, which predicts model performance and supports data selection decisions based on partial samples of prospective data sources. Our approach distinguishes itself from existing work by introducing a novel *two-stage* performance inference process. In the first stage, we leverage the Optimal Transport distance to predict the model's performance for any data mixture ratio within the range of disclosed data sizes. In the second stage, we extrapolate the performance to larger undisclosed data sizes based on a novel parameter-free mapping technique inspired by neural scaling laws. We further derive an efficient gradient-based method to select data sources based on the projected model performance. Evaluation over a diverse range of applications demonstrates that <projektor> significantly improves existing performance scaling approaches in terms of both the accuracy of performance inference and the computation costs associated with constructing the performance predictor. Also, <projektor> outperforms by a wide margin in data selection effectiveness compared to a range of other off-the-shelf solutions.
Data Mixing Agent: Learning to Re-weight Domains for Continual Pre-training
Continual pre-training on small-scale task-specific data is an effective method for improving large language models in new target fields, yet it risks catastrophic forgetting of their original capabilities. A common solution is to re-weight training data mixtures from source and target fields on a domain space to achieve balanced performance. Previous domain reweighting strategies rely on manual designation with certain heuristics based on human intuition or empirical results. In this work, we prove that more general heuristics can be parameterized by proposing Data Mixing Agent, the first model-based, end-to-end framework that learns to re-weight domains. The agent learns generalizable heuristics through reinforcement learning on large quantities of data mixing trajectories with corresponding feedback from an evaluation environment. Experiments in continual pre-training on math reasoning show that Data Mixing Agent outperforms strong baselines in achieving balanced performance across source and target field benchmarks. Furthermore, it generalizes well across unseen source fields, target models, and domain spaces without retraining. Direct application to the code generation field also indicates its adaptability across target domains. Further analysis showcases the agents' well-aligned heuristics with human intuitions and their efficiency in achieving superior model performance with less source-field data.
Scalable Data Ablation Approximations for Language Models through Modular Training and Merging
Training data compositions for Large Language Models (LLMs) can significantly affect their downstream performance. However, a thorough data ablation study exploring large sets of candidate data mixtures is typically prohibitively expensive since the full effect is seen only after training the models; this can lead practitioners to settle for sub-optimal data mixtures. We propose an efficient method for approximating data ablations which trains individual models on subsets of a training corpus and reuses them across evaluations of combinations of subsets. In continued pre-training experiments, we find that, given an arbitrary evaluation set, the perplexity score of a single model trained on a candidate set of data is strongly correlated with perplexity scores of parameter averages of models trained on distinct partitions of that data. From this finding, we posit that researchers and practitioners can conduct inexpensive simulations of data ablations by maintaining a pool of models that were each trained on partitions of a large training corpus, and assessing candidate data mixtures by evaluating parameter averages of combinations of these models. This approach allows for substantial improvements in amortized training efficiency -- scaling only linearly with respect to new data -- by enabling reuse of previous training computation, opening new avenues for improving model performance through rigorous, incremental data assessment and mixing.
AutoMix: Unveiling the Power of Mixup for Stronger Classifiers
Data mixing augmentation have proved to be effective in improving the generalization ability of deep neural networks. While early methods mix samples by hand-crafted policies (e.g., linear interpolation), recent methods utilize saliency information to match the mixed samples and labels via complex offline optimization. However, there arises a trade-off between precise mixing policies and optimization complexity. To address this challenge, we propose a novel automatic mixup (AutoMix) framework, where the mixup policy is parameterized and serves the ultimate classification goal directly. Specifically, AutoMix reformulates the mixup classification into two sub-tasks (i.e., mixed sample generation and mixup classification) with corresponding sub-networks and solves them in a bi-level optimization framework. For the generation, a learnable lightweight mixup generator, Mix Block, is designed to generate mixed samples by modeling patch-wise relationships under the direct supervision of the corresponding mixed labels. To prevent the degradation and instability of bi-level optimization, we further introduce a momentum pipeline to train AutoMix in an end-to-end manner. Extensive experiments on nine image benchmarks prove the superiority of AutoMix compared with state-of-the-art in various classification scenarios and downstream tasks.
ResizeMix: Mixing Data with Preserved Object Information and True Labels
Data augmentation is a powerful technique to increase the diversity of data, which can effectively improve the generalization ability of neural networks in image recognition tasks. Recent data mixing based augmentation strategies have achieved great success. Especially, CutMix uses a simple but effective method to improve the classifiers by randomly cropping a patch from one image and pasting it on another image. To further promote the performance of CutMix, a series of works explore to use the saliency information of the image to guide the mixing. We systematically study the importance of the saliency information for mixing data, and find that the saliency information is not so necessary for promoting the augmentation performance. Furthermore, we find that the cutting based data mixing methods carry two problems of label misallocation and object information missing, which cannot be resolved simultaneously. We propose a more effective but very easily implemented method, namely ResizeMix. We mix the data by directly resizing the source image to a small patch and paste it on another image. The obtained patch preserves more substantial object information compared with conventional cut-based methods. ResizeMix shows evident advantages over CutMix and the saliency-guided methods on both image classification and object detection tasks without additional computation cost, which even outperforms most costly search-based automatic augmentation methods.
Adversarial AutoMixup
Data mixing augmentation has been widely applied to improve the generalization ability of deep neural networks. Recently, offline data mixing augmentation, e.g. handcrafted and saliency information-based mixup, has been gradually replaced by automatic mixing approaches. Through minimizing two sub-tasks, namely, mixed sample generation and mixup classification in an end-to-end way, AutoMix significantly improves accuracy on image classification tasks. However, as the optimization objective is consistent for the two sub-tasks, this approach is prone to generating consistent instead of diverse mixed samples, which results in overfitting for target task training. In this paper, we propose AdAutomixup, an adversarial automatic mixup augmentation approach that generates challenging samples to train a robust classifier for image classification, by alternatively optimizing the classifier and the mixup sample generator. AdAutomixup comprises two modules, a mixed example generator, and a target classifier. The mixed sample generator aims to produce hard mixed examples to challenge the target classifier, while the target classifier's aim is to learn robust features from hard mixed examples to improve generalization. To prevent the collapse of the inherent meanings of images, we further introduce an exponential moving average (EMA) teacher and cosine similarity to train AdAutomixup in an end-to-end way. Extensive experiments on seven image benchmarks consistently prove that our approach outperforms the state of the art in various classification scenarios. The source code is available at https://github.com/JinXins/Adversarial-AutoMixup.
Take the essence and discard the dross: A Rethinking on Data Selection for Fine-Tuning Large Language Models
Data selection for fine-tuning Large Language Models (LLMs) aims to select a high-quality subset from a given candidate dataset to train a Pending Fine-tune Model (PFM) into a Selective-Enhanced Model (SEM). It can improve the model performance and accelerate the training process. Although a few surveys have investigated related works of data selection, there is a lack of comprehensive comparison between existing methods due to their various experimental settings. To address this issue, we first propose a three-stage scheme for data selection and comprehensively review existing works according to this scheme. Then, we design a unified comparing method with ratio-based efficiency indicators and ranking-based feasibility indicators to overcome the difficulty of comparing various models with diverse experimental settings. After an in-depth comparative analysis, we find that the more targeted method with data-specific and model-specific quality labels has higher efficiency, but the introduction of additional noise information should be avoided when designing selection algorithms. Finally, we summarize the trends in data selection and highlight the short-term and long-term challenges to guide future research.
Efficient NLP Model Finetuning via Multistage Data Filtering
As model finetuning is central to the modern NLP, we set to maximize its efficiency. Motivated by redundancy in training examples and the sheer sizes of pretrained models, we exploit a key opportunity: training only on important data. To this end, we set to filter training examples in a streaming fashion, in tandem with training the target model. Our key techniques are two: (1) automatically determine a training loss threshold for skipping backward training passes; (2) run a meta predictor for further skipping forward training passes. We integrate the above techniques in a holistic, three-stage training process. On a diverse set of benchmarks, our method reduces the required training examples by up to 5.3times and training time by up to 6.8times, while only seeing minor accuracy degradation. Our method is effective even when training one epoch, where each training example is encountered only once. It is simple to implement and is compatible with the existing finetuning techniques. Code is available at: https://github.com/xo28/efficient- NLP-multistage-training
CLIMB: CLustering-based Iterative Data Mixture Bootstrapping for Language Model Pre-training
Pre-training datasets are typically collected from web content and lack inherent domain divisions. For instance, widely used datasets like Common Crawl do not include explicit domain labels, while manually curating labeled datasets such as The Pile is labor-intensive. Consequently, identifying an optimal pre-training data mixture remains a challenging problem, despite its significant benefits for pre-training performance. To address these challenges, we propose CLustering-based Iterative Data Mixture Bootstrapping (CLIMB), an automated framework that discovers, evaluates, and refines data mixtures in a pre-training setting. Specifically, CLIMB embeds and clusters large-scale datasets in a semantic space and then iteratively searches for optimal mixtures using a smaller proxy model and a predictor. When continuously trained on 400B tokens with this mixture, our 1B model exceeds the state-of-the-art Llama-3.2-1B by 2.0%. Moreover, we observe that optimizing for a specific domain (e.g., Social Sciences) yields a 5% improvement over random sampling. Finally, we introduce ClimbLab, a filtered 1.2-trillion-token corpus with 20 clusters as a research playground, and ClimbMix, a compact yet powerful 400-billion-token dataset designed for efficient pre-training that delivers superior performance under an equal token budget. We analyze the final data mixture, elucidating the characteristics of an optimal data mixture. Our data is available at: https://research.nvidia.com/labs/lpr/climb/
CodeMixBench: Evaluating Code-Mixing Capabilities of LLMs Across 18 Languages
Code-mixing, the practice of switching between languages within a conversation, poses unique challenges for traditional NLP. Existing benchmarks are limited by their narrow language pairs and tasks, failing to adequately assess large language models' (LLMs) code-mixing abilities. Despite the recognized importance of code-mixing for multilingual users, research on LLMs in this context remains sparse. Additionally, current techniques for synthesizing code-mixed data are underdeveloped to generate code-mixing. In response, we introduce CodeMixBench, a comprehensive benchmark covering eight tasks, including three specific to LLMs and five traditional NLP tasks, and 18 languages across seven language families. We also propose a new method for generating large-scale synthetic code-mixed texts by combining word substitution with GPT-4 prompting. Our evaluation reveals consistent underperformance of LLMs on code-mixed datasets involving different language families. Enhancements in training data size, model scale, and few-shot learning could improve their performance. The code and dataset are available at https://github.com/Jeromeyluck/CodeMixBench.
AttentionMix: Data augmentation method that relies on BERT attention mechanism
The Mixup method has proven to be a powerful data augmentation technique in Computer Vision, with many successors that perform image mixing in a guided manner. One of the interesting research directions is transferring the underlying Mixup idea to other domains, e.g. Natural Language Processing (NLP). Even though there already exist several methods that apply Mixup to textual data, there is still room for new, improved approaches. In this work, we introduce AttentionMix, a novel mixing method that relies on attention-based information. While the paper focuses on the BERT attention mechanism, the proposed approach can be applied to generally any attention-based model. AttentionMix is evaluated on 3 standard sentiment classification datasets and in all three cases outperforms two benchmark approaches that utilize Mixup mechanism, as well as the vanilla BERT method. The results confirm that the attention-based information can be effectively used for data augmentation in the NLP domain.
SMART: Submodular Data Mixture Strategy for Instruction Tuning
Instruction Tuning involves finetuning a language model on a collection of instruction-formatted datasets in order to enhance the generalizability of the model to unseen tasks. Studies have shown the importance of balancing different task proportions during finetuning, but finding the right balance remains challenging. Unfortunately, there's currently no systematic method beyond manual tuning or relying on practitioners' intuition. In this paper, we introduce SMART (Submodular data Mixture strAtegy for instRuction Tuning) - a novel data mixture strategy which makes use of a submodular function to assign importance scores to tasks which are then used to determine the mixture weights. Given a fine-tuning budget, SMART redistributes the budget among tasks and selects non-redundant samples from each task. Experimental results demonstrate that SMART significantly outperforms traditional methods such as examples proportional mixing and equal mixing. Furthermore, SMART facilitates the creation of data mixtures based on a few representative subsets of tasks alone and through task pruning analysis, we reveal that in a limited budget setting, allocating budget among a subset of representative tasks yields superior performance compared to distributing the budget among all tasks. The code for reproducing our results is open-sourced at https://github.com/kowndinya-renduchintala/SMART.
The Data Addition Dilemma
In many machine learning for healthcare tasks, standard datasets are constructed by amassing data across many, often fundamentally dissimilar, sources. But when does adding more data help, and when does it hinder progress on desired model outcomes in real-world settings? We identify this situation as the Data Addition Dilemma, demonstrating that adding training data in this multi-source scaling context can at times result in reduced overall accuracy, uncertain fairness outcomes, and reduced worst-subgroup performance. We find that this possibly arises from an empirically observed trade-off between model performance improvements due to data scaling and model deterioration from distribution shift. We thus establish baseline strategies for navigating this dilemma, introducing distribution shift heuristics to guide decision-making on which data sources to add in data scaling, in order to yield the expected model performance improvements. We conclude with a discussion of the required considerations for data collection and suggestions for studying data composition and scale in the age of increasingly larger models.
EcomGPT-CT: Continual Pre-training of E-commerce Large Language Models with Semi-structured Data
Large Language Models (LLMs) pre-trained on massive corpora have exhibited remarkable performance on various NLP tasks. However, applying these models to specific domains still poses significant challenges, such as lack of domain knowledge, limited capacity to leverage domain knowledge and inadequate adaptation to domain-specific data formats. Considering the exorbitant cost of training LLMs from scratch and the scarcity of annotated data within particular domains, in this work, we focus on domain-specific continual pre-training of LLMs using E-commerce domain as an exemplar. Specifically, we explore the impact of continual pre-training on LLMs employing unlabeled general and E-commercial corpora. Furthermore, we design a mixing strategy among different data sources to better leverage E-commercial semi-structured data. We construct multiple tasks to assess LLMs' few-shot In-context Learning ability and their zero-shot performance after instruction tuning in E-commerce domain. Experimental results demonstrate the effectiveness of continual pre-training of E-commerce LLMs and the efficacy of our devised data mixing strategy.
OffMix-3L: A Novel Code-Mixed Dataset in Bangla-English-Hindi for Offensive Language Identification
Code-mixing is a well-studied linguistic phenomenon when two or more languages are mixed in text or speech. Several works have been conducted on building datasets and performing downstream NLP tasks on code-mixed data. Although it is not uncommon to observe code-mixing of three or more languages, most available datasets in this domain contain code-mixed data from only two languages. In this paper, we introduce OffMix-3L, a novel offensive language identification dataset containing code-mixed data from three different languages. We experiment with several models on this dataset and observe that BanglishBERT outperforms other transformer-based models and GPT-3.5.
Understanding the Role of Mixup in Knowledge Distillation: An Empirical Study
Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that "smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.
MambaMixer: Efficient Selective State Space Models with Dual Token and Channel Selection
Recent advances in deep learning have mainly relied on Transformers due to their data dependency and ability to learn at scale. The attention module in these architectures, however, exhibits quadratic time and space in input size, limiting their scalability for long-sequence modeling. Despite recent attempts to design efficient and effective architecture backbone for multi-dimensional data, such as images and multivariate time series, existing models are either data independent, or fail to allow inter- and intra-dimension communication. Recently, State Space Models (SSMs), and more specifically Selective State Space Models, with efficient hardware-aware implementation, have shown promising potential for long sequence modeling. Motivated by the success of SSMs, we present MambaMixer, a new architecture with data-dependent weights that uses a dual selection mechanism across tokens and channels, called Selective Token and Channel Mixer. MambaMixer connects selective mixers using a weighted averaging mechanism, allowing layers to have direct access to early features. As a proof of concept, we design Vision MambaMixer (ViM2) and Time Series MambaMixer (TSM2) architectures based on the MambaMixer block and explore their performance in various vision and time series forecasting tasks. Our results underline the importance of selective mixing across both tokens and channels. In ImageNet classification, object detection, and semantic segmentation tasks, ViM2 achieves competitive performance with well-established vision models and outperforms SSM-based vision models. In time series forecasting, TSM2 achieves outstanding performance compared to state-of-the-art methods while demonstrating significantly improved computational cost. These results show that while Transformers, cross-channel attention, and MLPs are sufficient for good performance in time series forecasting, neither is necessary.
MixPro: Simple yet Effective Data Augmentation for Prompt-based Learning
Prompt-based learning has shown considerable promise in reformulating various downstream tasks as cloze problems by combining original input with a predetermined template. This approach demonstrates its effectiveness, especially in few-shot learning scenarios, where the model is trained on a scarce amount of data. Despite its successes, the limited templates and text in few-shot prompt-based learning scenarios leave significant room for performance improvement. Moreover, existing methods sometimes resort to model ensembles, which, while effective, could potentially hamper model efficiency due to increased computational demands. To address these issues, we introduce MixPro, an augmentation method designed to augment both the vanilla input text and the templates. We implement this through the token-level, the sentence-level, and the template-level Mixup strategies. The experimental results on five few-shot datasets show that MixPro outperforms other augmentation baselines, improving model performance by an average of 5.08% compared to before augmentation.
Fix your Models by Fixing your Datasets
The quality of underlying training data is very crucial for building performant machine learning models with wider generalizabilty. However, current machine learning (ML) tools lack streamlined processes for improving the data quality. So, getting data quality insights and iteratively pruning the errors to obtain a dataset which is most representative of downstream use cases is still an ad-hoc manual process. Our work addresses this data tooling gap, required to build improved ML workflows purely through data-centric techniques. More specifically, we introduce a systematic framework for (1) finding noisy or mislabelled samples in the dataset and, (2) identifying the most informative samples, which when included in training would provide maximal model performance lift. We demonstrate the efficacy of our framework on public as well as private enterprise datasets of two Fortune 500 companies, and are confident this work will form the basis for ML teams to perform more intelligent data discovery and pruning.
MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong model performance. MixtureVitae follows a risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources), alongside targeted instruction, reasoning and synthetic data with documented provenance. We detail a transparent, multi-stage pipeline for license-aware filtering, safety and quality screening, and domain-aware mixing, and we release the dataset and curation recipes to support reproducible research. In controlled experiments using the open-sci-ref training protocol (fixed architectures at 130M/400M/1.3B/1.7B parameters; training budgets of 50B and 300B tokens), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B/300B setting they surpass FineWeb-Edu and approach DCLM in the later stages of training. Performance is particularly strong on math/code and competitive on QA tasks. These results demonstrate that permissive-first, risk-mitigated data provides a practical and legally mitigated foundation for training capable LLMs, reducing reliance on indiscriminate web scraping without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
From Words to Code: Harnessing Data for Program Synthesis from Natural Language
Creating programs to correctly manipulate data is a difficult task, as the underlying programming languages and APIs can be challenging to learn for many users who are not skilled programmers. Large language models (LLMs) demonstrate remarkable potential for generating code from natural language, but in the data manipulation domain, apart from the natural language (NL) description of the intended task, we also have the dataset on which the task is to be performed, or the "data context". Existing approaches have utilized data context in a limited way by simply adding relevant information from the input data into the prompts sent to the LLM. In this work, we utilize the available input data to execute the candidate programs generated by the LLMs and gather their outputs. We introduce semantic reranking, a technique to rerank the programs generated by LLMs based on three signals coming the program outputs: (a) semantic filtering and well-formedness based score tuning: do programs even generate well-formed outputs, (b) semantic interleaving: how do the outputs from different candidates compare to each other, and (c) output-based score tuning: how do the outputs compare to outputs predicted for the same task. We provide theoretical justification for semantic interleaving. We also introduce temperature mixing, where we combine samples generated by LLMs using both high and low temperatures. We extensively evaluate our approach in three domains, namely databases (SQL), data science (Pandas) and business intelligence (Excel's Power Query M) on a variety of new and existing benchmarks. We observe substantial gains across domains, with improvements of up to 45% in top-1 accuracy and 34% in top-3 accuracy.
Stratify: Unifying Multi-Step Forecasting Strategies
A key aspect of temporal domains is the ability to make predictions multiple time steps into the future, a process known as multi-step forecasting (MSF). At the core of this process is selecting a forecasting strategy, however, with no existing frameworks to map out the space of strategies, practitioners are left with ad-hoc methods for strategy selection. In this work, we propose Stratify, a parameterised framework that addresses multi-step forecasting, unifying existing strategies and introducing novel, improved strategies. We evaluate Stratify on 18 benchmark datasets, five function classes, and short to long forecast horizons (10, 20, 40, 80). In over 84% of 1080 experiments, novel strategies in Stratify improved performance compared to all existing ones. Importantly, we find that no single strategy consistently outperforms others in all task settings, highlighting the need for practitioners explore the Stratify space to carefully search and select forecasting strategies based on task-specific requirements. Our results are the most comprehensive benchmarking of known and novel forecasting strategies. We make code available to reproduce our results.
Towards Foundational Models for Dynamical System Reconstruction: Hierarchical Meta-Learning via Mixture of Experts
As foundational models reshape scientific discovery, a bottleneck persists in dynamical system reconstruction (DSR): the ability to learn across system hierarchies. Many meta-learning approaches have been applied successfully to single systems, but falter when confronted with sparse, loosely related datasets requiring multiple hierarchies to be learned. Mixture of Experts (MoE) offers a natural paradigm to address these challenges. Despite their potential, we demonstrate that naive MoEs are inadequate for the nuanced demands of hierarchical DSR, largely due to their gradient descent-based gating update mechanism which leads to slow updates and conflicted routing during training. To overcome this limitation, we introduce MixER: Mixture of Expert Reconstructors, a novel sparse top-1 MoE layer employing a custom gating update algorithm based on K-means and least squares. Extensive experiments validate MixER's capabilities, demonstrating efficient training and scalability to systems of up to ten parametric ordinary differential equations. However, our layer underperforms state-of-the-art meta-learners in high-data regimes, particularly when each expert is constrained to process only a fraction of a dataset composed of highly related data points. Further analysis with synthetic and neuroscientific time series suggests that the quality of the contextual representations generated by MixER is closely linked to the presence of hierarchical structure in the data.
Efficient Dataset Distillation through Alignment with Smooth and High-Quality Expert Trajectories
Training a large and state-of-the-art machine learning model typically necessitates the use of large-scale datasets, which, in turn, makes the training and parameter-tuning process expensive and time-consuming. Some researchers opt to distil information from real-world datasets into tiny and compact synthetic datasets while maintaining their ability to train a well-performing model, hence proposing a data-efficient method known as Dataset Distillation (DD). Despite recent progress in this field, existing methods still underperform and cannot effectively replace large datasets. In this paper, unlike previous methods that focus solely on improving the efficacy of student distillation, we are the first to recognize the important interplay between expert and student. We argue the significant impact of expert smoothness when employing more potent expert trajectories in subsequent dataset distillation. Based on this, we introduce the integration of clipping loss and gradient penalty to regulate the rate of parameter changes in expert trajectories. Furthermore, in response to the sensitivity exhibited towards randomly initialized variables during distillation, we propose representative initialization for synthetic dataset and balanced inner-loop loss. Finally, we present two enhancement strategies, namely intermediate matching loss and weight perturbation, to mitigate the potential occurrence of cumulative errors. We conduct extensive experiments on datasets of different scales, sizes, and resolutions. The results demonstrate that the proposed method significantly outperforms prior methods.
MDMMT-2: Multidomain Multimodal Transformer for Video Retrieval, One More Step Towards Generalization
In this work we present a new State-of-The-Art on the text-to-video retrieval task on MSR-VTT, LSMDC, MSVD, YouCook2 and TGIF obtained by a single model. Three different data sources are combined: weakly-supervised videos, crowd-labeled text-image pairs and text-video pairs. A careful analysis of available pre-trained networks helps to choose the best prior-knowledge ones. We introduce three-stage training procedure that provides high transfer knowledge efficiency and allows to use noisy datasets during training without prior knowledge degradation. Additionally, double positional encoding is used for better fusion of different modalities and a simple method for non-square inputs processing is suggested.
Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP
Web-crawled datasets have enabled remarkable generalization capabilities in recent image-text models such as CLIP (Contrastive Language-Image pre-training) or Flamingo, but little is known about the dataset creation processes. In this work, we introduce a testbed of six publicly available data sources - YFCC, LAION, Conceptual Captions, WIT, RedCaps, Shutterstock - to investigate how pre-training distributions induce robustness in CLIP. We find that the performance of the pre-training data varies substantially across distribution shifts, with no single data source dominating. Moreover, we systematically study the interactions between these data sources and find that combining multiple sources does not necessarily yield better models, but rather dilutes the robustness of the best individual data source. We complement our empirical findings with theoretical insights from a simple setting, where combining the training data also results in diluted robustness. In addition, our theoretical model provides a candidate explanation for the success of the CLIP-based data filtering technique recently employed in the LAION dataset. Overall our results demonstrate that simply gathering a large amount of data from the web is not the most effective way to build a pre-training dataset for robust generalization, necessitating further study into dataset design. Code is available at https://github.com/mlfoundations/clip_quality_not_quantity.
Parameter Competition Balancing for Model Merging
While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each fine-tuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing methods fall short in addressing potential conflicts and complex correlations between tasks, especially in parameter-level adjustments, posing a challenge in effectively balancing parameter competition across various tasks. This paper introduces an innovative technique named PCB-Merging (Parameter Competition Balancing), a lightweight and training-free technique that adjusts the coefficients of each parameter for effective model merging. PCB-Merging employs intra-balancing to gauge parameter significance within individual tasks and inter-balancing to assess parameter similarities across different tasks. Parameters with low importance scores are dropped, and the remaining ones are rescaled to form the final merged model. We assessed our approach in diverse merging scenarios, including cross-task, cross-domain, and cross-training configurations, as well as out-of-domain generalization. The experimental results reveal that our approach achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models, outperforming existing model merging methods. The code is publicly available at: https://github.com/duguodong7/pcb-merging.
Unleashing the Potentials of Likelihood Composition for Multi-modal Language Models
Model fusing has always been an important topic, especially in an era where large language models (LLM) and multi-modal language models (MLM) with different architectures, parameter sizes and training pipelines, are being created all the time. In this work, we propose a post-hoc framework, aiming at fusing heterogeneous models off-the-shell, which we call likelihood composition, and the basic idea is to compose multiple models' likelihood distribution when doing a multi-choice visual-question-answering task. Here the core concept, likelihood, is actually the log-probability of the candidate answer. In likelihood composition, we introduce some basic operations: debias, highlight, majority-vote and ensemble. By combining (composing) these basic elements, we get the mixed composition methods: mix-composition. Through conducting comprehensive experiments on 9 VQA datasets and 10 MLMs, we prove the effectiveness of mix-composition compared with simple ensemble or majority-vote methods. In this framework, people can propose new basic composition methods and combine them to get the new mixed composition methods. We hope our proposed likelihood composition can provide a new perspective of fusing heterogeneous models and inspire the exploration under this framework.
Data Efficiency for Large Recommendation Models
Large recommendation models (LRMs) are fundamental to the multi-billion dollar online advertising industry, processing massive datasets of hundreds of billions of examples before transitioning to continuous online training to adapt to rapidly changing user behavior. The massive scale of data directly impacts both computational costs and the speed at which new methods can be evaluated (R&D velocity). This paper presents actionable principles and high-level frameworks to guide practitioners in optimizing training data requirements. These strategies have been successfully deployed in Google's largest Ads CTR prediction models and are broadly applicable beyond LRMs. We outline the concept of data convergence, describe methods to accelerate this convergence, and finally, detail how to optimally balance training data volume with model size.
Recycling the Web: A Method to Enhance Pre-training Data Quality and Quantity for Language Models
Scaling laws predict that the performance of large language models improves with increasing model size and data size. In practice, pre-training has been relying on massive web crawls, using almost all data sources publicly available on the internet so far. However, this pool of natural data does not grow at the same rate as the compute supply. Furthermore, the availability of high-quality texts is even more limited: data filtering pipelines often remove up to 99% of the initial web scrapes to achieve state-of-the-art. To address the "data wall" of pre-training scaling, our work explores ways to transform and recycle data discarded in existing filtering processes. We propose REWIRE, REcycling the Web with guIded REwrite, a method to enrich low-quality documents so that they could become useful for training. This in turn allows us to increase the representation of synthetic data in the final pre-training set. Experiments at 1B, 3B and 7B scales of the DCLM benchmark show that mixing high-quality raw texts and our rewritten texts lead to 1.0, 1.3 and 2.5 percentage points improvement respectively across 22 diverse tasks, compared to training on only filtered web data. Training on the raw-synthetic data mix is also more effective than having access to 2x web data. Through further analysis, we demonstrate that about 82% of the mixed in texts come from transforming lower-quality documents that would otherwise be discarded. REWIRE also outperforms related approaches of generating synthetic data, including Wikipedia-style paraphrasing, question-answer synthesizing and knowledge extraction. These results suggest that recycling web texts holds the potential for being a simple and effective approach for scaling pre-training data.
DualMix: Unleashing the Potential of Data Augmentation for Online Class-Incremental Learning
Online Class-Incremental (OCI) learning has sparked new approaches to expand the previously trained model knowledge from sequentially arriving data streams with new classes. Unfortunately, OCI learning can suffer from catastrophic forgetting (CF) as the decision boundaries for old classes can become inaccurate when perturbated by new ones. Existing literature have applied the data augmentation (DA) to alleviate the model forgetting, while the role of DA in OCI has not been well understood so far. In this paper, we theoretically show that augmented samples with lower correlation to the original data are more effective in preventing forgetting. However, aggressive augmentation may also reduce the consistency between data and corresponding labels, which motivates us to exploit proper DA to boost the OCI performance and prevent the CF problem. We propose the Enhanced Mixup (EnMix) method that mixes the augmented samples and their labels simultaneously, which is shown to enhance the sample diversity while maintaining strong consistency with corresponding labels. Further, to solve the class imbalance problem, we design an Adaptive Mixup (AdpMix) method to calibrate the decision boundaries by mixing samples from both old and new classes and dynamically adjusting the label mixing ratio. Our approach is demonstrated to be effective on several benchmark datasets through extensive experiments, and it is shown to be compatible with other replay-based techniques.
What Makes a "Good" Data Augmentation in Knowledge Distillation -- A Statistical Perspective
Knowledge distillation (KD) is a general neural network training approach that uses a teacher model to guide the student model. Existing works mainly study KD from the network output side (e.g., trying to design a better KD loss function), while few have attempted to understand it from the input side. Especially, its interplay with data augmentation (DA) has not been well understood. In this paper, we ask: Why do some DA schemes (e.g., CutMix) inherently perform much better than others in KD? What makes a "good" DA in KD? Our investigation from a statistical perspective suggests that a good DA scheme should reduce the covariance of the teacher-student cross-entropy. A practical metric, the stddev of teacher's mean probability (T. stddev), is further presented and well justified empirically. Besides the theoretical understanding, we also introduce a new entropy-based data-mixing DA scheme, CutMixPick, to further enhance CutMix. Extensive empirical studies support our claims and demonstrate how we can harvest considerable performance gains simply by using a better DA scheme in knowledge distillation.
Mix-of-Show: Decentralized Low-Rank Adaptation for Multi-Concept Customization of Diffusion Models
Public large-scale text-to-image diffusion models, such as Stable Diffusion, have gained significant attention from the community. These models can be easily customized for new concepts using low-rank adaptations (LoRAs). However, the utilization of multiple concept LoRAs to jointly support multiple customized concepts presents a challenge. We refer to this scenario as decentralized multi-concept customization, which involves single-client concept tuning and center-node concept fusion. In this paper, we propose a new framework called Mix-of-Show that addresses the challenges of decentralized multi-concept customization, including concept conflicts resulting from existing single-client LoRA tuning and identity loss during model fusion. Mix-of-Show adopts an embedding-decomposed LoRA (ED-LoRA) for single-client tuning and gradient fusion for the center node to preserve the in-domain essence of single concepts and support theoretically limitless concept fusion. Additionally, we introduce regionally controllable sampling, which extends spatially controllable sampling (e.g., ControlNet and T2I-Adaptor) to address attribute binding and missing object problems in multi-concept sampling. Extensive experiments demonstrate that Mix-of-Show is capable of composing multiple customized concepts with high fidelity, including characters, objects, and scenes.
Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects
We propose an end-to-end music mixing style transfer system that converts the mixing style of an input multitrack to that of a reference song. This is achieved with an encoder pre-trained with a contrastive objective to extract only audio effects related information from a reference music recording. All our models are trained in a self-supervised manner from an already-processed wet multitrack dataset with an effective data preprocessing method that alleviates the data scarcity of obtaining unprocessed dry data. We analyze the proposed encoder for the disentanglement capability of audio effects and also validate its performance for mixing style transfer through both objective and subjective evaluations. From the results, we show the proposed system not only converts the mixing style of multitrack audio close to a reference but is also robust with mixture-wise style transfer upon using a music source separation model.
RegMix: Data Mixture as Regression for Language Model Pre-training
The data mixture for large language model pre-training significantly impacts performance, yet how to determine an effective mixture remains unclear. We propose RegMix to automatically identify a high-performing data mixture by formulating it as a regression task. RegMix involves training a set of small models with diverse data mixtures and fitting a regression model to predict their performance given their respective mixtures. With the fitted regression model, we simulate the top-ranked mixture and use it to train a large-scale model with orders of magnitude more compute. To empirically validate RegMix, we train 512 models with 1M parameters for 1B tokens of different mixtures to fit the regression model and find the optimal mixture. Using this mixture we train a 1B parameter model for 25B tokens (i.e. 1000x larger and 25x longer) which we find performs best among 64 candidate 1B parameter models with other mixtures. Further, our method demonstrates superior performance compared to human selection and achieves results that match or surpass DoReMi, while utilizing only 10% of the compute budget. Our experiments also show that (1) Data mixtures significantly impact performance with single-task performance variations of up to 14.6%; (2) Web corpora rather than data perceived as high-quality like Wikipedia have the strongest positive correlation with downstream performance; (3) Domains interact in complex ways often contradicting common sense, thus automatic approaches like RegMix are needed; (4) Data mixture effects transcend scaling laws, and our approach captures the complexity by considering all domains together. Our code is available at https://github.com/sail-sg/regmix.
Improving Spoken Language Identification with Map-Mix
The pre-trained multi-lingual XLSR model generalizes well for language identification after fine-tuning on unseen languages. However, the performance significantly degrades when the languages are not very distinct from each other, for example, in the case of dialects. Low resource dialect classification remains a challenging problem to solve. We present a new data augmentation method that leverages model training dynamics of individual data points to improve sampling for latent mixup. The method works well in low-resource settings where generalization is paramount. Our datamaps-based mixup technique, which we call Map-Mix improves weighted F1 scores by 2% compared to the random mixup baseline and results in a significantly well-calibrated model. The code for our method is open sourced on https://github.com/skit-ai/Map-Mix.
Dynamic Data Mixing Maximizes Instruction Tuning for Mixture-of-Experts
Mixture-of-Experts (MoE) models have shown remarkable capability in instruction tuning, especially when the number of tasks scales. However, previous methods simply merge all training tasks (e.g. creative writing, coding, and mathematics) and apply fixed sampling weights, without considering the importance of different tasks as the model training state changes. In this way, the most helpful data cannot be effectively distinguished, leading to suboptimal model performance. To reduce the potential redundancies of datasets, we make the first attempt and propose a novel dynamic data mixture for MoE instruction tuning. Specifically, inspired by MoE's token routing preference, we build dataset-level representations and then capture the subtle differences among datasets. Finally, we propose to dynamically adjust the sampling weight of datasets by their inter-redundancies, thus maximizing global performance under a limited training budget. The experimental results on two MoE models demonstrate the effectiveness of our approach on both downstream knowledge \& reasoning tasks and open-ended queries. Code and models are available at https://github.com/Spico197/MoE-SFT .
Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning
The efficacy of large language models (LLMs) on downstream tasks usually hinges on instruction tuning, which relies critically on the quality of training data. Unfortunately, collecting high-quality and diverse data is both expensive and time-consuming. To mitigate this issue, we propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets through multi-agent collaboration and assessment. The framework adopts a three-pronged strategy. It initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method. Subsequently, the generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality. Finaly, the above process evolves in a dynamic refinement phase, where more effective LLMs are prioritized, enhancing the overall data quality. Our empirical studies, including instruction tuning experiments with models such as Pythia and LLaMA, demonstrate the effectiveness of the proposed framework. Optimized datasets have achieved substantial improvements, with an average increase of 12% and notable gains in specific metrics, such as a 40% improvement in Fermi, as evidenced by benchmarks like MT-bench, Vicuna bench, and WizardLM testset.
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data
Data mixing augmentation has proved effective in training deep models. Recent methods mix labels mainly based on the mixture proportion of image pixels. As the main discriminative information of a fine-grained image usually resides in subtle regions, methods along this line are prone to heavy label noise in fine-grained recognition. We propose in this paper a novel scheme, termed as Semantically Proportional Mixing (SnapMix), which exploits class activation map (CAM) to lessen the label noise in augmenting fine-grained data. SnapMix generates the target label for a mixed image by estimating its intrinsic semantic composition, and allows for asymmetric mixing operations and ensures semantic correspondence between synthetic images and target labels. Experiments show that our method consistently outperforms existing mixed-based approaches on various datasets and under different network depths. Furthermore, by incorporating the mid-level features, the proposed SnapMix achieves top-level performance, demonstrating its potential to serve as a solid baseline for fine-grained recognition. Our code is available at https://github.com/Shaoli-Huang/SnapMix.git.
Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup
Mixup is a highly successful technique to improve generalization of neural networks by augmenting the training data with combinations of random pairs. Selective mixup is a family of methods that apply mixup to specific pairs, e.g. only combining examples across classes or domains. These methods have claimed remarkable improvements on benchmarks with distribution shifts, but their mechanisms and limitations remain poorly understood. We examine an overlooked aspect of selective mixup that explains its success in a completely new light. We find that the non-random selection of pairs affects the training distribution and improve generalization by means completely unrelated to the mixing. For example in binary classification, mixup across classes implicitly resamples the data for a uniform class distribution - a classical solution to label shift. We show empirically that this implicit resampling explains much of the improvements in prior work. Theoretically, these results rely on a regression toward the mean, an accidental property that we identify in several datasets. We have found a new equivalence between two successful methods: selective mixup and resampling. We identify limits of the former, confirm the effectiveness of the latter, and find better combinations of their respective benefits.
MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose MixGRPO, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for sampling. So we present a faster variant, termed MixGRPO-Flash, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%. Codes and models are available at https://github.com/Tencent-Hunyuan/MixGRPO{MixGRPO}.
Data Laundering: Artificially Boosting Benchmark Results through Knowledge Distillation
In this paper, we show that knowledge distillation can be subverted to manipulate language model benchmark scores, revealing a critical vulnerability in current evaluation practices. We introduce "Data Laundering," a three-phase process analogous to financial money laundering, that enables the covert transfer of benchmark-specific knowledge through seemingly legitimate intermediate training steps. Through extensive experiments with a 2-layer BERT student model, we show how this approach can achieve substantial improvements in benchmark accuracy (up to 75\% on GPQA) without developing genuine reasoning capabilities. Notably, this method can be exploited intentionally or even unintentionally, as researchers may inadvertently adopt this method that inflates scores using knowledge distillation without realizing the implications. While our findings demonstrate the effectiveness of this technique, we present them as a cautionary tale highlighting the urgent need for more robust evaluation methods in AI. This work aims to contribute to the ongoing discussion about evaluation integrity in AI development and the need for benchmarks that more accurately reflect true model capabilities. The code is available at https://github.com/mbzuai-nlp/data_laundering.
Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary Data
Few-shot learning is valuable in many real-world applications, but learning a generalizable model without overfitting to the few labeled datapoints is challenging. In this work, we focus on Few-shot Learning with Auxiliary Data (FLAD), a training paradigm that assumes access to auxiliary data during few-shot learning in hopes of improving generalization. Previous works have proposed automated methods for mixing auxiliary and target data, but these methods typically scale linearly (or worse) with the number of auxiliary datasets, limiting their practicality. In this work we relate FLAD to the explore-exploit dilemma that is central to the multi-armed bandit setting and derive algorithms whose computational complexity is independent of the number of auxiliary datasets, allowing us to scale to 100x more auxiliary datasets than prior methods. We propose two algorithms -- EXP3-FLAD and UCB1-FLAD -- and compare them with prior FLAD methods that either explore or exploit, finding that the combination of exploration and exploitation is crucial. Through extensive experimentation we find that our methods outperform all pre-existing FLAD methods by 4% and lead to the first 3 billion parameter language models that outperform the 175 billion parameter GPT-3. Overall, our work suggests that the discovery of better, more efficient mixing strategies for FLAD may provide a viable path towards substantially improving generalization in few-shot learning.
DTT: An Example-Driven Tabular Transformer for Joinability by Leveraging Large Language Models
Many organizations rely on data from government and third-party sources, and those sources rarely follow the same data formatting. This introduces challenges in integrating data from multiple sources or aligning external sources with internal databases. Commercial database systems do not offer adequate support for integrating data from heterogeneous sources, and manual integration is both time-consuming and inefficient. State-of-the-art data integration approaches that rely on similarity functions and textual transformations often fail to handle challenging cases where multiple mappings are required, or the mappings go beyond simple textual transformations. In this paper, we study the potentials of deep neural models for transforming tables for joinability. In particular, we cast the problem as a prediction task and develop a framework that leverages large deep-learning language models to transform tabular data from a source formatting to a desired target representation. Our framework can efficiently learn the patterns for mapping a source formatting into an expected target using just a few examples, which can then be used for tasks such as table joining, filling in missing values, and error detection. Compared to state-of-the-art mapping and joining approaches, our framework delivers noticeably more accurate and scalable performance on both real-world and synthetic datasets. Our experimental evaluation also shows that the performance of the proposed framework using our fine-tuned model is at par or better than large language models such as GPT-3, despite the significant difference in size, and that using large language models within our framework improves their performance.
Reinforced Approximate Exploratory Data Analysis
Exploratory data analytics (EDA) is a sequential decision making process where analysts choose subsequent queries that might lead to some interesting insights based on the previous queries and corresponding results. Data processing systems often execute the queries on samples to produce results with low latency. Different downsampling strategy preserves different statistics of the data and have different magnitude of latency reductions. The optimum choice of sampling strategy often depends on the particular context of the analysis flow and the hidden intent of the analyst. In this paper, we are the first to consider the impact of sampling in interactive data exploration settings as they introduce approximation errors. We propose a Deep Reinforcement Learning (DRL) based framework which can optimize the sample selection in order to keep the analysis and insight generation flow intact. Evaluations with 3 real datasets show that our technique can preserve the original insight generation flow while improving the interaction latency, compared to baseline methods.
RankMixup: Ranking-Based Mixup Training for Network Calibration
Network calibration aims to accurately estimate the level of confidences, which is particularly important for employing deep neural networks in real-world systems. Recent approaches leverage mixup to calibrate the network's predictions during training. However, they do not consider the problem that mixtures of labels in mixup may not accurately represent the actual distribution of augmented samples. In this paper, we present RankMixup, a novel mixup-based framework alleviating the problem of the mixture of labels for network calibration. To this end, we propose to use an ordinal ranking relationship between raw and mixup-augmented samples as an alternative supervisory signal to the label mixtures for network calibration. We hypothesize that the network should estimate a higher level of confidence for the raw samples than the augmented ones (Fig.1). To implement this idea, we introduce a mixup-based ranking loss (MRL) that encourages lower confidences for augmented samples compared to raw ones, maintaining the ranking relationship. We also propose to leverage the ranking relationship among multiple mixup-augmented samples to further improve the calibration capability. Augmented samples with larger mixing coefficients are expected to have higher confidences and vice versa (Fig.1). That is, the order of confidences should be aligned with that of mixing coefficients. To this end, we introduce a novel loss, M-NDCG, in order to reduce the number of misaligned pairs of the coefficients and confidences. Extensive experimental results on standard benchmarks for network calibration demonstrate the effectiveness of RankMixup.
Mastering Text, Code and Math Simultaneously via Fusing Highly Specialized Language Models
Underlying data distributions of natural language, programming code, and mathematical symbols vary vastly, presenting a complex challenge for large language models (LLMs) that strive to achieve high performance across all three domains simultaneously. Achieving a very high level of proficiency for an LLM within a specific domain often requires extensive training with relevant corpora, which is typically accompanied by a sacrifice in performance in other domains. In this paper, we propose to fuse models that are already highly-specialized directly. The proposed fusing framework, UltraFuser, consists of three distinct specialists that are already sufficiently trained on language, coding, and mathematics. A token-level gating mechanism is introduced to blend the specialists' outputs. A two-stage training strategy accompanied by balanced sampling is designed to ensure stability. To effectively train the fused model, we further construct a high-quality supervised instruction tuning dataset, UltraChat 2, which includes text, code, and mathematical content. This dataset comprises approximately 300,000 instructions and covers a wide range of topics in each domain. Experiments show that our model could simultaneously achieve mastery of the three crucial domains.
Decoupled Data Augmentation for Improving Image Classification
Recent advancements in image mixing and generative data augmentation have shown promise in enhancing image classification. However, these techniques face the challenge of balancing semantic fidelity with diversity. Specifically, image mixing involves interpolating two images to create a new one, but this pixel-level interpolation can compromise fidelity. Generative augmentation uses text-to-image generative models to synthesize or modify images, often limiting diversity to avoid generating out-of-distribution data that potentially affects accuracy. We propose that this fidelity-diversity dilemma partially stems from the whole-image paradigm of existing methods. Since an image comprises the class-dependent part (CDP) and the class-independent part (CIP), where each part has fundamentally different impacts on the image's fidelity, treating different parts uniformly can therefore be misleading. To address this fidelity-diversity dilemma, we introduce Decoupled Data Augmentation (De-DA), which resolves the dilemma by separating images into CDPs and CIPs and handling them adaptively. To maintain fidelity, we use generative models to modify real CDPs under controlled conditions, preserving semantic consistency. To enhance diversity, we replace the image's CIP with inter-class variants, creating diverse CDP-CIP combinations. Additionally, we implement an online randomized combination strategy during training to generate numerous distinct CDP-CIP combinations cost-effectively. Comprehensive empirical evaluations validate the effectiveness of our method.
SUMix: Mixup with Semantic and Uncertain Information
Mixup data augmentation approaches have been applied for various tasks of deep learning to improve the generalization ability of deep neural networks. Some existing approaches CutMix, SaliencyMix, etc. randomly replace a patch in one image with patches from another to generate the mixed image. Similarly, the corresponding labels are linearly combined by a fixed ratio lambda by l. The objects in two images may be overlapped during the mixing process, so some semantic information is corrupted in the mixed samples. In this case, the mixed image does not match the mixed label information. Besides, such a label may mislead the deep learning model training, which results in poor performance. To solve this problem, we proposed a novel approach named SUMix to learn the mixing ratio as well as the uncertainty for the mixed samples during the training process. First, we design a learnable similarity function to compute an accurate mix ratio. Second, an approach is investigated as a regularized term to model the uncertainty of the mixed samples. We conduct experiments on five image benchmarks, and extensive experimental results imply that our method is capable of improving the performance of classifiers with different cutting-based mixup approaches. The source code is available at https://github.com/JinXins/SUMix.
Meta-rater: A Multi-dimensional Data Selection Method for Pre-training Language Models
The composition of pre-training datasets for large language models (LLMs) remains largely undisclosed, hindering transparency and efforts to optimize data quality, a critical driver of model performance. Current data selection methods, such as natural language quality assessments, diversity-based filters, and classifier-based approaches, are limited by single-dimensional evaluation or redundancy-focused strategies. To address these gaps, we propose four dimensions to evaluate data quality: professionalism, readability, reasoning, and cleanliness. We further introduce Meta-rater,a multi-dimensional data selection method that integrates these dimensions with existing quality metrics through learned optimal weightings. Meta-rater employs proxy models to train a regression model that predicts validation loss, enabling the identification of optimal combinations of quality scores. Experiments demonstrate that Meta-rater doubles convergence speed for 1.3B parameter models and improves downstream task performance by 3.23, with advantages that scale to models as large as 7.2B parameters. Our work establishes that holistic, multi-dimensional quality integration significantly outperforms conventional single-dimension approaches, offering a scalable paradigm for enhancing pre-training efficiency and model capability. To advance future research, we release scripts, data, and models at https://github.com/opendatalab/Meta-rater.
RetrieveGPT: Merging Prompts and Mathematical Models for Enhanced Code-Mixed Information Retrieval
Code-mixing, the integration of lexical and grammatical elements from multiple languages within a single sentence, is a widespread linguistic phenomenon, particularly prevalent in multilingual societies. In India, social media users frequently engage in code-mixed conversations using the Roman script, especially among migrant communities who form online groups to share relevant local information. This paper focuses on the challenges of extracting relevant information from code-mixed conversations, specifically within Roman transliterated Bengali mixed with English. This study presents a novel approach to address these challenges by developing a mechanism to automatically identify the most relevant answers from code-mixed conversations. We have experimented with a dataset comprising of queries and documents from Facebook, and Query Relevance files (QRels) to aid in this task. Our results demonstrate the effectiveness of our approach in extracting pertinent information from complex, code-mixed digital conversations, contributing to the broader field of natural language processing in multilingual and informal text environments. We use GPT-3.5 Turbo via prompting alongwith using the sequential nature of relevant documents to frame a mathematical model which helps to detect relevant documents corresponding to a query.
Blending Is All You Need: Cheaper, Better Alternative to Trillion-Parameters LLM
In conversational AI research, there's a noticeable trend towards developing models with a larger number of parameters, exemplified by models like ChatGPT. While these expansive models tend to generate increasingly better chat responses, they demand significant computational resources and memory. This study explores a pertinent question: Can a combination of smaller models collaboratively achieve comparable or enhanced performance relative to a singular large model? We introduce an approach termed "blending", a straightforward yet effective method of integrating multiple chat AIs. Our empirical evidence suggests that when specific smaller models are synergistically blended, they can potentially outperform or match the capabilities of much larger counterparts. For instance, integrating just three models of moderate size (6B/13B paramaeters) can rival or even surpass the performance metrics of a substantially larger model like ChatGPT (175B+ paramaters). This hypothesis is rigorously tested using A/B testing methodologies with a large user base on the Chai research platform over a span of thirty days. The findings underscore the potential of the "blending" strategy as a viable approach for enhancing chat AI efficacy without a corresponding surge in computational demands.
RegMix: Data Mixing Augmentation for Regression
Data augmentation is becoming essential for improving regression performance in critical applications including manufacturing, climate prediction, and finance. Existing techniques for data augmentation largely focus on classification tasks and do not readily apply to regression tasks. In particular, the recent Mixup techniques for classification have succeeded in improving the model performance, which is reasonable due to the characteristics of the classification task, but has limitations in regression. We show that mixing examples that have large data distances using linear interpolations may have increasingly-negative effects on model performance. Our key idea is thus to limit the distances between examples that are mixed. We propose RegMix, a data augmentation framework for regression that learns for each example how many nearest neighbors it should be mixed with for the best model performance using a validation set. Our experiments conducted both on synthetic and real datasets show that RegMix outperforms state-of-the-art data augmentation baselines applicable to regression.
Cheems: Wonderful Matrices More Efficient and More Effective Architecture
Recent studies have shown that, relative position encoding performs well in selective state space model scanning algorithms, and the architecture that balances SSM and Attention enhances the efficiency and effectiveness of the algorithm, while the sparse activation of the mixture of experts reduces the training cost. I studied the effectiveness of using different position encodings in structured state space dual algorithms, and the more effective SSD-Attn internal and external function mixing method, and designed a more efficient cross domain mixture of experts. I found that the same matrix is very wonderful in different algorithms, which allows us to establish a new hybrid sparse architecture: Cheems. Compared with other hybrid architectures, it is more efficient and more effective in language modeling tasks.
Data Mixing Optimization for Supervised Fine-Tuning of Large Language Models
Optimizing data mixtures for supervised fine-tuning (SFT) of large language models (LLMs) is critical for developing general-purpose models, yet this area remains underexplored. In this paper, we frame data mixing as an optimization problem and introduce a novel method designed to minimize validation loss. Our approach parametrizes the loss by modeling effective data transferred and leveraging scaling laws for fine-tuning. By experimenting with various small-scale data mixtures, we fit these parameters and derive the optimal weights. We provide both mathematical proofs and empirical results demonstrating that our algorithm achieves excellent overall and individual performance across all domains. Through controlled experiments, we show that models trained with our optimized weights perform on par with those using optimal weights determined via grid search, with per-domain loss only 0.66% higher than the best domain loss from grid search on average. Additionally, we show that reweighting popular SFT datasets using our method improves both validation loss and downstream performance. Finally, we discuss how our method can generalize to guide data selection for domain-specific models and provide insights into SFT.
How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition
Large language models (LLMs) with enormous pre-training tokens and parameter amounts emerge abilities, including math reasoning, code generation, and instruction following. These abilities are further enhanced by supervised fine-tuning (SFT). The open-source community has studied on ad-hoc SFT for each ability, while proprietary LLMs are versatile for all abilities. It is important to investigate how to unlock them with multiple abilities via SFT. In this study, we specifically focus on the data composition between mathematical reasoning, code generation, and general human-aligning abilities during SFT. From a scaling perspective, we investigate the relationship between model abilities and various factors including data amounts, data composition ratio, model parameters, and SFT strategies. Our experiments reveal that different abilities exhibit different scaling patterns, and larger models generally show superior performance with the same amount of data. Mathematical reasoning and code generation improve as data amounts increase consistently, while the general ability is enhanced with about a thousand samples and improves slowly. We find data composition results in various abilities improvements with low data amounts, while conflicts of abilities with high data amounts. Our experiments further show that composition data amount impacts performance, while the influence of composition ratio is insignificant. Regarding the SFT strategies, we evaluate sequential learning multiple abilities are prone to catastrophic forgetting. Our proposed Dual-stage Mixed Fine-tuning (DMT) strategy learns specialized abilities first and then learns general abilities with a small amount of specialized data to prevent forgetting, offering a promising solution to learn multiple abilities with different scaling patterns.
SVDiff: Compact Parameter Space for Diffusion Fine-Tuning
Diffusion models have achieved remarkable success in text-to-image generation, enabling the creation of high-quality images from text prompts or other modalities. However, existing methods for customizing these models are limited by handling multiple personalized subjects and the risk of overfitting. Moreover, their large number of parameters is inefficient for model storage. In this paper, we propose a novel approach to address these limitations in existing text-to-image diffusion models for personalization. Our method involves fine-tuning the singular values of the weight matrices, leading to a compact and efficient parameter space that reduces the risk of overfitting and language drifting. We also propose a Cut-Mix-Unmix data-augmentation technique to enhance the quality of multi-subject image generation and a simple text-based image editing framework. Our proposed SVDiff method has a significantly smaller model size compared to existing methods (approximately 2,200 times fewer parameters compared with vanilla DreamBooth), making it more practical for real-world applications.
Surveying the Effects of Quality, Diversity, and Complexity in Synthetic Data From Large Language Models
Synthetic data generation with Large Language Models is a promising paradigm for augmenting natural data over a nearly infinite range of tasks. Given this variety, direct comparisons among synthetic data generation algorithms are scarce, making it difficult to understand where improvement comes from and what bottlenecks exist. We propose to evaluate algorithms via the makeup of synthetic data generated by each algorithm in terms of data quality, diversity, and complexity. We choose these three characteristics for their significance in open-ended processes and the impact each has on the capabilities of downstream models. We find quality to be essential for in-distribution model generalization, diversity to be essential for out-of-distribution generalization, and complexity to be beneficial for both. Further, we emphasize the existence of Quality-Diversity trade-offs in training data and the downstream effects on model performance. We then examine the effect of various components in the synthetic data pipeline on each data characteristic. This examination allows us to taxonomize and compare synthetic data generation algorithms through the components they utilize and the resulting effects on data QDC composition. This analysis extends into a discussion on the importance of balancing QDC in synthetic data for efficient reinforcement learning and self-improvement algorithms. Analogous to the QD trade-offs in training data, often there exist trade-offs between model output quality and output diversity which impact the composition of synthetic data. We observe that many models are currently evaluated and optimized only for output quality, thereby limiting output diversity and the potential for self-improvement. We argue that balancing these trade-offs is essential to the development of future self-improvement algorithms and highlight a number of works making progress in this direction.
DREAM: Efficient Dataset Distillation by Representative Matching
Dataset distillation aims to synthesize small datasets with little information loss from original large-scale ones for reducing storage and training costs. Recent state-of-the-art methods mainly constrain the sample synthesis process by matching synthetic images and the original ones regarding gradients, embedding distributions, or training trajectories. Although there are various matching objectives, currently the strategy for selecting original images is limited to naive random sampling. We argue that random sampling overlooks the evenness of the selected sample distribution, which may result in noisy or biased matching targets. Besides, the sample diversity is also not constrained by random sampling. These factors together lead to optimization instability in the distilling process and degrade the training efficiency. Accordingly, we propose a novel matching strategy named as Dataset distillation by REpresentAtive Matching (DREAM), where only representative original images are selected for matching. DREAM is able to be easily plugged into popular dataset distillation frameworks and reduce the distilling iterations by more than 8 times without performance drop. Given sufficient training time, DREAM further provides significant improvements and achieves state-of-the-art performances.
Filter Like You Test: Data-Driven Data Filtering for CLIP Pretraining
We introduce Filter Like You Test (FLYT), a method for curating large-scale vision-language datasets that learns the usefulness of each data point as a pretraining example. FLYT trains a scoring model that learns to weigh each example using gradient signals from downstream tasks training sets. Using the same training methodology, we develop Mixing-FLYT (M-FLYT), which takes the per-example scores generated by different scoring methods and learns to unify them into a single score. Our training methodology naturally produces a distribution over the training examples, which we leverage through Soft Cap Sampling (SCS), a strategy for obtaining a filtered pretraining dataset from per-example probabilities that samples examples while preventing over-representation through a repetition penalty. Using all three methods, we achieve 40.1% ImageNet zero-shot accuracy on the DataComp medium scale filtering benchmark, a 1.9% absolute accuracy increase over all previous results and a 5.5% increase over results that -- like us -- use only public resources.
Fidelity-Aware Data Composition for Robust Robot Generalization
Generalist robot policies trained on large-scale, visually homogeneous datasets can be susceptible to shortcut learning, which impairs their out-of-distribution (OOD) generalization. While generative data augmentation is a common approach to introduce diversity, it presents a subtle challenge: data composition. Naively mixing real and synthetic data can corrupt the learning signal, as this process often prioritizes visual diversity at the expense of information fidelity. This paper suggests that robust generalization depends on principled, fidelity-aware data composition. We introduce Coherent Information Fidelity Tuning (CIFT), a framework that treats data composition as an optimization problem. CIFT uses a practical proxy for Information Fidelity based on the feature-space geometry of a dataset. This enables the identification of a phase transition, termed the Decoherence Point, where training stability degrades. The framework includes a generative engine, Multi-View Video Augmentation (MVAug), to synthesize a causally disentangled data spectrum for this tuning process. Applying CIFT to policy architectures such as pi_0 and Diffusion Policy improves OOD success rates by over 54\%. These results indicate that fidelity-aware composition, beyond data synthesis alone, is an important component for developing robust, general-purpose robots.
LLM Data Selection and Utilization via Dynamic Bi-level Optimization
While large-scale training data is fundamental for developing capable large language models (LLMs), strategically selecting high-quality data has emerged as a critical approach to enhance training efficiency and reduce computational costs. Current data selection methodologies predominantly rely on static, training-agnostic criteria, failing to account for the dynamic model training and data interactions. In this paper, we propose a new Data Weighting Model (DWM) to adjust the weight of selected data within each batch to achieve a dynamic data utilization during LLM training. Specially, to better capture the dynamic data preference of the trained model, a bi-level optimization framework is implemented to update the weighting model. Our experiments demonstrate that DWM enhances the performance of models trained with randomly-selected data, and the learned weighting model can be transferred to enhance other data selection methods and models of different sizes. Moreover, we further analyze how a model's data preferences evolve throughout training, providing new insights into the data preference of the model during training.
QuaDMix: Quality-Diversity Balanced Data Selection for Efficient LLM Pretraining
Quality and diversity are two critical metrics for the training data of large language models (LLMs), positively impacting performance. Existing studies often optimize these metrics separately, typically by first applying quality filtering and then adjusting data proportions. However, these approaches overlook the inherent trade-off between quality and diversity, necessitating their joint consideration. Given a fixed training quota, it is essential to evaluate both the quality of each data point and its complementary effect on the overall dataset. In this paper, we introduce a unified data selection framework called QuaDMix, which automatically optimizes the data distribution for LLM pretraining while balancing both quality and diversity. Specifically, we first propose multiple criteria to measure data quality and employ domain classification to distinguish data points, thereby measuring overall diversity. QuaDMix then employs a unified parameterized data sampling function that determines the sampling probability of each data point based on these quality and diversity related labels. To accelerate the search for the optimal parameters involved in the QuaDMix framework, we conduct simulated experiments on smaller models and use LightGBM for parameters searching, inspired by the RegMix method. Our experiments across diverse models and datasets demonstrate that QuaDMix achieves an average performance improvement of 7.2% across multiple benchmarks. These results outperform the independent strategies for quality and diversity, highlighting the necessity and ability to balance data quality and diversity.
SelectMix: Enhancing Label Noise Robustness through Targeted Sample Mixing
Deep neural networks tend to memorize noisy labels, severely degrading their generalization performance. Although Mixup has demonstrated effectiveness in improving generalization and robustness, existing Mixup-based methods typically perform indiscriminate mixing without principled guidance on sample selection and mixing strategy, inadvertently propagating noisy supervision. To overcome these limitations, we propose SelectMix, a confidence-guided mixing framework explicitly tailored for noisy labels. SelectMix first identifies potentially noisy or ambiguous samples through confidence based mismatch analysis using K-fold cross-validation, then selectively blends identified uncertain samples with confidently predicted peers from their potential classes. Furthermore, SelectMix employs soft labels derived from all classes involved in the mixing process, ensuring the labels accurately represent the composition of the mixed samples, thus aligning supervision signals closely with the actual mixed inputs. Through extensive theoretical analysis and empirical evaluations on multiple synthetic (MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100) and real-world benchmark datasets (CIFAR-N, MNIST and Clothing1M), we demonstrate that SelectMix consistently outperforms strong baseline methods, validating its effectiveness and robustness in learning with noisy labels.
Harnessing Hard Mixed Samples with Decoupled Regularizer
Mixup is an efficient data augmentation approach that improves the generalization of neural networks by smoothing the decision boundary with mixed data. Recently, dynamic mixup methods have improved previous static policies effectively (e.g., linear interpolation) by maximizing target-related salient regions in mixed samples, but excessive additional time costs are not acceptable. These additional computational overheads mainly come from optimizing the mixed samples according to the mixed labels. However, we found that the extra optimizing step may be redundant because label-mismatched mixed samples are informative hard mixed samples for deep models to localize discriminative features. In this paper, we thus are not trying to propose a more complicated dynamic mixup policy but rather an efficient mixup objective function with a decoupled regularizer named Decoupled Mixup (DM). The primary effect is that DM can adaptively utilize those hard mixed samples to mine discriminative features without losing the original smoothness of mixup. As a result, DM enables static mixup methods to achieve comparable or even exceed the performance of dynamic methods without any extra computation. This also leads to an interesting objective design problem for mixup training that we need to focus on both smoothing the decision boundaries and identifying discriminative features. Extensive experiments on supervised and semi-supervised learning benchmarks across seven datasets validate the effectiveness of DM as a plug-and-play module. Source code and models are available at https://github.com/Westlake-AI/openmixup
BIASINSPECTOR: Detecting Bias in Structured Data through LLM Agents
Detecting biases in structured data is a complex and time-consuming task. Existing automated techniques are limited in diversity of data types and heavily reliant on human case-by-case handling, resulting in a lack of generalizability. Currently, large language model (LLM)-based agents have made significant progress in data science, but their ability to detect data biases is still insufficiently explored. To address this gap, we introduce the first end-to-end, multi-agent synergy framework, BIASINSPECTOR, designed for automatic bias detection in structured data based on specific user requirements. It first develops a multi-stage plan to analyze user-specified bias detection tasks and then implements it with a diverse and well-suited set of tools. It delivers detailed results that include explanations and visualizations. To address the lack of a standardized framework for evaluating the capability of LLM agents to detect biases in data, we further propose a comprehensive benchmark that includes multiple evaluation metrics and a large set of test cases. Extensive experiments demonstrate that our framework achieves exceptional overall performance in structured data bias detection, setting a new milestone for fairer data applications.
Data Augmentations in Deep Weight Spaces
Learning in weight spaces, where neural networks process the weights of other deep neural networks, has emerged as a promising research direction with applications in various fields, from analyzing and editing neural fields and implicit neural representations, to network pruning and quantization. Recent works designed architectures for effective learning in that space, which takes into account its unique, permutation-equivariant, structure. Unfortunately, so far these architectures suffer from severe overfitting and were shown to benefit from large datasets. This poses a significant challenge because generating data for this learning setup is laborious and time-consuming since each data sample is a full set of network weights that has to be trained. In this paper, we address this difficulty by investigating data augmentations for weight spaces, a set of techniques that enable generating new data examples on the fly without having to train additional input weight space elements. We first review several recently proposed data augmentation schemes %that were proposed recently and divide them into categories. We then introduce a novel augmentation scheme based on the Mixup method. We evaluate the performance of these techniques on existing benchmarks as well as new benchmarks we generate, which can be valuable for future studies.
MagicMix: Semantic Mixing with Diffusion Models
Have you ever imagined what a corgi-alike coffee machine or a tiger-alike rabbit would look like? In this work, we attempt to answer these questions by exploring a new task called semantic mixing, aiming at blending two different semantics to create a new concept (e.g., corgi + coffee machine -- > corgi-alike coffee machine). Unlike style transfer, where an image is stylized according to the reference style without changing the image content, semantic blending mixes two different concepts in a semantic manner to synthesize a novel concept while preserving the spatial layout and geometry. To this end, we present MagicMix, a simple yet effective solution based on pre-trained text-conditioned diffusion models. Motivated by the progressive generation property of diffusion models where layout/shape emerges at early denoising steps while semantically meaningful details appear at later steps during the denoising process, our method first obtains a coarse layout (either by corrupting an image or denoising from a pure Gaussian noise given a text prompt), followed by injection of conditional prompt for semantic mixing. Our method does not require any spatial mask or re-training, yet is able to synthesize novel objects with high fidelity. To improve the mixing quality, we further devise two simple strategies to provide better control and flexibility over the synthesized content. With our method, we present our results over diverse downstream applications, including semantic style transfer, novel object synthesis, breed mixing, and concept removal, demonstrating the flexibility of our method. More results can be found on the project page https://magicmix.github.io
Skill-it! A Data-Driven Skills Framework for Understanding and Training Language Models
The quality of training data impacts the performance of pre-trained large language models (LMs). Given a fixed budget of tokens, we study how to best select data that leads to good downstream model performance across tasks. We develop a new framework based on a simple hypothesis: just as humans acquire interdependent skills in a deliberate order, language models also follow a natural order when learning a set of skills from their training data. If such an order exists, it can be utilized for improved understanding of LMs and for data-efficient training. Using this intuition, our framework formalizes the notion of a skill and of an ordered set of skills in terms of the associated data. First, using both synthetic and real data, we demonstrate that these ordered skill sets exist, and that their existence enables more advanced skills to be learned with less data when we train on their prerequisite skills. Second, using our proposed framework, we introduce an online data sampling algorithm, Skill-It, over mixtures of skills for both continual pre-training and fine-tuning regimes, where the objective is to efficiently learn multiple skills in the former and an individual skill in the latter. On the LEGO synthetic in the continual pre-training setting, Skill-It obtains 36.5 points higher accuracy than random sampling. On the Natural Instructions dataset in the fine-tuning setting, Skill-It reduces the validation loss on the target skill by 13.6% versus training on data associated with the target skill itself. We apply our skills framework on the recent RedPajama dataset to continually pre-train a 3B-parameter LM, achieving higher accuracy on the LM Evaluation Harness with 1B tokens than the baseline approach of sampling uniformly over data sources with 3B tokens.
Data Augmentation Approaches in Natural Language Processing: A Survey
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges. Some helpful resources are provided in the appendix.
Improving the Scaling Laws of Synthetic Data with Deliberate Practice
Inspired by the principle of deliberate practice in human learning, we propose Deliberate Practice for Synthetic Data Generation (DP), a novel framework that improves sample efficiency through dynamic synthetic data generation. Prior work has shown that scaling synthetic data is inherently challenging, as naively adding new data leads to diminishing returns. To address this, pruning has been identified as a key mechanism for improving scaling, enabling models to focus on the most informative synthetic samples. Rather than generating a large dataset and pruning it afterward, DP efficiently approximates the direct generation of informative samples. We theoretically show how training on challenging, informative examples improves scaling laws and empirically validate that DP achieves better scaling performance with significantly fewer training samples and iterations. On ImageNet-100, DP generates 3.4x fewer samples and requires six times fewer iterations, while on ImageNet-1k, it generates 8x fewer samples with a 30 percent reduction in iterations, all while achieving superior performance compared to prior work.
Hard Negative Mixing for Contrastive Learning
Contrastive learning has become a key component of self-supervised learning approaches for computer vision. By learning to embed two augmented versions of the same image close to each other and to push the embeddings of different images apart, one can train highly transferable visual representations. As revealed by recent studies, heavy data augmentation and large sets of negatives are both crucial in learning such representations. At the same time, data mixing strategies either at the image or the feature level improve both supervised and semi-supervised learning by synthesizing novel examples, forcing networks to learn more robust features. In this paper, we argue that an important aspect of contrastive learning, i.e., the effect of hard negatives, has so far been neglected. To get more meaningful negative samples, current top contrastive self-supervised learning approaches either substantially increase the batch sizes, or keep very large memory banks; increasing the memory size, however, leads to diminishing returns in terms of performance. We therefore start by delving deeper into a top-performing framework and show evidence that harder negatives are needed to facilitate better and faster learning. Based on these observations, and motivated by the success of data mixing, we propose hard negative mixing strategies at the feature level, that can be computed on-the-fly with a minimal computational overhead. We exhaustively ablate our approach on linear classification, object detection and instance segmentation and show that employing our hard negative mixing procedure improves the quality of visual representations learned by a state-of-the-art self-supervised learning method.
DABstep: Data Agent Benchmark for Multi-step Reasoning
We introduce DABstep, a novel benchmark for evaluating AI agents on realistic multi-step data analysis tasks. DABstep comprises over 450 real-world challenges derived from a financial analytics platform, requiring models to combine code-based data processing with contextual reasoning over heterogeneous documentation. Each task demands an iterative, multi-step problem-solving approach, testing capabilities in data manipulation, cross-referencing multiple sources, and precise result reporting. The benchmark provides a factoid-style answer format with automatic correctness checks for objective scoring at scale. We evaluate leading LLM-based agents, revealing a substantial performance gap: even the best agent achieves only 14.55% accuracy on the hardest tasks. We detail our benchmark's design, dataset composition, task formulation, evaluation protocol, report baseline results and analyze failure modes. DABstep is released with a public leaderboard and toolkit to accelerate research in autonomous data analysis.
Rethinking Large-scale Dataset Compression: Shifting Focus From Labels to Images
Dataset distillation and dataset pruning are two prominent techniques for compressing datasets to improve computational and storage efficiency. Despite their overlapping objectives, these approaches are rarely compared directly. Even within each field, the evaluation protocols are inconsistent across various methods, which complicates fair comparisons and hinders reproducibility. Considering these limitations, we introduce in this paper a benchmark that equitably evaluates methodologies across both distillation and pruning literatures. Notably, our benchmark reveals that in the mainstream dataset distillation setting for large-scale datasets, which heavily rely on soft labels from pre-trained models, even randomly selected subsets can achieve surprisingly competitive performance. This finding suggests that an overemphasis on soft labels may be diverting attention from the intrinsic value of the image data, while also imposing additional burdens in terms of generation, storage, and application. To address these issues, we propose a new framework for dataset compression, termed Prune, Combine, and Augment (PCA), which focuses on leveraging image data exclusively, relies solely on hard labels for evaluation, and achieves state-of-the-art performance in this setup. By shifting the emphasis back to the images, our benchmark and PCA framework pave the way for more balanced and accessible techniques in dataset compression research. Our code is available at: https://github.com/ArmandXiao/Rethinking-Dataset-Compression
What is Dataset Distillation Learning?
Dataset distillation has emerged as a strategy to overcome the hurdles associated with large datasets by learning a compact set of synthetic data that retains essential information from the original dataset. While distilled data can be used to train high performing models, little is understood about how the information is stored. In this study, we posit and answer three questions about the behavior, representativeness, and point-wise information content of distilled data. We reveal distilled data cannot serve as a substitute for real data during training outside the standard evaluation setting for dataset distillation. Additionally, the distillation process retains high task performance by compressing information related to the early training dynamics of real models. Finally, we provide an framework for interpreting distilled data and reveal that individual distilled data points contain meaningful semantic information. This investigation sheds light on the intricate nature of distilled data, providing a better understanding on how they can be effectively utilized.
SD3.5-Flash: Distribution-Guided Distillation of Generative Flows
We present SD3.5-Flash, an efficient few-step distillation framework that brings high-quality image generation to accessible consumer devices. Our approach distills computationally prohibitive rectified flow models through a reformulated distribution matching objective tailored specifically for few-step generation. We introduce two key innovations: "timestep sharing" to reduce gradient noise and "split-timestep fine-tuning" to improve prompt alignment. Combined with comprehensive pipeline optimizations like text encoder restructuring and specialized quantization, our system enables both rapid generation and memory-efficient deployment across different hardware configurations. This democratizes access across the full spectrum of devices, from mobile phones to desktop computers. Through extensive evaluation including large-scale user studies, we demonstrate that SD3.5-Flash consistently outperforms existing few-step methods, making advanced generative AI truly accessible for practical deployment.
Diffusion Model Patching via Mixture-of-Prompts
We present Diffusion Model Patching (DMP), a simple method to boost the performance of pre-trained diffusion models that have already reached convergence, with a negligible increase in parameters. DMP inserts a small, learnable set of prompts into the model's input space while keeping the original model frozen. The effectiveness of DMP is not merely due to the addition of parameters but stems from its dynamic gating mechanism, which selects and combines a subset of learnable prompts at every step of the generative process (e.g., reverse denoising steps). This strategy, which we term "mixture-of-prompts", enables the model to draw on the distinct expertise of each prompt, essentially "patching" the model's functionality at every step with minimal yet specialized parameters. Uniquely, DMP enhances the model by further training on the same dataset on which it was originally trained, even in a scenario where significant improvements are typically not expected due to model convergence. Experiments show that DMP significantly enhances the converged FID of DiT-L/2 on FFHQ 256x256 by 10.38%, achieved with only a 1.43% parameter increase and 50K additional training iterations.
Chain-of-Experts: Unlocking the Communication Power of Mixture-of-Experts Models
We propose Chain-of-Experts (CoE), a new Mixture-of-Experts (MoE) architecture that introduces sequential expert communication within each layer. Unlike traditional MoE models, where experts operate independently in parallel, CoE processes tokens iteratively across a chain of experts inside a layer. To support dynamic expert selection across iterations, CoE employs a dedicated router at each iteration step within a layer. This design allows tokens to re-evaluate and select different experts during each iteration, rather than being statically assigned. As a result, CoE introduces a flexible routing mechanism that increases the diversity of expert combinations and enriches the model's representational capacity. CoE demonstrates improved performance under fixed compute: on math reasoning tasks, it reduces validation loss from 1.20 to 1.12 compared to a standard MoE. Beyond performance, CoE offers a new scaling axis: depth through expert iteration, which complements conventional width/depth scaling. For example, using 2x iterations matches the performance of 3x expert selections (in width), while reducing memory usage by 17.6-42% relative to other scaling strategies. Our analysis reveals that CoE's benefits stem from its iterative residual structure and enhanced expert specialization empowered by iterative routing, which together unlock more expressive representations. Code is available at https://github.com/ZihanWang314/coe.
MLP-Mixer: An all-MLP Architecture for Vision
Convolutional Neural Networks (CNNs) are the go-to model for computer vision. Recently, attention-based networks, such as the Vision Transformer, have also become popular. In this paper we show that while convolutions and attention are both sufficient for good performance, neither of them are necessary. We present MLP-Mixer, an architecture based exclusively on multi-layer perceptrons (MLPs). MLP-Mixer contains two types of layers: one with MLPs applied independently to image patches (i.e. "mixing" the per-location features), and one with MLPs applied across patches (i.e. "mixing" spatial information). When trained on large datasets, or with modern regularization schemes, MLP-Mixer attains competitive scores on image classification benchmarks, with pre-training and inference cost comparable to state-of-the-art models. We hope that these results spark further research beyond the realms of well established CNNs and Transformers.
TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting
Time series forecasting is widely used in extensive applications, such as traffic planning and weather forecasting. However, real-world time series usually present intricate temporal variations, making forecasting extremely challenging. Going beyond the mainstream paradigms of plain decomposition and multiperiodicity analysis, we analyze temporal variations in a novel view of multiscale-mixing, which is based on an intuitive but important observation that time series present distinct patterns in different sampling scales. The microscopic and the macroscopic information are reflected in fine and coarse scales respectively, and thereby complex variations can be inherently disentangled. Based on this observation, we propose TimeMixer as a fully MLP-based architecture with Past-Decomposable-Mixing (PDM) and Future-Multipredictor-Mixing (FMM) blocks to take full advantage of disentangled multiscale series in both past extraction and future prediction phases. Concretely, PDM applies the decomposition to multiscale series and further mixes the decomposed seasonal and trend components in fine-to-coarse and coarse-to-fine directions separately, which successively aggregates the microscopic seasonal and macroscopic trend information. FMM further ensembles multiple predictors to utilize complementary forecasting capabilities in multiscale observations. Consequently, TimeMixer is able to achieve consistent state-of-the-art performances in both long-term and short-term forecasting tasks with favorable run-time efficiency.
MusicLDM: Enhancing Novelty in Text-to-Music Generation Using Beat-Synchronous Mixup Strategies
Diffusion models have shown promising results in cross-modal generation tasks, including text-to-image and text-to-audio generation. However, generating music, as a special type of audio, presents unique challenges due to limited availability of music data and sensitive issues related to copyright and plagiarism. In this paper, to tackle these challenges, we first construct a state-of-the-art text-to-music model, MusicLDM, that adapts Stable Diffusion and AudioLDM architectures to the music domain. We achieve this by retraining the contrastive language-audio pretraining model (CLAP) and the Hifi-GAN vocoder, as components of MusicLDM, on a collection of music data samples. Then, to address the limitations of training data and to avoid plagiarism, we leverage a beat tracking model and propose two different mixup strategies for data augmentation: beat-synchronous audio mixup and beat-synchronous latent mixup, which recombine training audio directly or via a latent embeddings space, respectively. Such mixup strategies encourage the model to interpolate between musical training samples and generate new music within the convex hull of the training data, making the generated music more diverse while still staying faithful to the corresponding style. In addition to popular evaluation metrics, we design several new evaluation metrics based on CLAP score to demonstrate that our proposed MusicLDM and beat-synchronous mixup strategies improve both the quality and novelty of generated music, as well as the correspondence between input text and generated music.
Detector Guidance for Multi-Object Text-to-Image Generation
Diffusion models have demonstrated impressive performance in text-to-image generation. They utilize a text encoder and cross-attention blocks to infuse textual information into images at a pixel level. However, their capability to generate images with text containing multiple objects is still restricted. Previous works identify the problem of information mixing in the CLIP text encoder and introduce the T5 text encoder or incorporate strong prior knowledge to assist with the alignment. We find that mixing problems also occur on the image side and in the cross-attention blocks. The noisy images can cause different objects to appear similar, and the cross-attention blocks inject information at a pixel level, leading to leakage of global object understanding and resulting in object mixing. In this paper, we introduce Detector Guidance (DG), which integrates a latent object detection model to separate different objects during the generation process. DG first performs latent object detection on cross-attention maps (CAMs) to obtain object information. Based on this information, DG then masks conflicting prompts and enhances related prompts by manipulating the following CAMs. We evaluate the effectiveness of DG using Stable Diffusion on COCO, CC, and a novel multi-related object benchmark, MRO. Human evaluations demonstrate that DG provides an 8-22\% advantage in preventing the amalgamation of conflicting concepts and ensuring that each object possesses its unique region without any human involvement and additional iterations. Our implementation is available at https://github.com/luping-liu/Detector-Guidance.
Towards All-in-one Pre-training via Maximizing Multi-modal Mutual Information
To effectively exploit the potential of large-scale models, various pre-training strategies supported by massive data from different sources are proposed, including supervised pre-training, weakly-supervised pre-training, and self-supervised pre-training. It has been proved that combining multiple pre-training strategies and data from various modalities/sources can greatly boost the training of large-scale models. However, current works adopt a multi-stage pre-training system, where the complex pipeline may increase the uncertainty and instability of the pre-training. It is thus desirable that these strategies can be integrated in a single-stage manner. In this paper, we first propose a general multi-modal mutual information formula as a unified optimization target and demonstrate that all existing approaches are special cases of our framework. Under this unified perspective, we propose an all-in-one single-stage pre-training approach, named Maximizing Multi-modal Mutual Information Pre-training (M3I Pre-training). Our approach achieves better performance than previous pre-training methods on various vision benchmarks, including ImageNet classification, COCO object detection, LVIS long-tailed object detection, and ADE20k semantic segmentation. Notably, we successfully pre-train a billion-level parameter image backbone and achieve state-of-the-art performance on various benchmarks. Code shall be released at https://github.com/OpenGVLab/M3I-Pretraining.
How far can we go with ImageNet for Text-to-Image generation?
Recent text-to-image (T2I) generation models have achieved remarkable results by training on billion-scale datasets, following a `bigger is better' paradigm that prioritizes data quantity over quality. We challenge this established paradigm by demonstrating that strategic data augmentation of small, well-curated datasets can match or outperform models trained on massive web-scraped collections. Using only ImageNet enhanced with well-designed text and image augmentations, we achieve a +2 overall score over SD-XL on GenEval and +5 on DPGBench while using just 1/10th the parameters and 1/1000th the training images. Our results suggest that strategic data augmentation, rather than massive datasets, could offer a more sustainable path forward for T2I generation.
Phased DMD: Few-step Distribution Matching Distillation via Score Matching within Subintervals
Distribution Matching Distillation (DMD) distills score-based generative models into efficient one-step generators, without requiring a one-to-one correspondence with the sampling trajectories of their teachers. However, limited model capacity causes one-step distilled models underperform on complex generative tasks, e.g., synthesizing intricate object motions in text-to-video generation. Directly extending DMD to multi-step distillation increases memory usage and computational depth, leading to instability and reduced efficiency. While prior works propose stochastic gradient truncation as a potential solution, we observe that it substantially reduces the generation diversity of multi-step distilled models, bringing it down to the level of their one-step counterparts. To address these limitations, we propose Phased DMD, a multi-step distillation framework that bridges the idea of phase-wise distillation with Mixture-of-Experts (MoE), reducing learning difficulty while enhancing model capacity. Phased DMD is built upon two key ideas: progressive distribution matching and score matching within subintervals. First, our model divides the SNR range into subintervals, progressively refining the model to higher SNR levels, to better capture complex distributions. Next, to ensure the training objective within each subinterval is accurate, we have conducted rigorous mathematical derivations. We validate Phased DMD by distilling state-of-the-art image and video generation models, including Qwen-Image (20B parameters) and Wan2.2 (28B parameters). Experimental results demonstrate that Phased DMD preserves output diversity better than DMD while retaining key generative capabilities. We will release our code and models.
4D-fy: Text-to-4D Generation Using Hybrid Score Distillation Sampling
Recent breakthroughs in text-to-4D generation rely on pre-trained text-to-image and text-to-video models to generate dynamic 3D scenes. However, current text-to-4D methods face a three-way tradeoff between the quality of scene appearance, 3D structure, and motion. For example, text-to-image models and their 3D-aware variants are trained on internet-scale image datasets and can be used to produce scenes with realistic appearance and 3D structure -- but no motion. Text-to-video models are trained on relatively smaller video datasets and can produce scenes with motion, but poorer appearance and 3D structure. While these models have complementary strengths, they also have opposing weaknesses, making it difficult to combine them in a way that alleviates this three-way tradeoff. Here, we introduce hybrid score distillation sampling, an alternating optimization procedure that blends supervision signals from multiple pre-trained diffusion models and incorporates benefits of each for high-fidelity text-to-4D generation. Using hybrid SDS, we demonstrate synthesis of 4D scenes with compelling appearance, 3D structure, and motion.
SentMix-3L: A Bangla-English-Hindi Code-Mixed Dataset for Sentiment Analysis
Code-mixing is a well-studied linguistic phenomenon when two or more languages are mixed in text or speech. Several datasets have been build with the goal of training computational models for code-mixing. Although it is very common to observe code-mixing with multiple languages, most datasets available contain code-mixed between only two languages. In this paper, we introduce SentMix-3L, a novel dataset for sentiment analysis containing code-mixed data between three languages Bangla, English, and Hindi. We carry out a comprehensive evaluation using SentMix-3L. We show that zero-shot prompting with GPT-3.5 outperforms all transformer-based models on SentMix-3L.
Mix3D: Out-of-Context Data Augmentation for 3D Scenes
We present Mix3D, a data augmentation technique for segmenting large-scale 3D scenes. Since scene context helps reasoning about object semantics, current works focus on models with large capacity and receptive fields that can fully capture the global context of an input 3D scene. However, strong contextual priors can have detrimental implications like mistaking a pedestrian crossing the street for a car. In this work, we focus on the importance of balancing global scene context and local geometry, with the goal of generalizing beyond the contextual priors in the training set. In particular, we propose a "mixing" technique which creates new training samples by combining two augmented scenes. By doing so, object instances are implicitly placed into novel out-of-context environments and therefore making it harder for models to rely on scene context alone, and instead infer semantics from local structure as well. We perform detailed analysis to understand the importance of global context, local structures and the effect of mixing scenes. In experiments, we show that models trained with Mix3D profit from a significant performance boost on indoor (ScanNet, S3DIS) and outdoor datasets (SemanticKITTI). Mix3D can be trivially used with any existing method, e.g., trained with Mix3D, MinkowskiNet outperforms all prior state-of-the-art methods by a significant margin on the ScanNet test benchmark 78.1 mIoU. Code is available at: https://nekrasov.dev/mix3d/
Curriculum Coarse-to-Fine Selection for High-IPC Dataset Distillation
Dataset distillation (DD) excels in synthesizing a small number of images per class (IPC) but struggles to maintain its effectiveness in high-IPC settings. Recent works on dataset distillation demonstrate that combining distilled and real data can mitigate the effectiveness decay. However, our analysis of the combination paradigm reveals that the current one-shot and independent selection mechanism induces an incompatibility issue between distilled and real images. To address this issue, we introduce a novel curriculum coarse-to-fine selection (CCFS) method for efficient high-IPC dataset distillation. CCFS employs a curriculum selection framework for real data selection, where we leverage a coarse-to-fine strategy to select appropriate real data based on the current synthetic dataset in each curriculum. Extensive experiments validate CCFS, surpassing the state-of-the-art by +6.6\% on CIFAR-10, +5.8\% on CIFAR-100, and +3.4\% on Tiny-ImageNet under high-IPC settings. Notably, CCFS achieves 60.2\% test accuracy on ResNet-18 with a 20\% compression ratio of Tiny-ImageNet, closely matching full-dataset training with only 0.3\% degradation. Code: https://github.com/CYDaaa30/CCFS.
Automatic Data Augmentation via Invariance-Constrained Learning
Underlying data structures, such as symmetries or invariances to transformations, are often exploited to improve the solution of learning tasks. However, embedding these properties in models or learning algorithms can be challenging and computationally intensive. Data augmentation, on the other hand, induces these symmetries during training by applying multiple transformations to the input data. Despite its ubiquity, its effectiveness depends on the choices of which transformations to apply, when to do so, and how often. In fact, there is both empirical and theoretical evidence that the indiscriminate use of data augmentation can introduce biases that outweigh its benefits. This work tackles these issues by automatically adapting the data augmentation while solving the learning task. To do so, it formulates data augmentation as an invariance-constrained learning problem and leverages Monte Carlo Markov Chain (MCMC) sampling to solve it. The result is a practical algorithm that not only does away with a priori searches for augmentation distributions, but also dynamically controls if and when data augmentation is applied. Our experiments illustrate the performance of this method, which achieves state-of-the-art results in automatic data augmentation benchmarks for CIFAR datasets. Furthermore, this approach can be used to gather insights on the actual symmetries underlying a learning task.
Distribution Shift Matters for Knowledge Distillation with Webly Collected Images
Knowledge distillation aims to learn a lightweight student network from a pre-trained teacher network. In practice, existing knowledge distillation methods are usually infeasible when the original training data is unavailable due to some privacy issues and data management considerations. Therefore, data-free knowledge distillation approaches proposed to collect training instances from the Internet. However, most of them have ignored the common distribution shift between the instances from original training data and webly collected data, affecting the reliability of the trained student network. To solve this problem, we propose a novel method dubbed ``Knowledge Distillation between Different Distributions" (KD^{3}), which consists of three components. Specifically, we first dynamically select useful training instances from the webly collected data according to the combined predictions of teacher network and student network. Subsequently, we align both the weighted features and classifier parameters of the two networks for knowledge memorization. Meanwhile, we also build a new contrastive learning block called MixDistribution to generate perturbed data with a new distribution for instance alignment, so that the student network can further learn a distribution-invariant representation. Intensive experiments on various benchmark datasets demonstrate that our proposed KD^{3} can outperform the state-of-the-art data-free knowledge distillation approaches.
Mixture of Tokens: Efficient LLMs through Cross-Example Aggregation
Despite the promise of Mixture of Experts (MoE) models in increasing parameter counts of Transformer models while maintaining training and inference costs, their application carries notable drawbacks. The key strategy of these models is to, for each processed token, activate at most a few experts - subsets of an extensive feed-forward layer. But this approach is not without its challenges. The operation of matching experts and tokens is discrete, which makes MoE models prone to issues like training instability and uneven expert utilization. Existing techniques designed to address these concerns, such as auxiliary losses or balance-aware matching, result either in lower model performance or are more difficult to train. In response to these issues, we propose Mixture of Tokens, a fully-differentiable model that retains the benefits of MoE architectures while avoiding the aforementioned difficulties. Rather than routing tokens to experts, this approach mixes tokens from different examples prior to feeding them to experts, enabling the model to learn from all token-expert combinations. Importantly, this mixing can be disabled to avoid mixing of different sequences during inference. Crucially, this method is fully compatible with both masked and causal Large Language Model training and inference.
Un-Mixing Test-Time Normalization Statistics: Combatting Label Temporal Correlation
Recent test-time adaptation methods heavily rely on nuanced adjustments of batch normalization (BN) parameters. However, one critical assumption often goes overlooked: that of independently and identically distributed (i.i.d.) test batches with respect to unknown labels. This oversight leads to skewed BN statistics and undermines the reliability of the model under non-i.i.d. scenarios. To tackle this challenge, this paper presents a novel method termed 'Un-Mixing Test-Time Normalization Statistics' (UnMix-TNS). Our method re-calibrates the statistics for each instance within a test batch by mixing it with multiple distinct statistics components, thus inherently simulating the i.i.d. scenario. The core of this method hinges on a distinctive online unmixing procedure that continuously updates these statistics components by incorporating the most similar instances from new test batches. Remarkably generic in its design, UnMix-TNS seamlessly integrates with a wide range of leading test-time adaptation methods and pre-trained architectures equipped with BN layers. Empirical evaluations corroborate the robustness of UnMix-TNS under varied scenarios-ranging from single to continual and mixed domain shifts, particularly excelling with temporally correlated test data and corrupted non-i.i.d. real-world streams. This adaptability is maintained even with very small batch sizes or single instances. Our results highlight UnMix-TNS's capacity to markedly enhance stability and performance across various benchmarks. Our code is publicly available at https://github.com/devavratTomar/unmixtns.
Stacked Convolutional and Recurrent Neural Networks for Bird Audio Detection
This paper studies the detection of bird calls in audio segments using stacked convolutional and recurrent neural networks. Data augmentation by blocks mixing and domain adaptation using a novel method of test mixing are proposed and evaluated in regard to making the method robust to unseen data. The contributions of two kinds of acoustic features (dominant frequency and log mel-band energy) and their combinations are studied in the context of bird audio detection. Our best achieved AUC measure on five cross-validations of the development data is 95.5% and 88.1% on the unseen evaluation data.
Selective Mixup Fine-Tuning for Optimizing Non-Decomposable Objectives
The rise in internet usage has led to the generation of massive amounts of data, resulting in the adoption of various supervised and semi-supervised machine learning algorithms, which can effectively utilize the colossal amount of data to train models. However, before deploying these models in the real world, these must be strictly evaluated on performance measures like worst-case recall and satisfy constraints such as fairness. We find that current state-of-the-art empirical techniques offer sub-optimal performance on these practical, non-decomposable performance objectives. On the other hand, the theoretical techniques necessitate training a new model from scratch for each performance objective. To bridge the gap, we propose SelMix, a selective mixup-based inexpensive fine-tuning technique for pre-trained models, to optimize for the desired objective. The core idea of our framework is to determine a sampling distribution to perform a mixup of features between samples from particular classes such that it optimizes the given objective. We comprehensively evaluate our technique against the existing empirical and theoretically principled methods on standard benchmark datasets for imbalanced classification. We find that proposed SelMix fine-tuning significantly improves the performance for various practical non-decomposable objectives across benchmarks.
Pushing Boundaries: Mixup's Influence on Neural Collapse
Mixup is a data augmentation strategy that employs convex combinations of training instances and their respective labels to augment the robustness and calibration of deep neural networks. Despite its widespread adoption, the nuanced mechanisms that underpin its success are not entirely understood. The observed phenomenon of Neural Collapse, where the last-layer activations and classifier of deep networks converge to a simplex equiangular tight frame (ETF), provides a compelling motivation to explore whether mixup induces alternative geometric configurations and whether those could explain its success. In this study, we delve into the last-layer activations of training data for deep networks subjected to mixup, aiming to uncover insights into its operational efficacy. Our investigation, spanning various architectures and dataset pairs, reveals that mixup's last-layer activations predominantly converge to a distinctive configuration different than one might expect. In this configuration, activations from mixed-up examples of identical classes align with the classifier, while those from different classes delineate channels along the decision boundary. Moreover, activations in earlier layers exhibit patterns, as if trained with manifold mixup. These findings are unexpected, as mixed-up features are not simple convex combinations of feature class means (as one might get, for example, by training mixup with the mean squared error loss). By analyzing this distinctive geometric configuration, we elucidate the mechanisms by which mixup enhances model calibration. To further validate our empirical observations, we conduct a theoretical analysis under the assumption of an unconstrained features model, utilizing the mixup loss. Through this, we characterize and derive the optimal last-layer features under the assumption that the classifier forms a simplex ETF.
MixUp as Locally Linear Out-Of-Manifold Regularization
MixUp is a recently proposed data-augmentation scheme, which linearly interpolates a random pair of training examples and correspondingly the one-hot representations of their labels. Training deep neural networks with such additional data is shown capable of significantly improving the predictive accuracy of the current art. The power of MixUp, however, is primarily established empirically and its working and effectiveness have not been explained in any depth. In this paper, we develop an understanding for MixUp as a form of "out-of-manifold regularization", which imposes certain "local linearity" constraints on the model's input space beyond the data manifold. This analysis enables us to identify a limitation of MixUp, which we call "manifold intrusion". In a nutshell, manifold intrusion in MixUp is a form of under-fitting resulting from conflicts between the synthetic labels of the mixed-up examples and the labels of original training data. Such a phenomenon usually happens when the parameters controlling the generation of mixing policies are not sufficiently fine-tuned on the training data. To address this issue, we propose a novel adaptive version of MixUp, where the mixing policies are automatically learned from the data using an additional network and objective function designed to avoid manifold intrusion. The proposed regularizer, AdaMixUp, is empirically evaluated on several benchmark datasets. Extensive experiments demonstrate that AdaMixUp improves upon MixUp when applied to the current art of deep classification models.
A Survey of LLM times DATA
The integration of large language model (LLM) and data management (DATA) is rapidly redefining both domains. In this survey, we comprehensively review the bidirectional relationships. On the one hand, DATA4LLM, spanning large-scale data processing, storage, and serving, feeds LLMs with high quality, diversity, and timeliness of data required for stages like pre-training, post-training, retrieval-augmented generation, and agentic workflows: (i) Data processing for LLMs includes scalable acquisition, deduplication, filtering, selection, domain mixing, and synthetic augmentation; (ii) Data Storage for LLMs focuses on efficient data and model formats, distributed and heterogeneous storage hierarchies, KV-cache management, and fault-tolerant checkpointing; (iii) Data serving for LLMs tackles challenges in RAG (e.g., knowledge post-processing), LLM inference (e.g., prompt compression, data provenance), and training strategies (e.g., data packing and shuffling). On the other hand, in LLM4DATA, LLMs are emerging as general-purpose engines for data management. We review recent advances in (i) data manipulation, including automatic data cleaning, integration, discovery; (ii) data analysis, covering reasoning over structured, semi-structured, and unstructured data, and (iii) system optimization (e.g., configuration tuning, query rewriting, anomaly diagnosis), powered by LLM techniques like retrieval-augmented prompting, task-specialized fine-tuning, and multi-agent collaboration.
Distiller: A Systematic Study of Model Distillation Methods in Natural Language Processing
We aim to identify how different components in the KD pipeline affect the resulting performance and how much the optimal KD pipeline varies across different datasets/tasks, such as the data augmentation policy, the loss function, and the intermediate representation for transferring the knowledge between teacher and student. To tease apart their effects, we propose Distiller, a meta KD framework that systematically combines a broad range of techniques across different stages of the KD pipeline, which enables us to quantify each component's contribution. Within Distiller, we unify commonly used objectives for distillation of intermediate representations under a universal mutual information (MI) objective and propose a class of MI-alpha objective functions with better bias/variance trade-off for estimating the MI between the teacher and the student. On a diverse set of NLP datasets, the best Distiller configurations are identified via large-scale hyperparameter optimization. Our experiments reveal the following: 1) the approach used to distill the intermediate representations is the most important factor in KD performance, 2) among different objectives for intermediate distillation, MI-alpha performs the best, and 3) data augmentation provides a large boost for small training datasets or small student networks. Moreover, we find that different datasets/tasks prefer different KD algorithms, and thus propose a simple AutoDistiller algorithm that can recommend a good KD pipeline for a new dataset.
CMDBench: A Benchmark for Coarse-to-fine Multimodal Data Discovery in Compound AI Systems
Compound AI systems (CASs) that employ LLMs as agents to accomplish knowledge-intensive tasks via interactions with tools and data retrievers have garnered significant interest within database and AI communities. While these systems have the potential to supplement typical analysis workflows of data analysts in enterprise data platforms, unfortunately, CASs are subject to the same data discovery challenges that analysts have encountered over the years -- silos of multimodal data sources, created across teams and departments within an organization, make it difficult to identify appropriate data sources for accomplishing the task at hand. Existing data discovery benchmarks do not model such multimodality and multiplicity of data sources. Moreover, benchmarks of CASs prioritize only evaluating end-to-end task performance. To catalyze research on evaluating the data discovery performance of multimodal data retrievers in CASs within a real-world setting, we propose CMDBench, a benchmark modeling the complexity of enterprise data platforms. We adapt existing datasets and benchmarks in open-domain -- from question answering and complex reasoning tasks to natural language querying over structured data -- to evaluate coarse- and fine-grained data discovery and task execution performance. Our experiments reveal the impact of data retriever design on downstream task performance -- a 46% drop in task accuracy on average -- across various modalities, data sources, and task difficulty. The results indicate the need to develop optimization strategies to identify appropriate LLM agents and retrievers for efficient execution of CASs over enterprise data.
Repeated Random Sampling for Minimizing the Time-to-Accuracy of Learning
Methods for carefully selecting or generating a small set of training data to learn from, i.e., data pruning, coreset selection, and data distillation, have been shown to be effective in reducing the ever-increasing cost of training neural networks. Behind this success are rigorously designed strategies for identifying informative training examples out of large datasets. However, these strategies come with additional computational costs associated with subset selection or data distillation before training begins, and furthermore, many are shown to even under-perform random sampling in high data compression regimes. As such, many data pruning, coreset selection, or distillation methods may not reduce 'time-to-accuracy', which has become a critical efficiency measure of training deep neural networks over large datasets. In this work, we revisit a powerful yet overlooked random sampling strategy to address these challenges and introduce an approach called Repeated Sampling of Random Subsets (RSRS or RS2), where we randomly sample the subset of training data for each epoch of model training. We test RS2 against thirty state-of-the-art data pruning and data distillation methods across four datasets including ImageNet. Our results demonstrate that RS2 significantly reduces time-to-accuracy compared to existing techniques. For example, when training on ImageNet in the high-compression regime (using less than 10% of the dataset each epoch), RS2 yields accuracy improvements up to 29% compared to competing pruning methods while offering a runtime reduction of 7x. Beyond the above meta-study, we provide a convergence analysis for RS2 and discuss its generalization capability. The primary goal of our work is to establish RS2 as a competitive baseline for future data selection or distillation techniques aimed at efficient training.
Aurora:Activating Chinese chat capability for Mixtral-8x7B sparse Mixture-of-Experts through Instruction-Tuning
Existing research has demonstrated that refining large language models (LLMs) through the utilization of machine-generated instruction-following data empowers these models to exhibit impressive zero-shot capabilities for novel tasks, without requiring human-authored instructions. In this paper, we systematically investigate, preprocess, and integrate three Chinese instruction-following datasets with the aim of enhancing the Chinese conversational capabilities of Mixtral-8x7B sparse Mixture-of-Experts model. Through instruction fine-tuning on this carefully processed dataset, we successfully construct the Mixtral-8x7B sparse Mixture-of-Experts model named "Aurora." To assess the performance of Aurora, we utilize three widely recognized benchmark tests: C-Eval, MMLU, and CMMLU. Empirical studies validate the effectiveness of instruction fine-tuning applied to Mixtral-8x7B sparse Mixture-of-Experts model. This work is pioneering in the execution of instruction fine-tuning on a sparse expert-mixed model, marking a significant breakthrough in enhancing the capabilities of this model architecture. Our code, data and model are publicly available at https://github.com/WangRongsheng/Aurora
MoE++: Accelerating Mixture-of-Experts Methods with Zero-Computation Experts
In this work, we aim to simultaneously enhance the effectiveness and efficiency of Mixture-of-Experts (MoE) methods. To achieve this, we propose MoE++, a general and heterogeneous MoE framework that integrates both Feed-Forward Network~(FFN) and zero-computation experts. Specifically, we introduce three types of zero-computation experts: the zero expert, copy expert, and constant expert, which correspond to discard, skip, and replace operations, respectively. This design offers three key advantages: (i) Low Computing Overhead: Unlike the uniform mixing mechanism for all tokens within vanilla MoE, MoE++ allows each token to engage with a dynamic number of FFNs, be adjusted by constant vectors, or even skip the MoE layer entirely. (ii) High Performance: By enabling simple tokens to utilize fewer FFN experts, MoE++ allows more experts to focus on challenging tokens, thereby unlocking greater performance potential than vanilla MoE. (iii) Deployment Friendly: Given that zero-computation experts have negligible parameters, we can deploy all zero-computation experts on each GPU, eliminating the significant communication overhead and expert load imbalance associated with FFN experts distributed across different GPUs. Moreover, we leverage gating residuals, enabling each token to consider the pathway taken in the previous layer when selecting the appropriate experts. Extensive experimental results demonstrate that MoE++ achieves better performance while delivering 1.1-2.1x expert forward throughput compared to a vanilla MoE model of the same size, which lays a solid foundation for developing advanced and efficient MoE-related models.
The Quest for Efficient Reasoning: A Data-Centric Benchmark to CoT Distillation
Data-centric distillation, including data augmentation, selection, and mixing, offers a promising path to creating smaller, more efficient student Large Language Models (LLMs) that retain strong reasoning abilities. However, there still lacks a comprehensive benchmark to systematically assess the effect of each distillation approach. This paper introduces DC-CoT, the first data-centric benchmark that investigates data manipulation in chain-of-thought (CoT) distillation from method, model and data perspectives. Utilizing various teacher models (e.g., o4-mini, Gemini-Pro, Claude-3.5) and student architectures (e.g., 3B, 7B parameters), we rigorously evaluate the impact of these data manipulations on student model performance across multiple reasoning datasets, with a focus on in-distribution (IID) and out-of-distribution (OOD) generalization, and cross-domain transfer. Our findings aim to provide actionable insights and establish best practices for optimizing CoT distillation through data-centric techniques, ultimately facilitating the development of more accessible and capable reasoning models. The dataset can be found at https://huggingface.co/datasets/rana-shahroz/DC-COT, while our code is shared in https://anonymous.4open.science/r/DC-COT-FF4C/.
Identity Decoupling for Multi-Subject Personalization of Text-to-Image Models
Text-to-image diffusion models have shown remarkable success in generating a personalized subject based on a few reference images. However, current methods struggle with handling multiple subjects simultaneously, often resulting in mixed identities with combined attributes from different subjects. In this work, we present MuDI, a novel framework that enables multi-subject personalization by effectively decoupling identities from multiple subjects. Our main idea is to utilize segmented subjects generated by the Segment Anything Model for both training and inference, as a form of data augmentation for training and initialization for the generation process. Our experiments demonstrate that MuDI can produce high-quality personalized images without identity mixing, even for highly similar subjects as shown in Figure 1. In human evaluation, MuDI shows twice as many successes for personalizing multiple subjects without identity mixing over existing baselines and is preferred over 70% compared to the strongest baseline. More results are available at https://mudi-t2i.github.io/.
BaichuanSEED: Sharing the Potential of ExtensivE Data Collection and Deduplication by Introducing a Competitive Large Language Model Baseline
The general capabilities of Large Language Models (LLM) highly rely on the composition and selection on extensive pretraining datasets, treated as commercial secrets by several institutions. To mitigate this issue, we open-source the details of a universally applicable data processing pipeline and validate its effectiveness and potential by introducing a competitive LLM baseline. Specifically, the data processing pipeline consists of broad collection to scale up and reweighting to improve quality. We then pretrain a 7B model BaichuanSEED with 3T tokens processed by our pipeline without any deliberate downstream task-related optimization, followed by an easy but effective supervised fine-tuning stage. BaichuanSEED demonstrates consistency and predictability throughout training and achieves comparable performance on comprehensive benchmarks with several commercial advanced large language models, such as Qwen1.5 and Llama3. We also conduct several heuristic experiments to discuss the potential for further optimization of downstream tasks, such as mathematics and coding.
Provable Benefit of Mixup for Finding Optimal Decision Boundaries
We investigate how pair-wise data augmentation techniques like Mixup affect the sample complexity of finding optimal decision boundaries in a binary linear classification problem. For a family of data distributions with a separability constant kappa, we analyze how well the optimal classifier in terms of training loss aligns with the optimal one in test accuracy (i.e., Bayes optimal classifier). For vanilla training without augmentation, we uncover an interesting phenomenon named the curse of separability. As we increase kappa to make the data distribution more separable, the sample complexity of vanilla training increases exponentially in kappa; perhaps surprisingly, the task of finding optimal decision boundaries becomes harder for more separable distributions. For Mixup training, we show that Mixup mitigates this problem by significantly reducing the sample complexity. To this end, we develop new concentration results applicable to n^2 pair-wise augmented data points constructed from n independent data, by carefully dealing with dependencies between overlapping pairs. Lastly, we study other masking-based Mixup-style techniques and show that they can distort the training loss and make its minimizer converge to a suboptimal classifier in terms of test accuracy.
Measuring Data Diversity for Instruction Tuning: A Systematic Analysis and A Reliable Metric
Data diversity is crucial for the instruction tuning of large language models. Existing studies have explored various diversity-aware data selection methods to construct high-quality datasets and enhance model performance. However, the fundamental problem of precisely defining and measuring data diversity remains underexplored, limiting clear guidance for data engineering. To address this, we systematically analyze 11 existing diversity measurement methods by evaluating their correlation with model performance through extensive fine-tuning experiments. Our results indicate that a reliable diversity measure should properly account for both inter-sample differences and the information distribution in the sample space. Building on this, we propose NovelSum, a new diversity metric based on sample-level "novelty." Experiments on both simulated and real-world data show that NovelSum accurately captures diversity variations and achieves a 0.97 correlation with instruction-tuned model performance, highlighting its value in guiding data engineering practices. With NovelSum as an optimization objective, we further develop a greedy, diversity-oriented data selection strategy that outperforms existing approaches, validating both the effectiveness and practical significance of our metric.
TweedieMix: Improving Multi-Concept Fusion for Diffusion-based Image/Video Generation
Despite significant advancements in customizing text-to-image and video generation models, generating images and videos that effectively integrate multiple personalized concepts remains a challenging task. To address this, we present TweedieMix, a novel method for composing customized diffusion models during the inference phase. By analyzing the properties of reverse diffusion sampling, our approach divides the sampling process into two stages. During the initial steps, we apply a multiple object-aware sampling technique to ensure the inclusion of the desired target objects. In the later steps, we blend the appearances of the custom concepts in the de-noised image space using Tweedie's formula. Our results demonstrate that TweedieMix can generate multiple personalized concepts with higher fidelity than existing methods. Moreover, our framework can be effortlessly extended to image-to-video diffusion models, enabling the generation of videos that feature multiple personalized concepts. Results and source code are in our anonymous project page.
TAROT: Targeted Data Selection via Optimal Transport
We propose TAROT, a targeted data selection framework grounded in optimal transport theory. Previous targeted data selection methods primarily rely on influence-based greedy heuristics to enhance domain-specific performance. While effective on limited, unimodal data (i.e., data following a single pattern), these methods struggle as target data complexity increases. Specifically, in multimodal distributions, these heuristics fail to account for multiple inherent patterns, leading to suboptimal data selection. This work identifies two primary factors contributing to this limitation: (i) the disproportionate impact of dominant feature components in high-dimensional influence estimation, and (ii) the restrictive linear additive assumptions inherent in greedy selection strategies. To address these challenges, TAROT incorporates whitened feature distance to mitigate dominant feature bias, providing a more reliable measure of data influence. Building on this, TAROT uses whitened feature distance to quantify and minimize the optimal transport distance between the selected data and target domains. Notably, this minimization also facilitates the estimation of optimal selection ratios. We evaluate TAROT across multiple tasks, including semantic segmentation, motion prediction, and instruction tuning. Results consistently show that TAROT outperforms state-of-the-art methods, highlighting its versatility across various deep learning tasks. Code is available at https://github.com/vita-epfl/TAROT.
Multilingual Arbitrage: Optimizing Data Pools to Accelerate Multilingual Progress
The use of synthetic data has played a critical role in recent state-of-art breakthroughs. However, overly relying on a single oracle teacher model to generate data has been shown to lead to model collapse and invite propagation of biases. These limitations are particularly evident in multilingual settings, where the absence of a universally effective teacher model that excels across all languages presents significant challenges. In this work, we address these extreme difference by introducing "multilingual arbitrage", which capitalizes on performance variations between multiple models for a given language. To do so, we strategically route samples through a diverse pool of models, each with unique strengths in different languages. Across exhaustive experiments on state-of-art models, our work suggests that arbitrage techniques allow for spectacular gains in performance that far outperform relying on a single teacher. In particular, compared to the best single teacher, we observe gains of up to 56.5% improvement in win rates averaged across all languages when switching to multilingual arbitrage. We observe the most significant gains for the least resourced languages in our pool.
SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data
Text-to-SQL aims to automate the process of generating SQL queries on a database from natural language text. In this work, we propose "SQLPrompt", tailored to improve the few-shot prompting capabilities of Text-to-SQL for Large Language Models (LLMs). Our methods include innovative prompt design, execution-based consistency decoding strategy which selects the SQL with the most consistent execution outcome among other SQL proposals, and a method that aims to improve performance by diversifying the SQL proposals during consistency selection with different prompt designs ("MixPrompt") and foundation models ("MixLLMs"). We show that SQLPrompt outperforms previous approaches for in-context learning with few labeled data by a large margin, closing the gap with finetuning state-of-the-art with thousands of labeled data.
UiS-IAI@LiveRAG: Retrieval-Augmented Information Nugget-Based Generation of Responses
Retrieval-augmented generation (RAG) faces challenges related to factual correctness, source attribution, and response completeness. The LiveRAG Challenge hosted at SIGIR'25 aims to advance RAG research using a fixed corpus and a shared, open-source LLM. We propose a modular pipeline that operates on information nuggets-minimal, atomic units of relevant information extracted from retrieved documents. This multistage pipeline encompasses query rewriting, passage retrieval and reranking, nugget detection and clustering, cluster ranking and summarization, and response fluency enhancement. This design inherently promotes grounding in specific facts, facilitates source attribution, and ensures maximum information inclusion within length constraints. In this challenge, we extend our focus to also address the retrieval component of RAG, building upon our prior work on multi-faceted query rewriting. Furthermore, for augmented generation, we concentrate on improving context curation capabilities, maximizing the breadth of information covered in the response while ensuring pipeline efficiency. Our results show that combining original queries with a few sub-query rewrites boosts recall, while increasing the number of documents used for reranking and generation beyond a certain point reduces effectiveness, without improving response quality.
MAS: Towards Resource-Efficient Federated Multiple-Task Learning
Federated learning (FL) is an emerging distributed machine learning method that empowers in-situ model training on decentralized edge devices. However, multiple simultaneous FL tasks could overload resource-constrained devices. In this work, we propose the first FL system to effectively coordinate and train multiple simultaneous FL tasks. We first formalize the problem of training simultaneous FL tasks. Then, we present our new approach, MAS (Merge and Split), to optimize the performance of training multiple simultaneous FL tasks. MAS starts by merging FL tasks into an all-in-one FL task with a multi-task architecture. After training for a few rounds, MAS splits the all-in-one FL task into two or more FL tasks by using the affinities among tasks measured during the all-in-one training. It then continues training each split of FL tasks based on model parameters from the all-in-one training. Extensive experiments demonstrate that MAS outperforms other methods while reducing training time by 2x and reducing energy consumption by 40%. We hope this work will inspire the community to further study and optimize training simultaneous FL tasks.
Are LLMs ready to help non-expert users to make charts of official statistics data?
In this time when biased information, deep fakes, and propaganda proliferate, the accessibility of reliable data sources is more important than ever. National statistical institutes provide curated data that contain quantitative information on a wide range of topics. However, that information is typically spread across many tables and the plain numbers may be arduous to process. Hence, this open data may be practically inaccessible. We ask the question "Are current Generative AI models capable of facilitating the identification of the right data and the fully-automatic creation of charts to provide information in visual form, corresponding to user queries?". We present a structured evaluation of recent large language models' (LLMs) capabilities to generate charts from complex data in response to user queries. Working with diverse public data from Statistics Netherlands, we assessed multiple LLMs on their ability to identify relevant data tables, perform necessary manipulations, and generate appropriate visualizations autonomously. We propose a new evaluation framework spanning three dimensions: data retrieval & pre-processing, code quality, and visual representation. Results indicate that locating and processing the correct data represents the most significant challenge. Additionally, LLMs rarely implement visualization best practices without explicit guidance. When supplemented with information about effective chart design, models showed marked improvement in representation scores. Furthermore, an agentic approach with iterative self-evaluation led to excellent performance across all evaluation dimensions. These findings suggest that LLMs' effectiveness for automated chart generation can be enhanced through appropriate scaffolding and feedback mechanisms, and that systems can already reach the necessary accuracy across the three evaluation dimensions.
A Reliable Knowledge Processing Framework for Combustion Science using Foundation Models
This research explores the integration of large language models (LLMs) into scientific data assimilation, focusing on combustion science as a case study. Leveraging foundational models integrated with Retrieval-Augmented Generation (RAG) framework, the study introduces an approach to process diverse combustion research data, spanning experimental studies, simulations, and literature. The multifaceted nature of combustion research emphasizes the critical role of knowledge processing in navigating and extracting valuable information from a vast and diverse pool of sources. The developed approach minimizes computational and economic expenses while optimizing data privacy and accuracy. It incorporates prompt engineering and offline open-source LLMs, offering user autonomy in selecting base models. The study provides a thorough examination of text segmentation strategies, conducts comparative studies between LLMs, and explores various optimized prompts to demonstrate the effectiveness of the framework. By incorporating an external database, the framework outperforms a conventional LLM in generating accurate responses and constructing robust arguments. Additionally, the study delves into the investigation of optimized prompt templates for the purpose of efficient extraction of scientific literature. The research addresses concerns related to hallucinations and false research articles by introducing a custom workflow developed with a detection algorithm to filter out inaccuracies. Despite identified areas for improvement, the framework consistently delivers accurate domain-specific responses with minimal human oversight. The prompt-agnostic approach introduced holds promise for future deliberations. The study underscores the significance of integrating LLMs and knowledge processing techniques in scientific research, providing a foundation for advancements in data assimilation and utilization.
Tackling Interference Induced by Data Training Loops in A/B Tests: A Weighted Training Approach
In modern recommendation systems, the standard pipeline involves training machine learning models on historical data to predict user behaviors and improve recommendations continuously. However, these data training loops can introduce interference in A/B tests, where data generated by control and treatment algorithms, potentially with different distributions, are combined. To address these challenges, we introduce a novel approach called weighted training. This approach entails training a model to predict the probability of each data point appearing in either the treatment or control data and subsequently applying weighted losses during model training. We demonstrate that this approach achieves the least variance among all estimators that do not cause shifts in the training distributions. Through simulation studies, we demonstrate the lower bias and variance of our approach compared to other methods.
UniMoE-Audio: Unified Speech and Music Generation with Dynamic-Capacity MoE
Recent advances in unified multimodal models indicate a clear trend towards comprehensive content generation. However, the auditory domain remains a significant challenge, with music and speech often developed in isolation, hindering progress towards universal audio synthesis. This separation stems from inherent task conflicts and severe data imbalances, which impede the development of a truly unified audio generation model. To address this challenge, we propose UniMoE-Audio, a unified speech and music generation model within a novel Dynamic-Capacity Mixture-of-Experts (MoE) framework. Architecturally, UniMoE-Audio introduces a Top-P routing strategy for dynamic expert number allocation, and a hybrid expert design comprising routed experts for domain-specific knowledge, shared experts for domain-agnostic features, and null experts for adaptive computation skipping. To tackle data imbalance, we introduce a three-stage training curriculum: 1) Independent Specialist Training leverages original datasets to instill domain-specific knowledge into each "proto-expert" without interference; 2) MoE Integration and Warmup incorporates these specialists into the UniMoE-Audio architecture, warming up the gate module and shared expert using a subset of balanced dataset; and 3) Synergistic Joint Training trains the entire model end-to-end on the fully balanced dataset, fostering enhanced cross-domain synergy. Extensive experiments show that UniMoE-Audio not only achieves state-of-the-art performance on major speech and music generation benchmarks, but also demonstrates superior synergistic learning, mitigating the performance degradation typically seen in naive joint training. Our findings highlight the substantial potential of specialized MoE architecture and curated training strategies in advancing the field of universal audio generation. Homepage: https://mukioxun.github.io/Uni-MoE-site/home.html
Rethinking Data Mixture for Large Language Models: A Comprehensive Survey and New Perspectives
Training large language models with data collected from various domains can improve their performance on downstream tasks. However, given a fixed training budget, the sampling proportions of these different domains significantly impact the model's performance. How can we determine the domain weights across different data domains to train the best-performing model within constrained computational resources? In this paper, we provide a comprehensive overview of existing data mixture methods. First, we propose a fine-grained categorization of existing methods, extending beyond the previous offline and online classification. Offline methods are further grouped into heuristic-based, algorithm-based, and function fitting-based methods. For online methods, we categorize them into three groups: online min-max optimization, online mixing law, and other approaches by drawing connections with the optimization frameworks underlying offline methods. Second, we summarize the problem formulations, representative algorithms for each subtype of offline and online methods, and clarify the relationships and distinctions among them. Finally, we discuss the advantages and disadvantages of each method and highlight key challenges in the field of data mixture.
CLIP the Bias: How Useful is Balancing Data in Multimodal Learning?
We study the effectiveness of data-balancing for mitigating biases in contrastive language-image pretraining (CLIP), identifying areas of strength and limitation. First, we reaffirm prior conclusions that CLIP models can inadvertently absorb societal stereotypes. To counter this, we present a novel algorithm, called Multi-Modal Moment Matching (M4), designed to reduce both representation and association biases (i.e. in first- and second-order statistics) in multimodal data. We use M4 to conduct an in-depth analysis taking into account various factors, such as the model, representation, and data size. Our study also explores the dynamic nature of how CLIP learns and unlearns biases. In particular, we find that fine-tuning is effective in countering representation biases, though its impact diminishes for association biases. Also, data balancing has a mixed impact on quality: it tends to improve classification but can hurt retrieval. Interestingly, data and architectural improvements seem to mitigate the negative impact of data balancing on performance; e.g. applying M4 to SigLIP-B/16 with data quality filters improves COCO image-to-text retrieval @5 from 86% (without data balancing) to 87% and ImageNet 0-shot classification from 77% to 77.5%! Finally, we conclude with recommendations for improving the efficacy of data balancing in multimodal systems.
Noise-Free Score Distillation
Score Distillation Sampling (SDS) has emerged as the de facto approach for text-to-content generation in non-image domains. In this paper, we reexamine the SDS process and introduce a straightforward interpretation that demystifies the necessity for large Classifier-Free Guidance (CFG) scales, rooted in the distillation of an undesired noise term. Building upon our interpretation, we propose a novel Noise-Free Score Distillation (NFSD) process, which requires minimal modifications to the original SDS framework. Through this streamlined design, we achieve more effective distillation of pre-trained text-to-image diffusion models while using a nominal CFG scale. This strategic choice allows us to prevent the over-smoothing of results, ensuring that the generated data is both realistic and complies with the desired prompt. To demonstrate the efficacy of NFSD, we provide qualitative examples that compare NFSD and SDS, as well as several other methods.
Perplexed by Perplexity: Perplexity-Based Data Pruning With Small Reference Models
In this work, we investigate whether small language models can determine high-quality subsets of large-scale text datasets that improve the performance of larger language models. While existing work has shown that pruning based on the perplexity of a larger model can yield high-quality data, we investigate whether smaller models can be used for perplexity-based pruning and how pruning is affected by the domain composition of the data being pruned. We demonstrate that for multiple dataset compositions, perplexity-based pruning of pretraining data can significantly improve downstream task performance: pruning based on perplexities computed with a 125 million parameter model improves the average performance on downstream tasks of a 3 billion parameter model by up to 2.04 and achieves up to a 1.45times reduction in pretraining steps to reach commensurate baseline performance. Furthermore, we demonstrate that such perplexity-based data pruning also yields downstream performance gains in the over-trained and data-constrained regimes.
ADMIRE-BayesOpt: Accelerated Data MIxture RE-weighting for Language Models with Bayesian Optimization
Determining the optimal data mixture for large language model training remains a challenging problem with an outsized impact on performance. In practice, language model developers continue to rely on heuristic exploration since no learning-based approach has emerged as a reliable solution. In this work, we propose to view the selection of training data mixtures as a black-box hyperparameter optimization problem, for which Bayesian Optimization is a well-established class of appropriate algorithms. Firstly, we cast data mixture learning as a sequential decision-making problem, in which we aim to find a suitable trade-off between the computational cost of training exploratory (proxy-) models and final mixture performance. Secondly, we systematically explore the properties of transferring mixtures learned at a small scale to larger-scale experiments, providing insights and highlighting opportunities for research at a modest scale. By proposing Multi-fidelity Bayesian Optimization as a suitable method in this common scenario, we introduce a natural framework to balance experiment cost with model fit, avoiding the risks of overfitting to smaller scales while minimizing the number of experiments at high cost. We present results for pre-training and instruction finetuning across models ranging from 1 million to 7 billion parameters, varying from simple architectures to state-of-the-art models and benchmarks spanning dozens of datasets. We demonstrate consistently strong results relative to a wide range of baselines, resulting inspeed-ups of over 500% in determining the best data mixture on our largest experiments. In addition, we broaden access to research by sharing ADMIRE IFT Runs, a dataset of 460 full training & evaluation runs worth over 13,000 GPU hours, greatly reducing the cost of conducting research in this area.
Balancing Specialized and General Skills in LLMs: The Impact of Modern Tuning and Data Strategy
This paper introduces a multifaceted methodology for fine-tuning and evaluating large language models (LLMs) for specialized monetization tasks. The goal is to balance general language proficiency with domain-specific skills. The methodology has three main components: 1) Carefully blending in-domain and general-purpose data during fine-tuning to achieve an optimal balance between general and specialized capabilities; 2) Designing a comprehensive evaluation framework with 45 questions tailored to assess performance on functionally relevant dimensions like reliability, consistency, and business impact; 3) Analyzing how model size and continual training influence metrics to guide efficient resource allocation during fine-tuning. The paper details the design, data collection, analytical techniques, and results validating the proposed frameworks. It aims to provide businesses and researchers with actionable insights on effectively adapting LLMs for specialized contexts. We also intend to make public the comprehensive evaluation framework, which includes the 45 tailored questions and their respective scoring guidelines, to foster transparency and collaboration in adapting LLMs for specialized tasks.
WSM: Decay-Free Learning Rate Schedule via Checkpoint Merging for LLM Pre-training
Recent advances in learning rate (LR) scheduling have demonstrated the effectiveness of decay-free approaches that eliminate the traditional decay phase while maintaining competitive performance. Model merging techniques have emerged as particularly promising solutions in this domain. We present Warmup-Stable and Merge (WSM), a general framework that establishes a formal connection between learning rate decay and model merging. WSM provides a unified theoretical foundation for emulating various decay strategies-including cosine decay, linear decay and inverse square root decay-as principled model averaging schemes, while remaining fully compatible with diverse optimization methods. Through extensive experiments, we identify merge duration-the training window for checkpoint aggregation-as the most critical factor influencing model performance, surpassing the importance of both checkpoint interval and merge quantity. Our framework consistently outperforms the widely-adopted Warmup-Stable-Decay (WSD) approach across multiple benchmarks, achieving significant improvements of +3.5% on MATH, +2.9% on HumanEval, and +5.5% on MMLU-Pro. The performance advantages extend to supervised fine-tuning scenarios, highlighting WSM's potential for long-term model refinement.
InfiFusion: A Unified Framework for Enhanced Cross-Model Reasoning via LLM Fusion
We introduce InfiFusion, an efficient training pipeline designed to integrate multiple domain-specialized Large Language Models (LLMs) into a single pivot model, effectively harnessing the strengths of each source model. Traditional fusion methods either merge model parameters directly or rely on knowledge distillation with rigid assumptions, limiting their flexibility and efficiency. InfiFusion overcomes these limitations by enhancing Universal Logit Distillation (ULD) with Top-K selection and Logits Standardization. We propose two fusion strategies: Pairwise Fusion (InfiFusion_p), where each source model knowledge is distilled individually into the pivot model followed by merging and Unified Fusion (InfiFusion_u), where knowledge from all source models is distilled simultaneously into the pivot model. InfiFusion outperforms the state-of-the-art models, such as Qwen-2.5-14B-Instruct and Phi-4, across 11 widely applied benchmarks covering reasoning, coding, mathematics, and instruction-following tasks. Notably, InfiFusion achieves this superior performance while significantly reduces computational costs, completing full training with only 160 H800 GPU hours compared to the millions typically required for traditional LLM training.
Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity
While deep neural networks show great performance on fitting to the training distribution, improving the networks' generalization performance to the test distribution and robustness to the sensitivity to input perturbations still remain as a challenge. Although a number of mixup based augmentation strategies have been proposed to partially address them, it remains unclear as to how to best utilize the supervisory signal within each input data for mixup from the optimization perspective. We propose a new perspective on batch mixup and formulate the optimal construction of a batch of mixup data maximizing the data saliency measure of each individual mixup data and encouraging the supermodular diversity among the constructed mixup data. This leads to a novel discrete optimization problem minimizing the difference between submodular functions. We also propose an efficient modular approximation based iterative submodular minimization algorithm for efficient mixup computation per each minibatch suitable for minibatch based neural network training. Our experiments show the proposed method achieves the state of the art generalization, calibration, and weakly supervised localization results compared to other mixup methods. The source code is available at https://github.com/snu-mllab/Co-Mixup.
MoS: Unleashing Parameter Efficiency of Low-Rank Adaptation with Mixture of Shards
The rapid scaling of large language models necessitates more lightweight finetuning methods to reduce the explosive GPU memory overhead when numerous customized models are served simultaneously. Targeting more parameter-efficient low-rank adaptation (LoRA), parameter sharing presents a promising solution. Empirically, our research into high-level sharing principles highlights the indispensable role of differentiation in reversing the detrimental effects of pure sharing. Guided by this finding, we propose Mixture of Shards (MoS), incorporating both inter-layer and intra-layer sharing schemes, and integrating four nearly cost-free differentiation strategies, namely subset selection, pair dissociation, vector sharding, and shard privatization. Briefly, it selects a designated number of shards from global pools with a Mixture-of-Experts (MoE)-like routing mechanism before sequentially concatenating them to low-rank matrices. Hence, it retains all the advantages of LoRA while offering enhanced parameter efficiency, and effectively circumvents the drawbacks of peer parameter-sharing methods. Our empirical experiments demonstrate approximately 8x parameter savings in a standard LoRA setting. The ablation study confirms the significance of each component. Our insights into parameter sharing and MoS method may illuminate future developments of more parameter-efficient finetuning methods.
Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large Language Models by Extrapolating Errors from Small Models
*Data Synthesis* is a promising way to train a small model with very little labeled data. One approach for data synthesis is to leverage the rich knowledge from large language models to synthesize pseudo training examples for small models, making it possible to achieve both data and compute efficiency at the same time. However, a key challenge in data synthesis is that the synthesized dataset often suffers from a large distributional discrepancy from the *real task* data distribution. Thus, in this paper, we propose *Synthesis Step by Step* (**S3**), a data synthesis framework that shrinks this distribution gap by iteratively extrapolating the errors made by a small model trained on the synthesized dataset on a small real-world validation dataset using a large language model. Extensive experiments on multiple NLP tasks show that our approach improves the performance of a small model by reducing the gap between the synthetic dataset and the real data, resulting in significant improvement compared to several baselines: 9.48% improvement compared to ZeroGen and 2.73% compared to GoldGen, and at most 15.17% improvement compared to the small model trained on human-annotated data.
FMix: Enhancing Mixed Sample Data Augmentation
Mixed Sample Data Augmentation (MSDA) has received increasing attention in recent years, with many successful variants such as MixUp and CutMix. By studying the mutual information between the function learned by a VAE on the original data and on the augmented data we show that MixUp distorts learned functions in a way that CutMix does not. We further demonstrate this by showing that MixUp acts as a form of adversarial training, increasing robustness to attacks such as Deep Fool and Uniform Noise which produce examples similar to those generated by MixUp. We argue that this distortion prevents models from learning about sample specific features in the data, aiding generalisation performance. In contrast, we suggest that CutMix works more like a traditional augmentation, improving performance by preventing memorisation without distorting the data distribution. However, we argue that an MSDA which builds on CutMix to include masks of arbitrary shape, rather than just square, could further prevent memorisation whilst preserving the data distribution in the same way. To this end, we propose FMix, an MSDA that uses random binary masks obtained by applying a threshold to low frequency images sampled from Fourier space. These random masks can take on a wide range of shapes and can be generated for use with one, two, and three dimensional data. FMix improves performance over MixUp and CutMix, without an increase in training time, for a number of models across a range of data sets and problem settings, obtaining a new single model state-of-the-art result on CIFAR-10 without external data. Finally, we show that a consequence of the difference between interpolating MSDA such as MixUp and masking MSDA such as FMix is that the two can be combined to improve performance even further. Code for all experiments is provided at https://github.com/ecs-vlc/FMix .
OneSearch: A Preliminary Exploration of the Unified End-to-End Generative Framework for E-commerce Search
Traditional e-commerce search systems employ multi-stage cascading architectures (MCA) that progressively filter items through recall, pre-ranking, and ranking stages. While effective at balancing computational efficiency with business conversion, these systems suffer from fragmented computation and optimization objective collisions across stages, which ultimately limit their performance ceiling. To address these, we propose OneSearch, the first industrial-deployed end-to-end generative framework for e-commerce search. This framework introduces three key innovations: (1) a Keyword-enhanced Hierarchical Quantization Encoding (KHQE) module, to preserve both hierarchical semantics and distinctive item attributes while maintaining strong query-item relevance constraints; (2) a multi-view user behavior sequence injection strategy that constructs behavior-driven user IDs and incorporates both explicit short-term and implicit long-term sequences to model user preferences comprehensively; and (3) a Preference-Aware Reward System (PARS) featuring multi-stage supervised fine-tuning and adaptive reward-weighted ranking to capture fine-grained user preferences. Extensive offline evaluations on large-scale industry datasets demonstrate OneSearch's superior performance for high-quality recall and ranking. The rigorous online A/B tests confirm its ability to enhance relevance in the same exposure position, achieving statistically significant improvements: +1.67% item CTR, +2.40% buyer, and +3.22% order volume. Furthermore, OneSearch reduces operational expenditure by 75.40% and improves Model FLOPs Utilization from 3.26% to 27.32%. The system has been successfully deployed across multiple search scenarios in Kuaishou, serving millions of users, generating tens of millions of PVs daily.
WaveStitch: Flexible and Fast Conditional Time Series Generation with Diffusion Models
Generating temporal data under conditions is crucial for forecasting, imputation, and generative tasks. Such data often has metadata and partially observed signals that jointly influence the generated values. However, existing methods face three key limitations: (1) they condition on either the metadata or observed values, but rarely both together; (2) they adopt either training-time approaches that fail to generalize to unseen scenarios, or inference-time approaches that ignore metadata; and (3) they suffer from trade-offs between generation speed and temporal coherence across time windows--choosing either slow but coherent autoregressive methods or fast but incoherent parallel ones. We propose WaveStitch, a novel diffusion-based method to overcome these hurdles through: (1) dual-sourced conditioning on both metadata and partially observed signals; (2) a hybrid training-inference architecture, incorporating metadata during training and observations at inference via gradient-based guidance; and (3) a novel pipeline-style paradigm that generates time windows in parallel while preserving coherence through an inference-time conditional loss and a stitching mechanism. Across diverse datasets, WaveStitch demonstrates adaptability to arbitrary patterns of observed signals, achieving 1.81x lower mean-squared-error compared to the state-of-the-art, and generates data up to 166.48x faster than autoregressive methods while maintaining coherence. Our code is available at: https://github.com/adis98/WaveStitch
Fixing It in Post: A Comparative Study of LLM Post-Training Data Quality and Model Performance
Recent work on large language models (LLMs) has increasingly focused on post-training and alignment with datasets curated to enhance instruction following, world knowledge, and specialized skills. However, most post-training datasets used in leading open- and closed-source LLMs remain inaccessible to the public, with limited information about their construction process. This lack of transparency has motivated the recent development of open-source post-training corpora. While training on these open alternatives can yield performance comparable to that of leading models, systematic comparisons remain challenging due to the significant computational cost of conducting them rigorously at scale, and are therefore largely absent. As a result, it remains unclear how specific samples, task types, or curation strategies influence downstream performance when assessing data quality. In this work, we conduct the first comprehensive side-by-side analysis of two prominent open post-training datasets: Tulu-3-SFT-Mix and SmolTalk. Using the Magpie framework, we annotate each sample with detailed quality metrics, including turn structure (single-turn vs. multi-turn), task category, input quality, and response quality, and we derive statistics that reveal structural and qualitative similarities and differences between the two datasets. Based on these insights, we design a principled curation recipe that produces a new data mixture, TuluTalk, which contains 14% fewer samples than either source dataset while matching or exceeding their performance on key benchmarks. Our findings offer actionable insights for constructing more effective post-training datasets that improve model performance within practical resource limits. To support future research, we publicly release both the annotated source datasets and our curated TuluTalk mixture.
Improving Influence-based Instruction Tuning Data Selection for Balanced Learning of Diverse Capabilities
Selecting appropriate training data is crucial for effective instruction fine-tuning of large language models (LLMs), which aims to (1) elicit strong capabilities, and (2) achieve balanced performance across a diverse range of tasks. Influence-based methods show promise in achieving (1) by estimating the contribution of each training example to the model's predictions, but often struggle with (2). Our systematic investigation reveals that this underperformance can be attributed to an inherent bias where certain tasks intrinsically have greater influence than others. As a result, data selection is often biased towards these tasks, not only hurting the model's performance on others but also, counterintuitively, harms performance on these high-influence tasks themselves. As a remedy, we propose BIDS, a Balanced and Influential Data Selection algorithm. BIDS first normalizes influence scores of the training data, and then iteratively balances data selection by choosing the training example with the highest influence on the most underrepresented task. Experiments with both Llama-3 and Mistral-v0.3 on seven benchmarks spanning five diverse capabilities show that BIDS consistently outperforms both state-of-the-art influence-based algorithms and other non-influence-based selection frameworks. Surprisingly, training on a 15% subset selected by BIDS can even outperform full-dataset training with a much more balanced performance. Our analysis further highlights the importance of both instance-level normalization and iterative optimization of selected data for balanced learning of diverse capabilities.
Can Open-Source LLMs Compete with Commercial Models? Exploring the Few-Shot Performance of Current GPT Models in Biomedical Tasks
Commercial large language models (LLMs), like OpenAI's GPT-4 powering ChatGPT and Anthropic's Claude 3 Opus, have dominated natural language processing (NLP) benchmarks across different domains. New competing Open-Source alternatives like Mixtral 8x7B or Llama 3 have emerged and seem to be closing the gap while often offering higher throughput and being less costly to use. Open-Source LLMs can also be self-hosted, which makes them interesting for enterprise and clinical use cases where sensitive data should not be processed by third parties. We participated in the 12th BioASQ challenge, which is a retrieval augmented generation (RAG) setting, and explored the performance of current GPT models Claude 3 Opus, GPT-3.5-turbo and Mixtral 8x7b with in-context learning (zero-shot, few-shot) and QLoRa fine-tuning. We also explored how additional relevant knowledge from Wikipedia added to the context-window of the LLM might improve their performance. Mixtral 8x7b was competitive in the 10-shot setting, both with and without fine-tuning, but failed to produce usable results in the zero-shot setting. QLoRa fine-tuning and Wikipedia context did not lead to measurable performance gains. Our results indicate that the performance gap between commercial and open-source models in RAG setups exists mainly in the zero-shot setting and can be closed by simply collecting few-shot examples for domain-specific use cases. The code needed to rerun these experiments is available through GitHub.
Orders in Chaos: Enhancing Large-Scale MoE LLM Serving with Data Movement Forecasting
Large Language Models (LLMs) with Mixture of Experts (MoE) architectures achieve remarkable performance improvements, but their random expert selection mechanism introduces significant data movement overhead that becomes the dominant bottleneck in multi-unit serving systems. To forecast the patterns underlying this data movement, we conduct comprehensive data-movement-centric profiling across three state-of-the-art large-scale MoE models (200B- 671B) using over 24,000 requests spanning diverse workloads. With the resulting 150GB+ trace files, we perform systematic analysis from both temporal and spatial perspectives and distill six key insights to guide the design of diverse future serving systems. Taking wafer-scale GPUs as a case study, we demonstrate that minor architectural modifications leveraging our insights achieve substantial performance gains, delivering 6.3X and 4.0X average speedups on DeepSeek V3 and Qwen3, respectively. Our work provides the first comprehensive data-centric analysis of MoE models at scale. Our profiling traces and analysis results are publicly available at {https://huggingface.co/datasets/core12345/MoE_expert_selection_trace. We will also release our simulation framework shortly to facilitate future research in this area.
Data Management For Large Language Models: A Survey
Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at https://github.com/ZigeW/data_management_LLM.
Balancing Cost and Effectiveness of Synthetic Data Generation Strategies for LLMs
As large language models (LLMs) are applied to more use cases, creating high quality, task-specific datasets for fine-tuning becomes a bottleneck for model improvement. Using high quality human data has been the most common approach to unlock model performance, but is prohibitively expensive in many scenarios. Several alternative methods have also emerged, such as generating synthetic or hybrid data, but the effectiveness of these approaches remain unclear, especially in resource-constrained scenarios and tasks that are not easily verified. To investigate this, we group various synthetic data generation strategies into three representative categories -- Answer Augmentation, Question Rephrase and New Question -- and study the performance of student LLMs trained under various constraints, namely seed instruction set size and query budget. We demonstrate that these strategies are not equally effective across settings. Notably, the optimal data generation strategy depends strongly on the ratio between the available teacher query budget and the size of the seed instruction set. When this ratio is low, generating new answers to existing questions proves most effective, but as this ratio increases, generating new questions becomes optimal. Across all tasks, we find that choice of augmentation method and other design choices matter substantially more in low to mid data regimes than in high data regimes. We provide a practical framework for selecting the appropriate augmentation method across settings, taking into account additional factors such as the scalability of each method, the importance of verifying synthetic data, and the use of different LLMs for synthetic data generation.
Fast Inference of Mixture-of-Experts Language Models with Offloading
With the widespread adoption of Large Language Models (LLMs), many deep learning practitioners are looking for strategies of running these models more efficiently. One such strategy is to use sparse Mixture-of-Experts (MoE) - a type of model architectures where only a fraction of model layers are active for any given input. This property allows MoE-based language models to generate tokens faster than their dense counterparts, but it also increases model size due to having multiple experts. Unfortunately, this makes state-of-the-art MoE language models difficult to run without high-end GPUs. In this work, we study the problem of running large MoE language models on consumer hardware with limited accelerator memory. We build upon parameter offloading algorithms and propose a novel strategy that accelerates offloading by taking advantage of innate properties of MoE LLMs. Using this strategy, we build can run Mixtral-8x7B with mixed quantization on desktop hardware and free-tier Google Colab instances.
A Comprehensive Survey on Imbalanced Data Learning
With the expansion of data availability, machine learning (ML) has achieved remarkable breakthroughs in both academia and industry. However, imbalanced data distributions are prevalent in various types of raw data and severely hinder the performance of ML by biasing the decision-making processes. To deepen the understanding of imbalanced data and facilitate the related research and applications, this survey systematically analyzes various real-world data formats and concludes existing researches for different data formats into four distinct categories: data re-balancing, feature representation, training strategy, and ensemble learning. This structured analysis helps researchers comprehensively understand the pervasive nature of imbalance across diverse data formats, thereby paving a clearer path toward achieving specific research goals. We provide an overview of relevant open-source libraries, spotlight current challenges, and offer novel insights aimed at fostering future advancements in this critical area of study.
Mix Data or Merge Models? Balancing the Helpfulness, Honesty, and Harmlessness of Large Language Model via Model Merging
Achieving balanced alignment of large language models (LLMs) in terms of Helpfulness, Honesty, and Harmlessness (3H optimization) constitutes a cornerstone of responsible AI, with existing methods like data mixture strategies facing limitations including reliance on expert knowledge and conflicting optimization signals. While model merging offers a promising alternative by integrating specialized models, its potential for 3H optimization remains underexplored. This paper establishes the first comprehensive benchmark for model merging in 3H-aligned LLMs, systematically evaluating 15 methods (12 training-free merging and 3 data mixture techniques) across 10 datasets associated with 5 annotation dimensions, 2 LLM families, and 2 training paradigms. Our analysis reveals three pivotal insights: (i) previously overlooked collaborative/conflicting relationships among 3H dimensions, (ii) the consistent superiority of model merging over data mixture approaches in balancing alignment trade-offs, and (iii) the critical role of parameter-level conflict resolution through redundant component pruning and outlier mitigation. Building on these findings, we propose R-TSVM, a Reweighting-enhanced Task Singular Vector Merging method that incorporates outlier-aware parameter weighting and sparsity-adaptive rank selection strategies adapted to the heavy-tailed parameter distribution and sparsity for LLMs, further improving LLM alignment across multiple evaluations. We release our trained models for further exploration.
Towards Alignment-Centric Paradigm: A Survey of Instruction Tuning in Large Language Models
Instruction tuning is a pivotal technique for aligning large language models (LLMs) with human intentions, safety constraints, and domain-specific requirements. This survey provides a comprehensive overview of the full pipeline, encompassing (i) data collection methodologies, (ii) full-parameter and parameter-efficient fine-tuning strategies, and (iii) evaluation protocols. We categorized data construction into three major paradigms: expert annotation, distillation from larger models, and self-improvement mechanisms, each offering distinct trade-offs between quality, scalability, and resource cost. Fine-tuning techniques range from conventional supervised training to lightweight approaches, such as low-rank adaptation (LoRA) and prefix tuning, with a focus on computational efficiency and model reusability. We further examine the challenges of evaluating faithfulness, utility, and safety across multilingual and multimodal scenarios, highlighting the emergence of domain-specific benchmarks in healthcare, legal, and financial applications. Finally, we discuss promising directions for automated data generation, adaptive optimization, and robust evaluation frameworks, arguing that a closer integration of data, algorithms, and human feedback is essential for advancing instruction-tuned LLMs. This survey aims to serve as a practical reference for researchers and practitioners seeking to design LLMs that are both effective and reliably aligned with human intentions.
The Benefits of Mixup for Feature Learning
Mixup, a simple data augmentation method that randomly mixes two data points via linear interpolation, has been extensively applied in various deep learning applications to gain better generalization. However, the theoretical underpinnings of its efficacy are not yet fully understood. In this paper, we aim to seek a fundamental understanding of the benefits of Mixup. We first show that Mixup using different linear interpolation parameters for features and labels can still achieve similar performance to the standard Mixup. This indicates that the intuitive linearity explanation in Zhang et al., (2018) may not fully explain the success of Mixup. Then we perform a theoretical study of Mixup from the feature learning perspective. We consider a feature-noise data model and show that Mixup training can effectively learn the rare features (appearing in a small fraction of data) from its mixture with the common features (appearing in a large fraction of data). In contrast, standard training can only learn the common features but fails to learn the rare features, thus suffering from bad generalization performance. Moreover, our theoretical analysis also shows that the benefits of Mixup for feature learning are mostly gained in the early training phase, based on which we propose to apply early stopping in Mixup. Experimental results verify our theoretical findings and demonstrate the effectiveness of the early-stopped Mixup training.
From Unaligned to Aligned: Scaling Multilingual LLMs with Multi-Way Parallel Corpora
Continued pretraining and instruction tuning on large-scale multilingual data have proven to be effective in scaling large language models (LLMs) to low-resource languages. However, the unaligned nature of such data limits its ability to effectively capture cross-lingual semantics. In contrast, multi-way parallel data, where identical content is aligned across multiple languages, provides stronger cross-lingual consistency and offers greater potential for improving multilingual performance. In this paper, we introduce a large-scale, high-quality multi-way parallel corpus, TED2025, based on TED Talks. The corpus spans 113 languages, with up to 50 languages aligned in parallel, ensuring extensive multilingual coverage. Using this dataset, we investigate best practices for leveraging multi-way parallel data to enhance LLMs, including strategies for continued pretraining, instruction tuning, and the analysis of key influencing factors. Experiments on six multilingual benchmarks show that models trained on multiway parallel data consistently outperform those trained on unaligned multilingual data.
LoRA-Mixer: Coordinate Modular LoRA Experts Through Serial Attention Routing
Recent efforts to combine low-rank adaptation (LoRA) with mixture-of-experts (MoE) for adapting large language models (LLMs) to multiple tasks still exhibit prevailing limitations: they either swap entire attention/feed-forward layers for switch experts or bolt on parallel expert branches, diluting parameter efficiency and task fidelity. We propose the LoRA-Mixer, a modular and lightweight MoE framework that integrates LoRA experts. Our core innovation lies in replacing the projection matrices of the attention module's input/output linear layers with dynamically routed, task-specific LoRA experts. This design ensures seamless compatibility with diverse foundation models, including transformers and state space models (SSMs), by leveraging their inherent linear projection structures. The framework supports two operational paradigms: (1) joint optimization of LoRA experts and routing mechanisms via a novel hard-soft routing strategy, or (2) direct deployment of pre-trained, frozen LoRA modules sourced from external repositories. To enable robust router training with limited data while ensuring stable routing decisions and maximizing expert reuse, we introduce an adaptive Specialization Balance Loss (SBL) that jointly optimizes expert balance and task-specific alignment. Extensive experiments on seven benchmark datasets, including MedQA, CoLA, SST-2, GSM8K, ARC-E, ARC-C, and HumanEval, demonstrate the effectiveness of LoRA-Mixer. On datasets such as GSM8K, HumanEval, and MedQA, LoRA-Mixer achieves significant improvements of 7.61%, 4.88%, and 3.08% over the base models, respectively. Compared with state-of-the-art methods, LoRA-Mixer achieves additional improvements of 1.09%, 1.45%, and 1.68%, respectively, using only 48% of the parameters, demonstrating its efficiency and strong performance.
Financial Models in Generative Art: Black-Scholes-Inspired Concept Blending in Text-to-Image Diffusion
We introduce a novel approach for concept blending in pretrained text-to-image diffusion models, aiming to generate images at the intersection of multiple text prompts. At each time step during diffusion denoising, our algorithm forecasts predictions w.r.t. the generated image and makes informed text conditioning decisions. Central to our method is the unique analogy between diffusion models, which are rooted in non-equilibrium thermodynamics, and the Black-Scholes model for financial option pricing. By drawing parallels between key variables in both domains, we derive a robust algorithm for concept blending that capitalizes on the Markovian dynamics of the Black-Scholes framework. Our text-based concept blending algorithm is data-efficient, meaning it does not need additional training. Furthermore, it operates without human intervention or hyperparameter tuning. We highlight the benefits of our approach by comparing it qualitatively and quantitatively to other text based concept blending techniques, including linear interpolation, alternating prompts, step-wise prompt switching, and CLIP-guided prompt selection across various scenarios such as single object per text prompt, multiple objects per text prompt and objects against backgrounds. Our work shows that financially inspired techniques can enhance text-to-image concept blending in generative AI, paving the way for broader innovation. Code is available at https://github.com/divyakraman/BlackScholesDiffusion2024.
Clustering and Ranking: Diversity-preserved Instruction Selection through Expert-aligned Quality Estimation
With contributions from the open-source community, a vast amount of instruction tuning (IT) data has emerged. Given the significant resource allocation required for training and evaluating models, it is advantageous to have an efficient method for selecting high-quality IT data. However, existing methods for instruction data selection have limitations such as relying on fragile external APIs, being affected by biases in GPT models, or reducing the diversity of the selected instruction dataset. In this paper, we propose an industrial-friendly, expert-aligned and diversity-preserved instruction data selection method: Clustering and Ranking (CaR). CaR employs a two-step process: first, it ranks instruction pairs using a high-accuracy (84.25%) scoring model aligned with expert preferences; second, it preserves dataset diversity through clustering. In our experiment, CaR efficiently selected a mere 1.96% of Alpaca's IT data, yet the resulting AlpaCaR model surpassed Alpaca's performance by an average of 32.1% in GPT-4 evaluations. Moreover, we find that data selecting is a consistent paradigm whether the pre-trained model is more capable or the model parameters scaling up. Our approach employs compact models with 550M parameters and incurs just 11.2% of the financial outlay of current methods, enhancing its industrial deployability.
MixFormer: End-to-End Tracking with Iterative Mixed Attention
Tracking often uses a multi-stage pipeline of feature extraction, target information integration, and bounding box estimation. To simplify this pipeline and unify the process of feature extraction and target information integration, we present a compact tracking framework, termed as MixFormer, built upon transformers. Our core design is to utilize the flexibility of attention operations, and propose a Mixed Attention Module (MAM) for simultaneous feature extraction and target information integration. This synchronous modeling scheme allows to extract target-specific discriminative features and perform extensive communication between target and search area. Based on MAM, we build our MixFormer tracking framework simply by stacking multiple MAMs with progressive patch embedding and placing a localization head on top. In addition, to handle multiple target templates during online tracking, we devise an asymmetric attention scheme in MAM to reduce computational cost, and propose an effective score prediction module to select high-quality templates. Our MixFormer sets a new state-of-the-art performance on five tracking benchmarks, including LaSOT, TrackingNet, VOT2020, GOT-10k, and UAV123. In particular, our MixFormer-L achieves NP score of 79.9% on LaSOT, 88.9% on TrackingNet and EAO of 0.555 on VOT2020. We also perform in-depth ablation studies to demonstrate the effectiveness of simultaneous feature extraction and information integration. Code and trained models are publicly available at https://github.com/MCG-NJU/MixFormer.
Mitigating Bias in Dataset Distillation
Dataset Distillation has emerged as a technique for compressing large datasets into smaller synthetic counterparts, facilitating downstream training tasks. In this paper, we study the impact of bias inside the original dataset on the performance of dataset distillation. With a comprehensive empirical evaluation on canonical datasets with color, corruption and background biases, we found that color and background biases in the original dataset will be amplified through the distillation process, resulting in a notable decline in the performance of models trained on the distilled dataset, while corruption bias is suppressed through the distillation process. To reduce bias amplification in dataset distillation, we introduce a simple yet highly effective approach based on a sample reweighting scheme utilizing kernel density estimation. Empirical results on multiple real-world and synthetic datasets demonstrate the effectiveness of the proposed method. Notably, on CMNIST with 5% bias-conflict ratio and IPC 50, our method achieves 91.5% test accuracy compared to 23.8% from vanilla DM, boosting the performance by 67.7%, whereas applying state-of-the-art debiasing method on the same dataset only achieves 53.7% accuracy. Our findings highlight the importance of addressing biases in dataset distillation and provide a promising avenue to address bias amplification in the process.
Pistis-RAG: A Scalable Cascading Framework Towards Trustworthy Retrieval-Augmented Generation
In Greek mythology, Pistis symbolized good faith, trust, and reliability, echoing the core principles of RAG in LLM systems. Pistis-RAG, a scalable multi-stage framework, effectively addresses the challenges of large-scale retrieval-augmented generation (RAG). Each stage plays a distinct role: matching refines the search space, pre-ranking prioritizes semantically relevant documents, and ranking aligns with the large language model's (LLM) preferences. The reasoning and aggregating stage supports the implementation of complex chain-of-thought (CoT) methods within this cascading structure. We argue that the lack of strong alignment between LLMs and the external knowledge ranking methods used in RAG tasks is relevant to the reliance on the model-centric paradigm in RAG frameworks. A content-centric approach would prioritize seamless integration between the LLMs and external information sources, optimizing the content transformation process for each specific task. Critically, our ranking stage deviates from traditional RAG approaches by recognizing that semantic relevance alone may not directly translate to improved generation. This is due to the sensitivity of the few-shot prompt order, as highlighted in prior work lu2021fantastically. Current RAG frameworks fail to account for this crucial factor. We introduce a novel ranking stage specifically designed for RAG systems. It adheres to information retrieval principles while considering the unique business scenario captured by LLM preferences and user feedback. Our approach integrates in-context learning (ICL) methods and reasoning steps to incorporate user feedback, ensuring efficient alignment. Experiments on the MMLU benchmark demonstrate a 9.3\% performance improvement. The model and code will be open-sourced on GitHub. Experiments on real-world, large-scale data validate our framework's scalability.
DMM: Building a Versatile Image Generation Model via Distillation-Based Model Merging
The success of text-to-image (T2I) generation models has spurred a proliferation of numerous model checkpoints fine-tuned from the same base model on various specialized datasets. This overwhelming specialized model production introduces new challenges for high parameter redundancy and huge storage cost, thereby necessitating the development of effective methods to consolidate and unify the capabilities of diverse powerful models into a single one. A common practice in model merging adopts static linear interpolation in the parameter space to achieve the goal of style mixing. However, it neglects the features of T2I generation task that numerous distinct models cover sundry styles which may lead to incompatibility and confusion in the merged model. To address this issue, we introduce a style-promptable image generation pipeline which can accurately generate arbitrary-style images under the control of style vectors. Based on this design, we propose the score distillation based model merging paradigm (DMM), compressing multiple models into a single versatile T2I model. Moreover, we rethink and reformulate the model merging task in the context of T2I generation, by presenting new merging goals and evaluation protocols. Our experiments demonstrate that DMM can compactly reorganize the knowledge from multiple teacher models and achieve controllable arbitrary-style generation.
Training Data Attribution via Approximate Unrolled Differentiation
Many training data attribution (TDA) methods aim to estimate how a model's behavior would change if one or more data points were removed from the training set. Methods based on implicit differentiation, such as influence functions, can be made computationally efficient, but fail to account for underspecification, the implicit bias of the optimization algorithm, or multi-stage training pipelines. By contrast, methods based on unrolling address these issues but face scalability challenges. In this work, we connect the implicit-differentiation-based and unrolling-based approaches and combine their benefits by introducing Source, an approximate unrolling-based TDA method that is computed using an influence-function-like formula. While being computationally efficient compared to unrolling-based approaches, Source is suitable in cases where implicit-differentiation-based approaches struggle, such as in non-converged models and multi-stage training pipelines. Empirically, Source outperforms existing TDA techniques in counterfactual prediction, especially in settings where implicit-differentiation-based approaches fall short.
Do We Truly Need So Many Samples? Multi-LLM Repeated Sampling Efficiently Scales Test-Time Compute
This paper presents a simple, effective, and cost-efficient strategy to improve LLM performance by scaling test-time compute. Our strategy builds upon the repeated-sampling-then-voting framework, with a novel twist: incorporating multiple models, even weaker ones, to leverage their complementary strengths that potentially arise from diverse training data and paradigms. By using consistency as a signal, our strategy dynamically switches between models. Theoretical analysis highlights the efficiency and performance advantages of our strategy. Extensive experiments on six datasets demonstrate that our strategy not only outperforms self-consistency and state-of-the-art multi-agent debate approaches, but also significantly reduces inference costs. Additionally, ModelSwitch requires only a few comparable LLMs to achieve optimal performance and can be extended with verification methods, demonstrating the potential of leveraging multiple LLMs in the generation-verification paradigm.
SEED-Data-Edit Technical Report: A Hybrid Dataset for Instructional Image Editing
In this technical report, we introduce SEED-Data-Edit: a unique hybrid dataset for instruction-guided image editing, which aims to facilitate image manipulation using open-form language. SEED-Data-Edit is composed of three distinct types of data: (1) High-quality editing data produced by an automated pipeline, ensuring a substantial volume of diverse image editing pairs. (2) Real-world scenario data collected from the internet, which captures the intricacies of user intentions for promoting the practical application of image editing in the real world. (3) High-precision multi-turn editing data annotated by humans, which involves multiple rounds of edits for simulating iterative editing processes. The combination of these diverse data sources makes SEED-Data-Edit a comprehensive and versatile dataset for training language-guided image editing model. We fine-tune a pretrained Multimodal Large Language Model (MLLM) that unifies comprehension and generation with SEED-Data-Edit. The instruction tuned model demonstrates promising results, indicating the potential and effectiveness of SEED-Data-Edit in advancing the field of instructional image editing. The datasets are released in https://huggingface.co/datasets/AILab-CVC/SEED-Data-Edit.
