pauhidalgoo commited on
Commit
6db7b54
·
verified ·
1 Parent(s): 7edda95

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +148 -163
README.md CHANGED
@@ -1,201 +1,186 @@
1
  ---
2
  library_name: transformers
 
 
 
 
 
 
 
 
 
3
  tags:
4
- - trl
 
 
5
  - sft
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
 
8
- # Model Card for Model ID
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
 
13
 
 
14
  ## Model Details
15
 
16
  ### Model Description
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
-
38
- ## Uses
39
-
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
 
42
- ### Direct Use
43
-
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
-
46
- [More Information Needed]
47
-
48
- ### Downstream Use [optional]
49
-
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
 
52
- [More Information Needed]
53
 
54
- ### Out-of-Scope Use
55
-
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
-
60
- ## Bias, Risks, and Limitations
61
 
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
-
64
- [More Information Needed]
65
-
66
- ### Recommendations
67
-
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
-
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
-
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
 
80
  ### Training Data
81
 
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
85
-
86
- ### Training Procedure
87
-
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
 
99
- #### Speeds, Sizes, Times [optional]
100
 
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
 
103
- [More Information Needed]
 
 
 
 
 
 
 
104
 
105
- ## Evaluation
106
 
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
 
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
 
177
- **BibTeX:**
 
 
 
178
 
179
- [More Information Needed]
180
 
181
- **APA:**
182
 
183
- [More Information Needed]
 
 
 
 
184
 
185
- ## Glossary [optional]
186
 
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
 
189
- [More Information Needed]
 
 
 
190
 
191
- ## More Information [optional]
192
 
193
- [More Information Needed]
 
 
 
194
 
195
- ## Model Card Authors [optional]
196
 
197
- [More Information Needed]
198
 
199
- ## Model Card Contact
 
 
200
 
201
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - baiges/patufet-IT
5
+ - baiges/alpaCAT
6
+ - baiges/patufet-QA
7
+ - pauhidalgoo/patufet-escrits
8
+ - baiges/patufet-human-interactions
9
+ - baiges/patufet-summaries
10
+ language:
11
+ - ca
12
  tags:
13
+ - catalan
14
+ - language-model
15
+ - transformer
16
  - sft
17
+ model-index:
18
+ - name: cucafera-instruct
19
+ results:
20
+ - task:
21
+ type: language-understanding
22
+ name: arc_ca_challenge
23
+ dataset:
24
+ name: arc_ca_challenge
25
+ type: catalan_bench
26
+ metrics:
27
+ - name: Accuracy
28
+ type: acc
29
+ value: 0.2295
30
+ - name: Normalized Accuracy
31
+ type: acc_norm
32
+ value: 0.2534
33
+ source:
34
+ name: Eleuther AI LM Evaluation Harness
35
+ url: https://github.com/EleutherAI/lm-evaluation-harness
36
+ - task:
37
+ type: language-understanding
38
+ name: arc_ca_easy
39
+ dataset:
40
+ name: arc_ca_easy
41
+ type: catalan_bench
42
+ metrics:
43
+ - name: Accuracy
44
+ type: acc
45
+ value: 0.4238
46
+ - name: Normalized Accuracy
47
+ type: acc_norm
48
+ value: 0.4108
49
+ source:
50
+ name: Eleuther AI LM Evaluation Harness
51
+ url: https://github.com/EleutherAI/lm-evaluation-harness
52
+ - task:
53
+ type: question-answering
54
+ name: catalanqa
55
+ dataset:
56
+ name: catalanqa
57
+ type: catalan_bench
58
+ metrics:
59
+ - name: Exact Match
60
+ type: exact_match
61
+ value: 0.0037
62
+ - name: F1 Score
63
+ type: f1
64
+ value: 0.0991
65
+ source:
66
+ name: Eleuther AI LM Evaluation Harness
67
+ url: https://github.com/EleutherAI/lm-evaluation-harness
68
+ - task:
69
+ type: language-understanding
70
+ name: copa_ca
71
+ dataset:
72
+ name: copa_ca
73
+ type: catalan_bench
74
+ metrics:
75
+ - name: Accuracy
76
+ type: acc
77
+ value: 0.614
78
+ source:
79
+ name: Eleuther AI LM Evaluation Harness
80
+ url: https://github.com/EleutherAI/lm-evaluation-harness
81
+ - task:
82
+ type: machine-translation
83
+ name: flores_ca
84
+ dataset:
85
+ name: flores_ca
86
+ type: flores
87
+ metrics:
88
+ - name: BLEU
89
+ type: bleu
90
+ value: 0.5934
91
+ source:
92
+ name: Eleuther AI LM Evaluation Harness
93
+ url: https://github.com/EleutherAI/lm-evaluation-harness
94
+ license: apache-2.0
95
+ base_model:
96
+ - pauhidalgoo/cucafera
97
  ---
98
 
99
+ # Model Card for cucafera 🔥🐲 (Instruct Model)
 
 
 
100
 
101
 
102
+ This document describes **cucafera (Instruct Model)**, a Catalan Large Language Model (LLM) fine-tuned to follow instructions and generate text in Catalan. Built upon the base model, it leverages high-quality Catalan datasets and is optimized for instruction following tasks.
103
  ## Model Details
104
 
105
  ### Model Description
106
 
107
+ **cucafera (Instruct Model)** is a 244-million parameter transformer-based language model inspired by the LLAMA architecture (notably LLAMA3). Despite its relatively small size compared to many contemporary models, it is optimized for generating coherent and contextually relevant text in Catalan.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
+ - **Model Size:** 244M parameters
110
+ - **Architecture:** Transformer-based (LLAMA-inspired) with 30 layers
111
+ - **Embedding Size:** 768
112
+ - **Attention Mechanism:** 4 key/value heads and 8 query heads (using Grouped Query Attention - GQA)
113
+ - **Context Length:** 2048 tokens
114
+ - **Tokenizer:** Byte-Pair Encoding (BPE) with a vocabulary size of 65,536
115
+ - **Activation Function:** GeGLU
 
 
116
 
117
+ ## Instruct Fine-Tuning
118
 
119
+ The instruct version of **cucafera** has been fine-tuned on a variety of instruction datasets to enhance its ability to follow user prompts. The fine-tuning was performed using Hugging Face's `SFTTrainer` and follows the ChatML format for conversation, for example:
 
 
 
 
 
 
120
 
121
+ ```
122
+ <|im_start|>user Fes un poema <|im_end|> <|im_start|>assistant
123
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
 
125
  ### Training Data
126
 
127
+ The base model was pre-trained using the [patufet-pretrain](https://huggingface.co/datasets/pauhidalgoo/patufet-pretrain) dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
+ The fine-tuning data utilized a mix of instruction datasets from the [patufet](https://huggingface.co/collections/pauhidalgoo/patufet-66ca6dd3888e99a28dd616ae) collection.
130
 
131
+ ### Fine-tunning Procedure
132
 
133
+ The model was fine-tuned with the following setup:
134
+ - **Total fine-tunning steps:** 1500
135
+ - **Per device train batch size:** 12
136
+ - **Sequence Length:** 2048
137
+ - **Learning rate:** 3e-5
138
+ - **Optimizer:** AdamW
139
+ - **Weight decay:** 0.01
140
+ - **Epochs**: 5
141
 
142
+ Different commits represent different fine-tunning procedures: we experimented with different data mixes, epochs, datasets...
143
 
144
+ ### Direct Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
+ The cucafera (Instruct Model) is designed for:
147
 
148
+ - Conversational agents and chatbots in Catalan.
149
+ - Task-specific applications such as summarization, translation (within Catalan), and creative writing.
150
+ - Educational and experimental research into instruction-following LLMs.
151
+ - Creative content generation, like poems or stories
152
 
153
+ However, due to its limited size, it is not able to provide correct factual information and you must be aware of this fact when using this model.
154
 
155
+ ### Out-of-Scope Uses
156
 
157
+ - **High-Stakes Applications:**
158
+ The model is not recommended for uses where extremely high factual accuracy is required or where outputs could have significant real-world consequences.
159
+ - **Non-Catalan Tasks:**
160
+ Since the model is exclusively trained on Catalan text, it is not suited for tasks in other languages without further training or fine-tuning.
161
+ - **Sensitive or safety-critical uses:** It has not undergone RLHF/DPO tuning, so outputs should be reviewed carefully.
162
 
 
163
 
164
+ ## Bias, Risks, and Limitations
165
 
166
+ - The model has **no instruction tuning**, so it may not follow prompts effectively.
167
+ - It **only understands Catalan**, meaning it is unsuitable for multilingual applications.
168
+ - Due to its **small size (244M parameters)**, its knowledge and reasoning capabilities are limited.
169
+ - It was trained on **a limited dataset**, which may introduce biases in its outputs.
170
 
171
+ ### Recommendations
172
 
173
+ - The goal of this model is educational. You are encouraged to train your own model.
174
+ - If used in production, **human review** of its outputs is recommended.
175
+ - Fine-tuning on task-specific data can **improve accuracy** and **mitigate biases**.
176
+ - Users should be cautious when using it in **sensitive or high-stakes applications**.
177
 
178
+ ## Use the Instruct Model
179
 
180
+ You can use the instruct model via huggingface's transformers library. Make sure to specify the **ChatML format**.
181
 
182
+ ### Acknowledgements
183
+ This model was developed as an experimental project, inspired by Karpathy's [NanoGPT Series](https://github.com/karpathy/nanoGPT).
184
+ My colleague [Roger Baiges](https://huggingface.co/baiges) also trained his own [CatGPT](https://huggingface.co/baiges/CatGPT).
185
 
186
+ For more details, updates, or to contribute to the project, please visit the [GitHub repository](https://github.com/pauhidalgoo/cucafera)