File size: 12,945 Bytes
493df70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import os
import warnings
from typing import List, Optional, Tuple, Union
import torch
import transformers
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import AutoModel, AutoModelForCausalLM, GenerationConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration import NemotronH_Nano_VL_V2_Config
from .modeling_nemotron_h import NemotronHForCausalLM
from .evs import EfficientVideoSampling
logger = logging.get_logger(__name__)
"""
The following code is adapted from the
https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B/blob/main/modeling_internvl_chat.py repository
The chat function is adapted to handle NVLM 1-D tile-tagging design for dynamic high-resolution images.
"""
class SquaredReLU(nn.Module):
def forward(self, x):
return torch.pow(torch.nn.functional.relu(x), 2)
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
return (self.weight.to(torch.float32) * hidden_states).to(input_dtype)
def version_cmp(v1, v2, op='eq'):
import operator
from packaging import version
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
class NemotronH_Nano_VL_V2(PreTrainedModel):
config_class = NemotronH_Nano_VL_V2_Config
main_input_name = 'pixel_values'
_supports_flash_attn_2 = True
_no_split_modules = ['NemotronHBlock']
def __init__(self, config: NemotronH_Nano_VL_V2_Config):
super().__init__(config)
assert version_cmp(transformers.__version__, '4.36.2', 'ge')
image_size = config.force_image_size
patch_size = config.patch_size
self.patch_size = patch_size
self.template = config.template
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
self.image_tag_type = config.image_tag_type
self.img_context_token_id = config.img_context_token_id
self.video_context_token_id = config.video_context_token_id
logger.info(f'num_image_token: {self.num_image_token}')
logger.info(f'ps_version: {self.ps_version}')
self.language_model = AutoModelForCausalLM.from_config(config.llm_config, trust_remote_code=True)
self.vision_model = AutoModel.from_config(config.vision_config, trust_remote_code=True)
self.vision_model.model._initialize_weights = self.vision_model.model._init_weights # WAR for transformers issue 38358
self.vision_model.radio_model.make_preprocessor_external()
self.vision_model = self.vision_model.to(self.language_model.config.torch_dtype)
self.drop_vision_class_token = True
# Construct the vision projection.
# Default
vit_hidden_size = config.vit_hidden_size
vision_projection_hidden_size = config.projector_hidden_size
llm_hidden_size = config.llm_config.hidden_size
self.video_pruning_rate = config.video_pruning_rate
self.mlp1 = nn.Sequential(
RMSNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, eps=1e-5),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, vision_projection_hidden_size, bias=False),
SquaredReLU(),
nn.Linear(vision_projection_hidden_size, llm_hidden_size, bias=False)
)
self.mlp1 = self.mlp1.to(self.language_model.config.torch_dtype)
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
inputs_embeds = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is None:
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
image_flags = image_flags.squeeze(-1)
B, N, C = inputs_embeds.shape
inputs_embeds = inputs_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
vit_batch_size = pixel_values.shape[0]
vit_embeds = self.extract_feature(pixel_values)
del pixel_values
if torch.distributed.get_rank() == 0:
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
vit_embeds = vit_embeds[image_flags == 1]
try:
inputs_embeds[selected] = inputs_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, inputs_embeds[selected].shape={inputs_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}')
n_token = selected.sum()
inputs_embeds[selected] = inputs_embeds[selected] * 0.0 + vit_embeds[:n_token]
del vit_embeds
inputs_embeds = inputs_embeds.reshape(B, N, C)
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
if self.ps_version == 'v1':
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
'which results in a transposed image.')
else:
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values):
vit_embeds = self.vision_model(pixel_values).features
vit_embeds = vit_embeds.to(dtype=torch.bfloat16)
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = self.mlp1(vit_embeds)
return vit_embeds
@torch.no_grad()
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
pixel_values_videos: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
if pixel_values is not None or pixel_values_videos is not None:
image_vit_embeds, video_vit_embeds = None, None
if pixel_values is not None:
pixel_values = pixel_values.to(dtype=self.vision_model.config.torch_dtype)
image_vit_embeds = self.extract_feature(pixel_values)
if pixel_values_videos is not None:
pixel_values_videos = pixel_values_videos.to(dtype=self.vision_model.config.torch_dtype)
video_vit_embeds = self.extract_feature(pixel_values_videos)
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = inputs_embeds.shape
inputs_embeds = inputs_embeds.reshape(B * N, C)
input_ids_copy = input_ids.reshape(B * N)
if image_vit_embeds is not None:
image_mask = (input_ids_copy == self.img_context_token_id)
assert image_mask.sum() != 0
inputs_embeds[image_mask] = image_vit_embeds.reshape(-1, C).to(inputs_embeds.device, inputs_embeds.dtype)
if video_vit_embeds is not None:
if B > 1:
raise NotImplementedError("Video is not supported for batch size > 1")
video_mask = (input_ids_copy == self.video_context_token_id)
assert video_mask.sum() != 0
inputs_embeds[video_mask] = video_vit_embeds.reshape(-1, C).to(inputs_embeds.device, inputs_embeds.dtype)
if video_vit_embeds is not None and self.video_pruning_rate > 0: # EVS
h = w = int(video_vit_embeds.shape[1] ** 0.5) # assumption here (and everywhere else) is that shape is square
evs_mask = EfficientVideoSampling.compute_retention_mask(
video_embeds=video_vit_embeds,
thw=(video_vit_embeds.shape[0], h, w),
spatial_merge_size=1, # we already work on vision embeddings, so no downsampling to follow
q=self.video_pruning_rate,
)
print(f"pruning rate: {self.video_pruning_rate}, EVS mask: {evs_mask.sum().item()} tokens retained out of {evs_mask.numel()} total video tokens ({evs_mask.sum().item() / evs_mask.numel() * 100:.2f}%)")
retention_mask = torch.ones_like(input_ids_copy, dtype=torch.bool)
retention_mask[video_mask] = evs_mask.view(-1)
inputs_embeds = inputs_embeds[retention_mask].unsqueeze(0) # adding batch=1
if attention_mask is not None:
attention_mask = attention_mask[:, retention_mask].contiguous()
if input_ids is not None:
input_ids = input_ids[:, retention_mask].contiguous()
else:
inputs_embeds = inputs_embeds.reshape(B, N, C)
else:
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
# print(f"DEBUG: input_ids shape: {input_ids.shape}")
# print(f"DEBUG: input text: {self._tokenizer.decode(input_ids[0])}")
outputs = self.language_model.generate(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
use_cache=True,
# return_dict_in_generate=True,
# output_scores=True,
**generate_kwargs,
)
return outputs
|