- Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments Semantic role labeling (SRL) is a fundamental yet challenging task in the NLP community. Recent works of SRL mainly fall into two lines: 1) BIO-based; 2) span-based. Despite ubiquity, they share some intrinsic drawbacks of not considering internal argument structures, potentially hindering the model's expressiveness. The key challenge is arguments are flat structures, and there are no determined subtree realizations for words inside arguments. To remedy this, in this paper, we propose to regard flat argument spans as latent subtrees, accordingly reducing SRL to a tree parsing task. In particular, we equip our formulation with a novel span-constrained TreeCRF to make tree structures span-aware and further extend it to the second-order case. We conduct extensive experiments on CoNLL05 and CoNLL12 benchmarks. Results reveal that our methods perform favorably better than all previous syntax-agnostic works, achieving new state-of-the-art under both end-to-end and w/ gold predicates settings. 6 authors · Oct 13, 2021
- CQR-SQL: Conversational Question Reformulation Enhanced Context-Dependent Text-to-SQL Parsers Context-dependent text-to-SQL is the task of translating multi-turn questions into database-related SQL queries. Existing methods typically focus on making full use of history context or previously predicted SQL for currently SQL parsing, while neglecting to explicitly comprehend the schema and conversational dependency, such as co-reference, ellipsis and user focus change. In this paper, we propose CQR-SQL, which uses auxiliary Conversational Question Reformulation (CQR) learning to explicitly exploit schema and decouple contextual dependency for SQL parsing. Specifically, we first present a schema enhanced recursive CQR method to produce domain-relevant self-contained questions. Secondly, we train CQR-SQL models to map the semantics of multi-turn questions and auxiliary self-contained questions into the same latent space through schema grounding consistency task and tree-structured SQL parsing consistency task, which enhances the abilities of SQL parsing by adequately contextual understanding. At the time of writing, our CQR-SQL achieves new state-of-the-art results on two context-dependent text-to-SQL benchmarks SParC and CoSQL. 6 authors · May 16, 2022
- Ensemble-Based Unsupervised Discontinuous Constituency Parsing by Tree Averaging We address unsupervised discontinuous constituency parsing, where we observe a high variance in the performance of the only previous model. We propose to build an ensemble of different runs of the existing discontinuous parser by averaging the predicted trees, to stabilize and boost performance. To begin with, we provide comprehensive computational complexity analysis (in terms of P and NP-complete) for tree averaging under different setups of binarity and continuity. We then develop an efficient exact algorithm to tackle the task, which runs in a reasonable time for all samples in our experiments. Results on three datasets show our method outperforms all baselines in all metrics; we also provide in-depth analyses of our approach. 3 authors · Feb 29, 2024
- When is Tree Search Useful for LLM Planning? It Depends on the Discriminator In this paper, we examine how large language models (LLMs) solve multi-step problems under a language agent framework with three components: a generator, a discriminator, and a planning method. We investigate the practical utility of two advanced planning methods, iterative correction and tree search. We present a comprehensive analysis of how discrimination accuracy affects the overall performance of agents when using these two methods or a simpler method, re-ranking. Experiments on two tasks, text-to-SQL parsing and mathematical reasoning, show that: (1) advanced planning methods demand discriminators with at least 90% accuracy to achieve significant improvements over re-ranking; (2) current LLMs' discrimination abilities have not met the needs of advanced planning methods to achieve such improvements; (3) with LLM-based discriminators, advanced planning methods may not adequately balance accuracy and efficiency. For example, compared to the other two methods, tree search is at least 10--20 times slower but leads to negligible performance gains, which hinders its real-world applications. Code and data will be released at https://github.com/OSU-NLP-Group/llm-planning-eval. 6 authors · Feb 16, 2024
- Differentiable Tree Operations Promote Compositional Generalization In the context of structure-to-structure transformation tasks, learning sequences of discrete symbolic operations poses significant challenges due to their non-differentiability. To facilitate the learning of these symbolic sequences, we introduce a differentiable tree interpreter that compiles high-level symbolic tree operations into subsymbolic matrix operations on tensors. We present a novel Differentiable Tree Machine (DTM) architecture that integrates our interpreter with an external memory and an agent that learns to sequentially select tree operations to execute the target transformation in an end-to-end manner. With respect to out-of-distribution compositional generalization on synthetic semantic parsing and language generation tasks, DTM achieves 100% while existing baselines such as Transformer, Tree Transformer, LSTM, and Tree2Tree LSTM achieve less than 30%. DTM remains highly interpretable in addition to its perfect performance. 7 authors · Jun 1, 2023
- Fast and Accurate Neural CRF Constituency Parsing Estimating probability distribution is one of the core issues in the NLP field. However, in both deep learning (DL) and pre-DL eras, unlike the vast applications of linear-chain CRF in sequence labeling tasks, very few works have applied tree-structure CRF to constituency parsing, mainly due to the complexity and inefficiency of the inside-outside algorithm. This work presents a fast and accurate neural CRF constituency parser. The key idea is to batchify the inside algorithm for loss computation by direct large tensor operations on GPU, and meanwhile avoid the outside algorithm for gradient computation via efficient back-propagation. We also propose a simple two-stage bracketing-then-labeling parsing approach to improve efficiency further. To improve the parsing performance, inspired by recent progress in dependency parsing, we introduce a new scoring architecture based on boundary representation and biaffine attention, and a beneficial dropout strategy. Experiments on PTB, CTB5.1, and CTB7 show that our two-stage CRF parser achieves new state-of-the-art performance on both settings of w/o and w/ BERT, and can parse over 1,000 sentences per second. We release our code at https://github.com/yzhangcs/crfpar. 3 authors · Aug 9, 2020
- DART: Open-Domain Structured Data Record to Text Generation We present DART, an open domain structured DAta Record to Text generation dataset with over 82k instances (DARTs). Data-to-Text annotations can be a costly process, especially when dealing with tables which are the major source of structured data and contain nontrivial structures. To this end, we propose a procedure of extracting semantic triples from tables that encodes their structures by exploiting the semantic dependencies among table headers and the table title. Our dataset construction framework effectively merged heterogeneous sources from open domain semantic parsing and dialogue-act-based meaning representation tasks by utilizing techniques such as: tree ontology annotation, question-answer pair to declarative sentence conversion, and predicate unification, all with minimum post-editing. We present systematic evaluation on DART as well as new state-of-the-art results on WebNLG 2017 to show that DART (1) poses new challenges to existing data-to-text datasets and (2) facilitates out-of-domain generalization. Our data and code can be found at https://github.com/Yale-LILY/dart. 24 authors · Jul 6, 2020
- Junction Tree Variational Autoencoder for Molecular Graph Generation We seek to automate the design of molecules based on specific chemical properties. In computational terms, this task involves continuous embedding and generation of molecular graphs. Our primary contribution is the direct realization of molecular graphs, a task previously approached by generating linear SMILES strings instead of graphs. Our junction tree variational autoencoder generates molecular graphs in two phases, by first generating a tree-structured scaffold over chemical substructures, and then combining them into a molecule with a graph message passing network. This approach allows us to incrementally expand molecules while maintaining chemical validity at every step. We evaluate our model on multiple tasks ranging from molecular generation to optimization. Across these tasks, our model outperforms previous state-of-the-art baselines by a significant margin. 3 authors · Feb 12, 2018