Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeUnveiling Real Triple Degeneracies in Crystals: Exploring Link and Compound Structures
With their non-Abelian topological charges, real multi-bandgap systems challenge the conventional topological phase classifications. As the minimal sector of multi-bandgap systems, real triple degeneracies (RTPs), which serve as real 'Weyl points', lay the foundation for the research on real topological phases. However, experimental demonstration of physical systems with global band configurations consisting of multiple RTPs in crystals has not been reported. Here we present experimental evidence of RTPs in photonic meta-crystals, characterizing them using the Euler number, and establishing their connection with both Abelian and non-Abelian charges. By considering RTPs as the basic elements, we further propose the concept of a topological compound, akin to a chemical compound, where we find that certain phases are not topologically allowed. The topological classification of RTPs in crystals demonstrated in our work plays a similar role as the 'no-go' theorem in Weyl systems.
Spot the Difference: Detection of Topological Changes via Geometric Alignment
Geometric alignment appears in a variety of applications, ranging from domain adaptation, optimal transport, and normalizing flows in machine learning; optical flow and learned augmentation in computer vision and deformable registration within biomedical imaging. A recurring challenge is the alignment of domains whose topology is not the same; a problem that is routinely ignored, potentially introducing bias in downstream analysis. As a first step towards solving such alignment problems, we propose an unsupervised algorithm for the detection of changes in image topology. The model is based on a conditional variational auto-encoder and detects topological changes between two images during the registration step. We account for both topological changes in the image under spatial variation and unexpected transformations. Our approach is validated on two tasks and datasets: detection of topological changes in microscopy images of cells, and unsupervised anomaly detection brain imaging.
Neural 4D Evolution under Large Topological Changes from 2D Images
In the literature, it has been shown that the evolution of the known explicit 3D surface to the target one can be learned from 2D images using the instantaneous flow field, where the known and target 3D surfaces may largely differ in topology. We are interested in capturing 4D shapes whose topology changes largely over time. We encounter that the straightforward extension of the existing 3D-based method to the desired 4D case performs poorly. In this work, we address the challenges in extending 3D neural evolution to 4D under large topological changes by proposing two novel modifications. More precisely, we introduce (i) a new architecture to discretize and encode the deformation and learn the SDF and (ii) a technique to impose the temporal consistency. (iii) Also, we propose a rendering scheme for color prediction based on Gaussian splatting. Furthermore, to facilitate learning directly from 2D images, we propose a learning framework that can disentangle the geometry and appearance from RGB images. This method of disentanglement, while also useful for the 4D evolution problem that we are concentrating on, is also novel and valid for static scenes. Our extensive experiments on various data provide awesome results and, most importantly, open a new approach toward reconstructing challenging scenes with significant topological changes and deformations. Our source code and the dataset are publicly available at https://github.com/insait-institute/N4DE.
DoughNet: A Visual Predictive Model for Topological Manipulation of Deformable Objects
Manipulation of elastoplastic objects like dough often involves topological changes such as splitting and merging. The ability to accurately predict these topological changes that a specific action might incur is critical for planning interactions with elastoplastic objects. We present DoughNet, a Transformer-based architecture for handling these challenges, consisting of two components. First, a denoising autoencoder represents deformable objects of varying topology as sets of latent codes. Second, a visual predictive model performs autoregressive set prediction to determine long-horizon geometrical deformation and topological changes purely in latent space. Given a partial initial state and desired manipulation trajectories, it infers all resulting object geometries and topologies at each step. DoughNet thereby allows to plan robotic manipulation; selecting a suited tool, its pose and opening width to recreate robot- or human-made goals. Our experiments in simulated and real environments show that DoughNet is able to significantly outperform related approaches that consider deformation only as geometrical change.
EditableNeRF: Editing Topologically Varying Neural Radiance Fields by Key Points
Neural radiance fields (NeRF) achieve highly photo-realistic novel-view synthesis, but it's a challenging problem to edit the scenes modeled by NeRF-based methods, especially for dynamic scenes. We propose editable neural radiance fields that enable end-users to easily edit dynamic scenes and even support topological changes. Input with an image sequence from a single camera, our network is trained fully automatically and models topologically varying dynamics using our picked-out surface key points. Then end-users can edit the scene by easily dragging the key points to desired new positions. To achieve this, we propose a scene analysis method to detect and initialize key points by considering the dynamics in the scene, and a weighted key points strategy to model topologically varying dynamics by joint key points and weights optimization. Our method supports intuitive multi-dimensional (up to 3D) editing and can generate novel scenes that are unseen in the input sequence. Experiments demonstrate that our method achieves high-quality editing on various dynamic scenes and outperforms the state-of-the-art. Our code and captured data are available at https://chengwei-zheng.github.io/EditableNeRF/.
AniClipart: Clipart Animation with Text-to-Video Priors
Clipart, a pre-made graphic art form, offers a convenient and efficient way of illustrating visual content. Traditional workflows to convert static clipart images into motion sequences are laborious and time-consuming, involving numerous intricate steps like rigging, key animation and in-betweening. Recent advancements in text-to-video generation hold great potential in resolving this problem. Nevertheless, direct application of text-to-video generation models often struggles to retain the visual identity of clipart images or generate cartoon-style motions, resulting in unsatisfactory animation outcomes. In this paper, we introduce AniClipart, a system that transforms static clipart images into high-quality motion sequences guided by text-to-video priors. To generate cartoon-style and smooth motion, we first define B\'{e}zier curves over keypoints of the clipart image as a form of motion regularization. We then align the motion trajectories of the keypoints with the provided text prompt by optimizing the Video Score Distillation Sampling (VSDS) loss, which encodes adequate knowledge of natural motion within a pretrained text-to-video diffusion model. With a differentiable As-Rigid-As-Possible shape deformation algorithm, our method can be end-to-end optimized while maintaining deformation rigidity. Experimental results show that the proposed AniClipart consistently outperforms existing image-to-video generation models, in terms of text-video alignment, visual identity preservation, and motion consistency. Furthermore, we showcase the versatility of AniClipart by adapting it to generate a broader array of animation formats, such as layered animation, which allows topological changes.
FruitNinja: 3D Object Interior Texture Generation with Gaussian Splatting
In the real world, objects reveal internal textures when sliced or cut, yet this behavior is not well-studied in 3D generation tasks today. For example, slicing a virtual 3D watermelon should reveal flesh and seeds. Given that no available dataset captures an object's full internal structure and collecting data from all slices is impractical, generative methods become the obvious approach. However, current 3D generation and inpainting methods often focus on visible appearance and overlook internal textures. To bridge this gap, we introduce FruitNinja, the first method to generate internal textures for 3D objects undergoing geometric and topological changes. Our approach produces objects via 3D Gaussian Splatting (3DGS) with both surface and interior textures synthesized, enabling real-time slicing and rendering without additional optimization. FruitNinja leverages a pre-trained diffusion model to progressively inpaint cross-sectional views and applies voxel-grid-based smoothing to achieve cohesive textures throughout the object. Our OpaqueAtom GS strategy overcomes 3DGS limitations by employing densely distributed opaque Gaussians, avoiding biases toward larger particles that destabilize training and sharp color transitions for fine-grained textures. Experimental results show that FruitNinja substantially outperforms existing approaches, showcasing unmatched visual quality in real-time rendered internal views across arbitrary geometry manipulations.
HoloNets: Spectral Convolutions do extend to Directed Graphs
Within the graph learning community, conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs: Only there could the existence of a well-defined graph Fourier transform be guaranteed, so that information may be translated between spatial- and spectral domains. Here we show this traditional reliance on the graph Fourier transform to be superfluous and -- making use of certain advanced tools from complex analysis and spectral theory -- extend spectral convolutions to directed graphs. We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based. In order to thoroughly test the developed theory, we conduct experiments in real world settings, showcasing that directed spectral convolutional networks provide new state of the art results for heterophilic node classification on many datasets and -- as opposed to baselines -- may be rendered stable to resolution-scale varying topological perturbations.
High spin axion insulator
Axion insulators possess a quantized axion field theta=pi protected by combined lattice and time-reversal symmetry, holding great potential for device applications in layertronics and quantum computing. Here, we propose a high-spin axion insulator (HSAI) defined in large spin-s representation, which maintains the same inherent symmetry but possesses a notable axion field theta=(s+1/2)^2pi. Such distinct axion field is confirmed independently by the direct calculation of the axion term using hybrid Wannier functions, layer-resolved Chern numbers, as well as the topological magneto-electric effect. We show that the guaranteed gapless quasi-particle excitation is absent at the boundary of the HSAI despite its integer surface Chern number, hinting an unusual quantum anomaly violating the conventional bulk-boundary correspondence. Furthermore, we ascertain that the axion field theta can be precisely tuned through an external magnetic field, enabling the manipulation of bonded transport properties. The HSAI proposed here can be experimentally verified in ultra-cold atoms by the quantized non-reciprocal conductance or topological magnetoelectric response. Our work enriches the understanding of axion insulators in condensed matter physics, paving the way for future device applications.
Haldane Bundles: A Dataset for Learning to Predict the Chern Number of Line Bundles on the Torus
Characteristic classes, which are abstract topological invariants associated with vector bundles, have become an important notion in modern physics with surprising real-world consequences. As a representative example, the incredible properties of topological insulators, which are insulators in their bulk but conductors on their surface, can be completely characterized by a specific characteristic class associated with their electronic band structure, the first Chern class. Given their importance to next generation computing and the computational challenge of calculating them using first-principles approaches, there is a need to develop machine learning approaches to predict the characteristic classes associated with a material system. To aid in this program we introduce the {Haldane bundle dataset}, which consists of synthetically generated complex line bundles on the 2-torus. We envision this dataset, which is not as challenging as noisy and sparsely measured real-world datasets but (as we show) still difficult for off-the-shelf architectures, to be a testing ground for architectures that incorporate the rich topological and geometric priors underlying characteristic classes.
A New Two-Dimensional Dirac Semimetal Based on the Alkaline Earth Metal, CaP_3
Using an evolutionary algorithm in combination with first-principles density functional theory calculations, we identify two-dimensional (2D) CaP_3 monolayer as a new Dirac semimetal due to inversion and nonsymmorphic spatial symmetries of the structure. This new topological material, composed of light elements, exhibits high structural stability (higher than the phase known in the literature), which is confirmed by thermodynamic and kinetic stability analysis. Moreover, it satisfies the electron filling criteria, so that its Dirac state is located near the Fermi level. The existence of the Dirac state predicted by the theoretical symmetry analysis is also confirmed by first-principles electronic band structure calculations. We find that the energy position of the Dirac state can be tuned by strain, while the Dirac state is unstable against an external electric field since it breaks the spatial inversion symmetry. Our findings should be instrumental in the development of 2D Dirac fermions based on light elements for their application in nanoelectronic devices and topological electronics.
Holographic Superconductors
It has been shown that a gravitational dual to a superconductor can be obtained by coupling anti-de Sitter gravity to a Maxwell field and charged scalar. We review our earlier analysis of this theory and extend it in two directions. First, we consider all values for the charge of the scalar field. Away from the large charge limit, backreaction on the spacetime metric is important. While the qualitative behaviour of the dual superconductor is found to be similar for all charges, in the limit of arbitrarily small charge a new type of black hole instability is found. We go on to add a perpendicular magnetic field B and obtain the London equation and magnetic penetration depth. We show that these holographic superconductors are Type II, i.e., starting in a normal phase at large B and low temperatures, they develop superconducting droplets as B is reduced.
More on the Weak Gravity Conjecture via Convexity of Charged Operators
The Weak Gravity Conjecture has recently been re-formulated in terms of a particle with non-negative self-binding energy. Because of the dual conformal field theory (CFT) formulation in the anti-de Sitter space the conformal dimension Delta (Q) of the lowest-dimension operator with charge Q under some global U(1) symmetry must be a convex function of Q. This property has been conjectured to hold for any (unitary) conformal field theory and generalized to larger global symmetry groups. Here we refine and further test the convex charge conjecture via semiclassical computations for fixed charge sectors of different theories in different dimensions. We analyze the convexity properties of the leading and next-to-leading order terms stemming from the semiclassical computation, de facto, extending previous tests beyond the leading perturbative contributions and to arbitrary charges. In particular, the leading contribution is sufficient to test convexity in the semiclassical computations. We also consider intriguing cases in which the models feature a transition from real to complex conformal dimensions either as a function of the charge or number of matter fields. As a relevant example of the first kind, we investigate the O(N) model in 4+epsilon dimensions. As an example of the second type we consider the U(N)times U(M) model in 4-epsilon dimensions. Both models display a rich dynamics where, by changing the number of matter fields and/or charge, one can achieve dramatically different physical regimes. We discover that whenever a complex conformal dimension appears, the real part satisfies the convexity property.
Holography of Dyonic Dilaton Black Branes
We study black branes carrying both electric and magnetic charges in Einstein-Maxwell theory coupled to a dilaton-axion in asymptotically anti de Sitter space. After reviewing and extending earlier results for the case of electrically charged branes, we characterise the thermodynamics of magnetically charged branes. We then focus on dyonic branes in theories which enjoy an SL(2,R) electric-magnetic duality. Using SL(2,R), we are able to generate solutions with arbitrary charges starting with the electrically charged solution, and also calculate transport coefficients. These solutions all exhibit a Lifshitz-like near-horizon geometry. The system behaves as expected for a charged fluid in a magnetic field, with non-vanishing Hall conductance and vanishing DC longitudinal conductivity at low temperatures. Its response is characterised by a cyclotron resonance at a frequency proportional to the magnetic field, for small magnetic fields. Interestingly, the DC Hall conductance is related to the attractor value of the axion. We also study the attractor flows of the dilaton-axion, both in cases with and without an additional modular-invariant scalar potential. The flows exhibit intricate behaviour related to the duality symmetry. Finally, we briefly discuss attractor flows in more general dilaton-axion theories which do not enjoy SL(2,R) symmetry.
Topological Quantum Compilation Using Mixed-Integer Programming
We introduce the Mixed-Integer Quadratically Constrained Quadratic Programming framework for the quantum compilation problem and apply it in the context of topological quantum computing. In this setting, quantum gates are realized by sequences of elementary braids of quasiparticles with exotic fractional statistics in certain two-dimensional topological condensed matter systems, described by effective topological quantum field theories. We specifically focus on a non-semisimple version of topological field theory, which provides a foundation for an extended theory of Ising anyons and which has recently been shown by Iulianelli et al., Nature Communications {\bf 16}, 6408 (2025), to permit universal quantum computation. While the proofs of this pioneering result are existential in nature, the mixed integer programming provides an approach to explicitly construct quantum gates in topological systems. We demonstrate this by focusing specifically on the entangling controlled-NOT operation, and its local equivalence class, using braiding operations in the non-semisimple Ising system. This illustrates the utility of the Mixed-Integer Quadratically Constrained Quadratic Programming for topological quantum compilation.
Pseudo-magnetic fields in square lattices
We have investigated the effects of strain on two-dimensional square lattices and examined the methods for inducing pseudo-magnetic fields. In both the columnar and staggered pi-flux square lattices, we have found that strain only modulates Fermi velocities rather than inducing pseudo-magnetic fields. However, spatially non-uniform on-site potentials (anisotropic hoppings) can create pseudo-magnetic fields in columnar (staggered) pi-flux square lattices. On the other hand, we demonstrate that strain does induce pseudo-magnetic fields in staggered zero-flux square lattices. By breaking a quarter of the bonds, we clarify that a staggered zero-flux square lattice is topologically equivalent to a honeycomb lattice and displays pseudo-vector potentials and pseudo-Landau levels at the Dirac points.
Shubnikov-de Haas Oscillations in 2D PtSe_2: A fermiological Charge Carrier Investigation
High magnetic field and low temperature transport is carried out in order to characterize the charge carriers of PtSe_2. In particular, the Shubnikov-de Haas oscillations arising at applied magnetic field strengths gtrsim 4.5,T are found to occur exclusively in plane and emerge at a layer thickness of approx 18,nm, increasing in amplitude and decreasing in frequency for thinner PtSe_2 flakes. Moreover, the quantum transport time, Berry phase, Dingle temperature and cyclotron mass of the charge carriers are ascertained. The emergence of weak antilocalization (WAL) lies in contrast to the presence of magnetic moments from Pt vacancies. An explanation is provided on how WAL and the Kondo effect can be observed within the same material. Detailed information about the charge carriers and transport phenomena in PtSe_2 is obtained, which is relevant for the design of prospective spintronic and orbitronic devices and for the realization of orbital Hall effect-based architectures.
Generalized chiral instabilities, linking numbers, and non-invertible symmetries
We demonstrate a universal mechanism of a class of instabilities in infrared regions for massless Abelian p-form gauge theories with topological interactions, which we call generalized chiral instabilities. Such instabilities occur in the presence of initial electric fields for the p-form gauge fields. We show that the dynamically generated magnetic fields tend to decrease the initial electric fields and result in configurations with linking numbers, which can be characterized by non-invertible global symmetries. The so-called chiral plasma instability and instabilities of the axion electrodynamics and (4+1)-dimensional Maxwell-Chern-Simons theory in electric fields can be described by the generalized chiral instabilities in a unified manner. We also illustrate this mechanism in the (2+1)-dimensional Goldstone-Maxwell model in electric field.
On the Electron Pairing Mechanism of Copper-Oxide High Temperature Superconductivity
The elementary CuO2 plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO5 pyramids. Virtual transitions of electrons between adjacent planar Cu and O atoms, occurring at a rate t/{hbar} and across the charge-transfer energy gap E, generate 'superexchange' spin-spin interactions of energy Japprox4t^4/E^3 in an antiferromagnetic correlated-insulator state. However, Hole doping the CuO2 plane converts this into a very high temperature superconducting state whose electron-pairing is exceptional. A leading proposal for the mechanism of this intense electron-pairing is that, while hole doping destroys magnetic order it preserves pair-forming superexchange interactions governed by the charge-transfer energy scale E. To explore this hypothesis directly at atomic-scale, we combine single-electron and electron-pair (Josephson) scanning tunneling microscopy to visualize the interplay of E and the electron-pair density nP in {Bi_2Sr_2CaCu_2O_{8+x}}. The responses of both E and nP to alterations in the distance {\delta} between planar Cu and apical O atoms are then determined. These data reveal the empirical crux of strongly correlated superconductivity in CuO2, the response of the electron-pair condensate to varying the charge transfer energy. Concurrence of predictions from strong-correlation theory for hole-doped charge-transfer insulators with these observations, indicates that charge-transfer superexchange is the electron-pairing mechanism of superconductive {Bi_2Sr_2CaCu_2O_{8+x}}.
Holographic Responses of Fermion Matter
We consider the D4-D8-D8 brane system which serves as ultraviolet completion of the Nambu-Jona-Lasinio model, where the only degrees of freedom carrying baryon charge are fermions. By turning on chemical potential for this charge one may expect the formation of the Fermi liquid ground state. At strong coupling we use the dual holographic description to investigate the responses of the system to small perturbations. In the chirally symmetric phase we find that the density dependent part of the heat capacity vanishes linearly with temperature. We also observe a zero sound excitation in the collisionless regime, whose speed is equal to that of normal sound in the hydrodynamic regime. Both the linear dependence of the heat capacity and the existence of zero sound are properties of the Fermi liquid ground state. We also compute the two-point function of the currents at vanishing frequency but do not find any singularities at finite values of the momentum.
Generating logical magic states with the aid of non-Abelian topological order
In fault-tolerant quantum computing with the surface code, non-Clifford gates are crucial for universal computation. However, implementing these gates using methods like magic state distillation and code switching requires significant resources. In this work, we propose a new protocol that combines magic state preparation and code switching to realize logical non-Clifford operations with the potential for fault tolerance. Our approach begins with a special logical state in the Z_4 surface code. By applying a sequence of transformations, the system goes through different topological codes, including the non-Abelian D_4 quantum double model. This process ultimately produces a magic state in a condensed Z_2 surface code, which enables the implementation of a logical T gate in the standard Z_2 surface code. In our analysis, we employ a framework where the topological codes are represented by their topological orders and all the transformations are considered as topological manipulations such as gauging symmetries and condensing anyons. This perspective is particularly useful for understanding code switching between topological codes.
Particle-Hole Symmetry in the Fermion-Chern-Simons and Dirac Descriptions of a Half-Filled Landau Level
It is well known that there is a particle-hole symmetry for spin-polarized electrons with two-body interactions in a partially filled Landau level, which becomes exact in the limit where the cyclotron energy is large compared to the interaction strength, so one can ignore mixing between Landau levels. This symmetry is explicit in the description of a half-filled Landau level recently introduced by D. T. Son, using Dirac fermions, but it was thought to be absent in the older fermion-Chern- Simons approach, developed by Halperin, Lee, and Read and subsequent authors. We show here, however, that when properly evaluated, the Halperin, Lee, Read (HLR) theory gives results for long-wavelength low-energy physical properties, including the Hall conductance in the presence of impurities and the positions of minima in the magnetoroton spectra for fractional quantized Hall states close to half-filling, that are identical to predictions of the Dirac formulation. In fact, the HLR theory predicts an emergent particle-hole symmetry near half filling, even when the cyclotron energy is finite.
A Theory of Topological Derivatives for Inverse Rendering of Geometry
We introduce a theoretical framework for differentiable surface evolution that allows discrete topology changes through the use of topological derivatives for variational optimization of image functionals. While prior methods for inverse rendering of geometry rely on silhouette gradients for topology changes, such signals are sparse. In contrast, our theory derives topological derivatives that relate the introduction of vanishing holes and phases to changes in image intensity. As a result, we enable differentiable shape perturbations in the form of hole or phase nucleation. We validate the proposed theory with optimization of closed curves in 2D and surfaces in 3D to lend insights into limitations of current methods and enable improved applications such as image vectorization, vector-graphics generation from text prompts, single-image reconstruction of shape ambigrams and multi-view 3D reconstruction.
Metallic AdS/CFT
We use the AdS/CFT correspondence to compute the conductivity of massive N=2 hypermultiplet fields at finite baryon number density in an N=4 SU(N_c) super-Yang-Mills theory plasma in the large N_c, large 't Hooft coupling limit. The finite baryon density provides charge carriers analogous to electrons in a metal. An external electric field then induces a finite current which we determine directly. Our result for the conductivity is good for all values of the mass, external field and density, modulo statements about the yet-incomplete phase diagram. In the appropriate limits it agrees with known results obtained from analyzing small fluctuations around equilibrium. For large mass, where we expect a good quasi-particle description, we compute the drag force on the charge carriers and find that the answer is unchanged from the zero density case. Our method easily generalizes to a wide class of systems of probe branes in various backgrounds.
Notes on Properties of Holographic Strange Metals
We investigate properties of holographic strange metals in p+2-dimensions, generalizing the analysis performed in arXiv:0912.1061. The bulk spacetime is p+2-dimensional Lifshitz black hole, while the role of charge carriers is played by probe D-branes. We mainly focus on massless charge carriers, where most of the results can be obtained analytically. We obtain exact results for the free energy and calculate the entropy density, the heat capacity as well as the speed of sound at low temperature. We obtain the DC conductivity and DC Hall conductivity and find that the DC conductivity takes a universal form in the large density limit, while the Hall conductivity is also universal in all dimensions. We also study the resistivity in different limits and clarify the condition for the linear dependence on the temperature, which is a key feature of strange metals. We show that our results for the DC conductivity are consistent with those obtained via Kubo formula and we obtain the charge diffusion constant analytically. The corresponding properties of massive charge carriers are also discussed in brief.
Probing Invisible Decay of Z^prime at Muon Collider with Topological Data Analysis and Machine Learning
We explore the use of topological data analysis (TDA) combined with machine learning for discriminating standard model backgrounds from the invisible decay of the Z^prime boson associated with monophoton emission at a 3 TeV muon collider. Reconstructed events are mapped into a six-dimensional kinematic space and aggregated into bags of events, from which persistent homology is used to extract Betti number distributions. Within the Multiple Instance Learning paradigm, classifiers trained on these topological descriptors demonstrate significantly improved classification accuracy compared to the conventional ML approaches based on event-wise kinematic inputs. We also draw exclusion contours at 95\% CL in the (m_{Z^prime}, m_chi) parameter space, highlighting the potential of topological features to extend the discovery reach of future collider experiments.
