File size: 12,945 Bytes
493df70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import warnings
from typing import List, Optional, Tuple, Union

import torch
import transformers
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import AutoModel, AutoModelForCausalLM, GenerationConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .configuration import NemotronH_Nano_VL_V2_Config
from .modeling_nemotron_h import NemotronHForCausalLM
from .evs import EfficientVideoSampling

logger = logging.get_logger(__name__)


"""
The following code is adapted from the
https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B/blob/main/modeling_internvl_chat.py repository

The chat function is adapted to handle NVLM 1-D tile-tagging design for dynamic high-resolution images.
"""


class SquaredReLU(nn.Module):
    def forward(self, x):
        return torch.pow(torch.nn.functional.relu(x), 2)


class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-5):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.eps = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
        return (self.weight.to(torch.float32) * hidden_states).to(input_dtype)


def version_cmp(v1, v2, op='eq'):
    import operator

    from packaging import version
    op_func = getattr(operator, op)
    return op_func(version.parse(v1), version.parse(v2))


class NemotronH_Nano_VL_V2(PreTrainedModel):
    config_class = NemotronH_Nano_VL_V2_Config
    main_input_name = 'pixel_values'
    _supports_flash_attn_2 = True
    _no_split_modules = ['NemotronHBlock']

    def __init__(self, config: NemotronH_Nano_VL_V2_Config):
        super().__init__(config)

        assert version_cmp(transformers.__version__, '4.36.2', 'ge')
        image_size = config.force_image_size
        patch_size = config.patch_size
        self.patch_size = patch_size
        self.template = config.template
        self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
        self.downsample_ratio = config.downsample_ratio
        self.ps_version = config.ps_version
        self.image_tag_type = config.image_tag_type
        self.img_context_token_id = config.img_context_token_id
        self.video_context_token_id = config.video_context_token_id

        logger.info(f'num_image_token: {self.num_image_token}')
        logger.info(f'ps_version: {self.ps_version}')

        self.language_model = AutoModelForCausalLM.from_config(config.llm_config, trust_remote_code=True)
        self.vision_model = AutoModel.from_config(config.vision_config, trust_remote_code=True)
        self.vision_model.model._initialize_weights = self.vision_model.model._init_weights  # WAR for transformers issue 38358 
        self.vision_model.radio_model.make_preprocessor_external()
        self.vision_model = self.vision_model.to(self.language_model.config.torch_dtype)

        self.drop_vision_class_token = True

        # Construct the vision projection.
        # Default
        vit_hidden_size = config.vit_hidden_size
        vision_projection_hidden_size = config.projector_hidden_size
        llm_hidden_size = config.llm_config.hidden_size

        self.video_pruning_rate = config.video_pruning_rate

        self.mlp1 = nn.Sequential(
            RMSNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, eps=1e-5),
            nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, vision_projection_hidden_size, bias=False),
            SquaredReLU(),
            nn.Linear(vision_projection_hidden_size, llm_hidden_size, bias=False)
        )
        self.mlp1 = self.mlp1.to(self.language_model.config.torch_dtype)

    def forward(
            self,
            pixel_values: torch.FloatTensor,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            image_flags: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            labels: Optional[torch.LongTensor] = None,
            inputs_embeds = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if inputs_embeds is None:
            inputs_embeds = self.language_model.get_input_embeddings()(input_ids)

        image_flags = image_flags.squeeze(-1)

        B, N, C = inputs_embeds.shape
        inputs_embeds = inputs_embeds.reshape(B * N, C)

        input_ids = input_ids.reshape(B * N)
        selected = (input_ids == self.img_context_token_id)

        vit_batch_size = pixel_values.shape[0]
        vit_embeds = self.extract_feature(pixel_values)

        del pixel_values

        if torch.distributed.get_rank() == 0:
            print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')

        vit_embeds = vit_embeds[image_flags == 1]
        try:
            inputs_embeds[selected] = inputs_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
        except Exception as e:
            vit_embeds = vit_embeds.reshape(-1, C)
            print(f'warning: {e}, inputs_embeds[selected].shape={inputs_embeds[selected].shape}, '
                  f'vit_embeds.shape={vit_embeds.shape}')
            n_token = selected.sum()
            inputs_embeds[selected] = inputs_embeds[selected] * 0.0 + vit_embeds[:n_token]

        del vit_embeds

        inputs_embeds = inputs_embeds.reshape(B, N, C)

        outputs = self.language_model(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def pixel_shuffle(self, x, scale_factor=0.5):
        n, w, h, c = x.size()
        # N, W, H, C --> N, W, H * scale, C // scale
        x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        x = x.permute(0, 2, 1, 3).contiguous()
        # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
        x = x.view(n, int(h * scale_factor), int(w * scale_factor),
                   int(c / (scale_factor * scale_factor)))
        if self.ps_version == 'v1':
            warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
                          'which results in a transposed image.')
        else:
            x = x.permute(0, 2, 1, 3).contiguous()
        return x

    def extract_feature(self, pixel_values):
        vit_embeds = self.vision_model(pixel_values).features
        vit_embeds = vit_embeds.to(dtype=torch.bfloat16)
        h = w = int(vit_embeds.shape[1] ** 0.5)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
        vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
        vit_embeds = self.mlp1(vit_embeds)
        return vit_embeds

    @torch.no_grad()
    def generate(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            pixel_values_videos: Optional[torch.FloatTensor] = None,
            input_ids: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.LongTensor] = None,
            generation_config: Optional[GenerationConfig] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            **generate_kwargs,
    ) -> torch.LongTensor:
        assert self.img_context_token_id is not None
        if pixel_values is not None or pixel_values_videos is not None:
            image_vit_embeds, video_vit_embeds = None, None
            if pixel_values is not None:
                pixel_values = pixel_values.to(dtype=self.vision_model.config.torch_dtype)
                image_vit_embeds = self.extract_feature(pixel_values)
            if pixel_values_videos is not None:
                pixel_values_videos = pixel_values_videos.to(dtype=self.vision_model.config.torch_dtype)
                video_vit_embeds = self.extract_feature(pixel_values_videos)
            inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
            B, N, C = inputs_embeds.shape
            inputs_embeds = inputs_embeds.reshape(B * N, C)
            input_ids_copy = input_ids.reshape(B * N)
            if image_vit_embeds is not None:
                image_mask = (input_ids_copy == self.img_context_token_id)
                assert image_mask.sum() != 0
                inputs_embeds[image_mask] = image_vit_embeds.reshape(-1, C).to(inputs_embeds.device, inputs_embeds.dtype)
            if video_vit_embeds is not None:
                if B > 1:
                    raise NotImplementedError("Video is not supported for batch size > 1")
                video_mask = (input_ids_copy == self.video_context_token_id)
                assert video_mask.sum() != 0
                inputs_embeds[video_mask] = video_vit_embeds.reshape(-1, C).to(inputs_embeds.device, inputs_embeds.dtype)
            if video_vit_embeds is not None and self.video_pruning_rate > 0:  # EVS
                h = w = int(video_vit_embeds.shape[1] ** 0.5)  # assumption here (and everywhere else) is that shape is square
                evs_mask = EfficientVideoSampling.compute_retention_mask(
                    video_embeds=video_vit_embeds,
                    thw=(video_vit_embeds.shape[0], h, w),
                    spatial_merge_size=1,  # we already work on vision embeddings, so no downsampling to follow
                    q=self.video_pruning_rate,
                )
                print(f"pruning rate: {self.video_pruning_rate}, EVS mask: {evs_mask.sum().item()} tokens retained out of {evs_mask.numel()} total video tokens ({evs_mask.sum().item() / evs_mask.numel() * 100:.2f}%)")

                retention_mask = torch.ones_like(input_ids_copy, dtype=torch.bool)
                retention_mask[video_mask] = evs_mask.view(-1)
                inputs_embeds = inputs_embeds[retention_mask].unsqueeze(0)  # adding batch=1
                if attention_mask is not None:
                    attention_mask = attention_mask[:, retention_mask].contiguous()
                if input_ids is not None:
                    input_ids = input_ids[:, retention_mask].contiguous()
            else:
                inputs_embeds = inputs_embeds.reshape(B, N, C)
        else:
            inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
        # print(f"DEBUG: input_ids shape: {input_ids.shape}")
        # print(f"DEBUG: input text: {self._tokenizer.decode(input_ids[0])}")
        outputs = self.language_model.generate(
            input_ids=input_ids,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            use_cache=True,
            # return_dict_in_generate=True,
            # output_scores=True,
            **generate_kwargs,
        )

        return outputs