pcuenq HF Staff commited on
Commit
493df70
·
verified ·
1 Parent(s): 24a5060

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: nvidia-open-model-license
4
+ license_link: >-
5
+ https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
6
+ pipeline_tag: image-text-to-text
7
+ library_name: transformers
8
+ tags:
9
+ - nvidia
10
+ - VLM
11
+ - FP8
12
+ ---
13
+
14
+ # NVIDIA-Nemotron-Nano-VL-12B-V2-FP8
15
+
16
+ ## Model Overview
17
+
18
+ ### Description
19
+
20
+ NVIDIA-Nemotron-Nano-VL-12B-V2-FP8 is the quantized version of the NVIDIA Nemotron Nano VL V2 model, which is an auto-regressive vision language model that uses an optimized transformer architecture. For more information, please check [here](https://huggingface.co/nvidia/Nemotron-Nano-12B-v2-VL-BF16). The NVIDIA Nemotron Nano VL FP4 QAD model is quantized with [TensorRT Model Optimizer](https://github.com/NVIDIA/TensorRT-Model-Optimizer).
21
+
22
+ This model was trained on commercial images for all three stages of training and supports single image inference.
23
+
24
+ ### License/Terms of Use
25
+ **Governing Terms:**
26
+
27
+ Your use of the model is governed by the [NVIDIA Open License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/).
28
+
29
+ **Additional Information:**
30
+
31
+ Backbone LLM: NVIDIA-Nemotron-Nano-12B-v2.
32
+
33
+
34
+ ### Deployment Geography:
35
+
36
+ Global
37
+
38
+ ### Use Case:
39
+
40
+ Customers: AI foundry enterprise customers
41
+
42
+ Use Cases: Image summarization. Text-image analysis, Optical Character Recognition, Interactive Q&A on images, Text Chain-of-Thought reasoning
43
+
44
+
45
+ ## Release Date:
46
+
47
+ - Build.Nvidia.com [October 28th, 2025] via [nvidia/NVIDIA-Nemotron-Nano-VL-12B-V2](https://build.nvidia.com/nvidia/nvidia-nemotron-nano-vl-12b-v2)
48
+ - Hugging Face [October 28th, 2025] via [nvidia/NVIDIA-Nemotron-Nano-VL-12B-V2-BF16](https://huggingface.co/nvidia/Nemotron-Nano-12B-v2-VL-BF16)
49
+ - Hugging Face [October 28th, 2025] via [nvidia/NVIDIA-Nemotron-Nano-VL-12B-V2-FP8](https://huggingface.co/nvidia/NVIDIA-Nemotron-Nano-12B-v2-VL-FP8)
50
+ - Hugging Face [October 28th, 2025] via [nvidia/NVIDIA-Nemotron-Nano-VL-12B-V2-NVFP4](https://huggingface.co/nvidia/NVIDIA-Nemotron-Nano-12B-v2-VL-NVFP4-QAD)
51
+
52
+ ## Model Architecture:
53
+
54
+ **Network Type:** Transformer
55
+
56
+ **Network Architecture:**
57
+
58
+ Vision Encoder: [C-RADIOv2-H](https://huggingface.co/nvidia/C-RADIOv2-VLM-H)
59
+
60
+ Language Encoder: NVIDIA-Nemotron-Nano-12B-v2
61
+
62
+ ### Input
63
+
64
+ Input Type(s): Image, Text
65
+ - Input Images
66
+ - Language Supported: German, Spanish, French, Italian, Korean, Portuguese, Russian, Japanese, Chinese, English
67
+
68
+ Input Format(s): Image (Red, Green, Blue (RGB)), and Text (String)
69
+
70
+ Input Parameters: Image (2D), Text (1D)
71
+
72
+ Other Properties Related to Input:
73
+
74
+ - Context length up to 128K
75
+ - Maximum Resolution: Determined by a 12-tile layout constraint, with each tile being 512 × 512 pixels. This supports aspect ratios such as:
76
+ - 4 × 3 layout: up to 2048 × 1536 pixels
77
+ - 3 × 4 layout: up to 1536 × 2048 pixels
78
+ - 2 × 6 layout: up to 1024 × 3072 pixels
79
+ - 6 × 2 layout: up to 3072 × 1024 pixels
80
+ - Other configurations allowed, provided total tiles ≤ 12
81
+ - Channel Count: 3 channels (RGB)
82
+ - Alpha Channel: Not supported (no transparency)
83
+
84
+ ### Output
85
+ Output Type(s): Text
86
+
87
+ Output Formats: String
88
+
89
+ Output Parameters: One-Dimensional (1D): Sequences up to 128K
90
+
91
+
92
+
93
+ Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions.
94
+
95
+ ### Software Integration
96
+ Runtime Engine(s): vLLM<br>
97
+ Supported Hardware Microarchitecture Compatibility: H100 SXM 80GB<br>
98
+ Supported Operating System(s): Linux<br>
99
+
100
+ ### Model Versions:
101
+ Nemotron-Nano-VL-12B-V2-FP8
102
+
103
+ ## Quick Start
104
+
105
+ ### Install Dependencies
106
+ ```
107
+ pip install causal_conv1d "transformers>4.53,<4.54" torch timm "mamba-ssm==2.2.5" accelerate open_clip_torch numpy pillow
108
+ ```
109
+
110
+ ### Usage
111
+
112
+ To serve this checkpoint with [vLLM](https://github.com/vllm-project/vllm), you can start the docker `vllm/vllm-openai:nightly` and run the sample command below:
113
+
114
+ ```sh
115
+ python3 -m vllm.entrypoints.openai.api_server --model nvidia/Nemotron-Nano-VL-12B-V2-FP8 --trust-remote-code --quantization modelopt
116
+ ```
117
+
118
+
119
+ ## Training, Testing, and Evaluation Datasets:
120
+
121
+ ### Training Datasets:
122
+
123
+ **Data Modalities** <br>
124
+ ** Total Size: 39'486'703 samples <br>
125
+ ** Total Number of Datasets: 270 <br>
126
+ ** Text-only datasets: 33 <br>
127
+ ** Text-and-image datasets: 176 <br>
128
+ ** Video-and-text datasets: 61 <br>
129
+ ** Total size: 27.7 TB <br>
130
+
131
+ ** Data modalities: Text, Image, Video <br>
132
+ ** Data Collection Method by dataset: Hybrid: Automated, Human, Synthetic <br>
133
+ ** Labeling Method by dataset: Hybrid: Automated, Human, Synthetic <br>
134
+
135
+ ** Dataset partition: Training [100%], Testing [0%], Validation [0%] <br>
136
+ ** Time period for training data collection: 2023-2025 <br>
137
+ ** Time period for testing data collection: N/A <br>
138
+ ** Time period for validation data collection: N/A <br>
139
+
140
+ The post-training datasets consist of a mix of internal and public datasets designed for training vision language models across various tasks. It includes:
141
+
142
+ * Public datasets sourced from publicly available images and annotations, supporting tasks like classification, captioning, visual question answering, conversation modeling, document analysis and text/image reasoning.
143
+ * Internal text and image datasets built with public commercial images and internal labels, adapted for the same tasks as listed above.
144
+ * Synthetic image datasets generated programmatically for specific tasks like tabular data understanding and optical character recognition (OCR), for English, Chinese as well as other languages.
145
+ * Video datasets supporting video question answering and reasoning tasks from publicly available video sources, with either publicly available or internally generated annotations.
146
+ * Specialized datasets for safety alignment, function calling, and domain-specific tasks (e.g., science diagrams, financial question answering).
147
+ * NVIDIA-Sourced Synthetic Datasets for text reasoning.
148
+ * Private datasets for safety alignment or VQA on invoices.
149
+ * Crawled or scraped captioning, VQA, and video datasets.
150
+ * Some datasets were improved with Qwen2.5-72B-Instruct annotations
151
+
152
+ For around ~30% of our total training corpus and several of the domains listed above, we used commercially permissive models to perform:
153
+ * Language translation
154
+ * Re-labeling of annotations for text, image and video datasets
155
+ * Synthetic data generation
156
+ * Generating chain-of-thought (CoT) traces
157
+
158
+ Additional processing for several datasets included rule-based QA generation (e.g., with templates), expanding short answers into longer responses, as well as proper reformatting. More details can be found [here](https://arxiv.org/abs/2501.14818).
159
+
160
+
161
+ ** Image based datasets were all scanned against known CSAM to make sure no such content was included in training.<br>
162
+
163
+ # Public Datasets <br>
164
+ | Type | Data Type | Total Samples | Total Size (GB) |
165
+ |------|-----------|---------------|------------------|
166
+ | Function call | text | 8,000 | 0.02 |
167
+ | Image Captioning | image, text | 1,422,102 | 1,051.04 |
168
+ | Image Reasoning | image, text | 1,888,217 | 286.95 |
169
+ | OCR | image, text | 9,830,570 | 5,317.60 |
170
+ | Referring Expression Grounding | image, text | 14,694 | 2.39 |
171
+ | Safety | image, text | 34,187 | 9.21 |
172
+ | Safety | text | 57,223 | 0.52 |
173
+ | Safety | video, text | 12,988 | 11.78 |
174
+ | Text Instruction Tuning | text | 245,056 | 1.13 |
175
+ | Text Reasoning | text | 225,408 | 4.55 |
176
+ | VQA | image, text | 8,174,136 | 2,207.52 |
177
+ | VQA | video, text | 40,000 | 46.05 |
178
+ | Video Captioning | video, text | 3,289 | 6.31 |
179
+ | Video Reasoning | video, text | 42,620 | 49.10 |
180
+ | VideoQA | video, text | 1,371,923 | 17,641.79 |
181
+ | Visual Instruction Tuning | image, text | 1,173,877 | 167.79 |
182
+ | **TOTAL** | | **24,544,290** | **26,803.75** |
183
+
184
+ # Private Datasets <br>
185
+ | Type | Modalities | Total Samples | Total Size (GB) |
186
+ |------|------------|---------------|------------------|
187
+ | Image Reasoning | image, text | 17,729 | 15.41 |
188
+ | Text Reasoning | text | 445,958 | 9.01 |
189
+ | **TOTAL** | | **463,687** | **24.42** |
190
+
191
+
192
+ # Data Crawling and Scraping <br>
193
+ | Type | Modalities | Total Samples | Total Size (GB) |
194
+ |------|------------|---------------|------------------|
195
+ | Image Captioning | image, text | 39,870 | 10.24 |
196
+ | VQA | image, text | 40,348 | 3.94 |
197
+ | VideoQA | video, text | 288,728 | 393.30 |
198
+ | **TOTAL** | | **368,946** | **407.48** |
199
+
200
+ # User-Sourced Data (Collected by Provider including Prompts) <br>
201
+ <br>
202
+
203
+ # Self-Sourced Synthetic Data <br>
204
+ | Type | Data Type | Total Samples | Total Size (GB) |
205
+ |------|-----------|---------------|------------------|
206
+ | Code | text | 1,165,591 | 54.15 |
207
+ | OCR | image, text | 216,332 | 83.53 |
208
+ | Text Reasoning | text | 12,727,857 | 295.80 |
209
+ | **TOTAL** | | **14,109,780** | **433.48** |
210
+
211
+
212
+ **Properties**<br>
213
+ * Additionally, the dataset collection (for training and evaluation) consists of a mix of internal and public datasets designed for training and evaluation across various tasks. It includes:
214
+ * Internal datasets built with public commercial images and internal labels, supporting tasks like conversation modeling and document analysis.
215
+ * Public datasets sourced from publicly available images and annotations, adapted for tasks such as image captioning and visual question answering.
216
+ * Synthetic datasets generated programmatically for specific tasks like tabular data understanding.
217
+ * Specialized datasets for safety alignment, function calling, and domain-specific tasks (e.g., science diagrams, financial question answering).
218
+
219
+ ### Evaluation Datasets:
220
+ The following external benchmarks are used for evaluating the model: <br>
221
+
222
+ | Dataset |
223
+ |---------|
224
+ | [AI2D Test](https://prior.allenai.org/projects/diagram-understanding ) |
225
+ | [ChartQA Test](https://github.com/vis-nlp/ChartQA) |
226
+ | [OCRBench](https://github.com/Yuliang-Liu/MultimodalOCR) |
227
+ | [OCRBenchV2](https://github.com/Yuliang-Liu/MultimodalOCR) English |
228
+ | [DocVQA Val](https://www.docvqa.org/datasets) |
229
+
230
+
231
+
232
+ Data Collection Method by dataset: <br>
233
+ * Hybrid: Human, Automated <br>
234
+
235
+ Labeling Method by dataset: <br>
236
+ * Hybrid: Human, Automated <br>
237
+
238
+ **Properties (Quantity, Dataset Descriptions, Sensor(s)):** N/A <br>
239
+
240
+ **Dataset License(s):** N/A <br>
241
+
242
+
243
+
244
+ ## Evaluation Benchmarks:
245
+
246
+ | Benchmark | Score (FP8) | Score (BF16)
247
+ | --- | --- | --- |
248
+ | AI2D | 87.6% | 87.1% |
249
+ | OCRBenchV2 | 61.8% | 62.0% |
250
+ | OCRBench | 85.4% | 85.6% |
251
+ | ChartQA | 89.4% | 89.7% |
252
+ | DocVQA val | 94.3% | 94.4% |
253
+
254
+
255
+
256
+ # Inference:
257
+ **Engine:** vLLM <br>
258
+ **Test Hardware:** <br>
259
+ * 1x NVIDIA H100 SXM 80GB
260
+
261
+
262
+ ## Ethical Considerations:
263
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. For more detailed information on ethical considerations for this model, please see the Model Card++ [Explainability](explainability.md), [Bias](bias.md), [Safety & Security](safety.md), and [Privacy](privacy.md) Subcards. Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
264
+
265
+ Users are responsible for model inputs and outputs. Users are responsible for ensuring safe integration of this model, including implementing guardrails as well as other safety mechanisms, prior to deployment.
266
+
267
+ Outputs generated by these models may contain political content or other potentially misleading information, issues with content security and safety, or unwanted bias that is independent of our oversight.
bias.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ | Field | Response |
2
+ |:---|:---|
3
+ | Participation considerations from adversely impacted groups [protected classes](https://www.senate.ca.gov/content/protected-classes) in model design and testing: | None |
4
+ | Bias Metric (If Measured): | [BBQ Accuracy Scores in Ambiguous Contexts](https://github.com/nyu-mll/BBQ/) |
5
+ | Which characteristic (feature) show(s) the greatest difference in performance?: | The model shows high variance across many characteristics when used at a high temperature, with the greatest measurable difference seen in categories such as Gender Identity and Race x Gender. |
6
+ | Which feature(s) have the worst performance overall? | Age (ambiguous) has both the lowest category accuracy listed (0.75) and a notably negative bias score (–0.56), indicating it is the worst-performing feature overall in this evaluation. |
7
+ | Measures taken to mitigate against unwanted bias: | None |
8
+ | If using internal data, description of methods implemented in data acquisition or processing, if any, to address the prevalence of identifiable biases in the training, testing, and validation data: | The training datasets contain a large amount of synthetic data generated by LLMs. We manually curated prompts. |
9
+ | Tools used to assess statistical imbalances and highlight patterns that may introduce bias into AI models: | Bias Benchmark for Question Answering (BBQ) |
10
+ | Tools used to assess statistical imbalances and highlight patterns that may introduce bias into AI models: | The datasets, which include video datasets (e.g., YouCook2, VCG Human Dataset) and image captioning datasets, do not collectively or exhaustively represent all demographic groups (and proportionally therein).
11
+ For instance, these datasets do not contain explicit mentions of demographic classes such as age, gender, or ethnicity in over 80% of samples. In the subset where analysis was performed, certain datasets contain skews in the representation of participants—for example, perceived gender of "female" participants may be significant compared to "male" participants for certain datasets. Separately, individuals aged "40 to 49 years" and “20 to 29 years” are the most frequent among ethnic identifiers. Toxicity analysis was additionally performed on several datasets to identify potential not-safe-for-work samples and risks.
12
+ To mitigate these imbalances, we recommend considering evaluation techniques such as bias audits, fine-tuning with demographically balanced datasets, and mitigation strategies like counterfactual data augmentation to align with the desired model behavior. This evaluation was conducted on a data subset ranging from 200 to 3,000 samples per dataset; as such, certain limitations may exist in the reliability of the embeddings. A baseline of 200 samples was used across all datasets, with larger subsets of up to 3,000 samples utilized for certain in-depth analyses.
13
+ |
chat_template.jinja ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- set ns = namespace(enable_thinking=false, has_sys_prompt=false, non_tool_system_content='', has_video=false, explicit_think_requested=false) -%}
2
+ {%- set msg = namespace(content='') -%}
3
+ {%- for message in messages -%}
4
+ {%- if message['role'] == 'system' -%}
5
+ {%- set ns.has_sys_prompt = true -%}
6
+ {# Extract system content without tool flags #}
7
+ {%- if message['content'] is string -%}
8
+ {%- set ns.non_tool_system_content = message['content'].replace('</think>', '<_end_think>').replace('/think', '').replace('/no_think', '').replace('<_end_think>', '</think>').strip() -%}
9
+ {%- else -%}
10
+ {%- set ns.non_tool_system_content = '' -%}
11
+ {%- for content in message['content'] -%}
12
+ {%- if content['type'] == 'text' -%}
13
+ {%- set ns.non_tool_system_content = ns.non_tool_system_content + content['text'].replace('</think>', '<_end_think>').replace('/think', '').replace('/no_think', '').replace('<_end_think>', '</think>') -%}
14
+ {%- endif -%}
15
+ {%- endfor -%}
16
+ {%- set ns.non_tool_system_content = ns.non_tool_system_content.strip() -%}
17
+ {%- endif -%}
18
+ {%- endif -%}
19
+ {# Check for video content in all messages #}
20
+ {%- if message['content'] is not string -%}
21
+ {%- for content in message['content'] -%}
22
+ {%- if content['type'] == 'video' or content['type'] == 'video_url' -%}
23
+ {%- set ns.has_video = true -%}
24
+ {%- endif -%}
25
+ {%- endfor -%}
26
+ {%- endif -%}
27
+ {%- if message['content'] is string -%}
28
+ {%- if message['role'] == 'user' or message['role'] == 'system' -%}
29
+ {%- if '/think' in message['content'].replace('</think>', '') -%}
30
+ {%- set ns.enable_thinking = true -%}
31
+ {%- set ns.explicit_think_requested = true -%}
32
+ {%- elif '/no_think' in message['content'] -%}
33
+ {%- set ns.enable_thinking = false -%}
34
+ {%- endif -%}
35
+ {%- endif -%}
36
+ {%- else -%}
37
+ {%- for content in message['content'] -%}
38
+ {%- if content['type'] == 'text' -%}
39
+ {%- if message['role'] == 'user' or message['role'] == 'system' -%}
40
+ {%- if '/think' in content['text'].replace('</think>', '') -%}
41
+ {%- set ns.enable_thinking = true -%}
42
+ {%- set ns.explicit_think_requested = true -%}
43
+ {%- elif '/no_think' in content['text'] -%}
44
+ {%- set ns.enable_thinking = false -%}
45
+ {%- endif -%}
46
+ {%- endif -%}
47
+ {%- endif -%}
48
+ {%- endfor -%}
49
+ {%- endif -%}
50
+ {%- endfor -%}
51
+
52
+ {# Error out if video is present and reasoning is explicitly requested #}
53
+ {%- if ns.has_video and ns.explicit_think_requested -%}
54
+ {{ raise_exception('Video inputs are not supported with reasoning mode. Please remove /think flag or remove video content.') }}
55
+ {%- endif -%}
56
+
57
+ {# Automatically disable reasoning if video is present (without explicit /think request) #}
58
+ {%- if ns.has_video and not ns.explicit_think_requested -%}
59
+ {%- set ns.enable_thinking = false -%}
60
+ {%- endif -%}
61
+
62
+ {%- if messages[0]['role'] != 'system' -%}
63
+ {{- '<SPECIAL_10>System\n' -}}
64
+ {%- else -%}
65
+ {{- '<SPECIAL_10>System\n' + ns.non_tool_system_content }}
66
+ {%- endif -%}
67
+
68
+ {%- if tools -%}
69
+ {%- if ns.non_tool_system_content != '' -%}
70
+ {{- '\n\n' -}}
71
+ {%- endif -%}
72
+ {{- 'You can use the following tools to assist the user if required:\n' -}}
73
+ {{- '<AVAILABLE_TOOLS>[' -}}
74
+ {%- for tool in tools -%}
75
+ {{- (tool.function if tool.function is defined else tool) | tojson -}}
76
+ {{- ', ' if not loop.last else '' -}}
77
+ {%- endfor -%}
78
+ {{- ']</AVAILABLE_TOOLS>\n\n' -}}
79
+
80
+ {{- 'If you decide to call any tool(s), use the following format:\n' -}}
81
+ {{- '<TOOLCALL>[{"name": "tool_name1", "arguments": "tool_args1"}, ' -}}
82
+ {{- '{"name": "tool_name2", "arguments": "tool_args2"}]</TOOLCALL>\n\n' -}}
83
+
84
+ {{- 'The user will execute tool-calls and return responses from tool(s) in this format:\n' -}}
85
+ {{- '<TOOL_RESPONSE>[{"response": "tool_response1"}, ' -}}
86
+ {{- '{"response": "tool_response2"}]</TOOL_RESPONSE>\n\n' -}}
87
+
88
+ {{- 'Based on the tool responses, you can call additional tools if needed, ' -}}
89
+ {{- 'correct tool calls if any errors are found, or just respond to the user.' -}}
90
+ {%- endif -%}
91
+ {{- '\n' -}}
92
+
93
+ {%- set messages = messages[1:] if messages[0]['role'] == 'system' else messages -%}
94
+
95
+ {# Prevent no user or assistant message #}
96
+ {%- if messages|length == 0 -%}
97
+ {%- set messages = [{'role': 'user', 'content': ''}] -%}
98
+ {%- endif -%}
99
+
100
+ {%- for message in messages %}
101
+ {%- if message['content'] is string -%}
102
+ {%- set msg.content = message['content'].replace('</think>', '<_end_think>').replace('/think', '').replace('/no_think', '').replace('<_end_think>', '</think>').strip() -%}
103
+ {%- else -%}
104
+ {%- set msg.content = '' -%}
105
+ {%- set mm_content = '' -%}
106
+ {%- set counters = namespace(images=0, videos=0) -%}
107
+
108
+ {%- for content in message['content'] -%}
109
+ {%- if content['type'] == 'image' -%}
110
+ {%- set counters.images = counters.images + 1 -%}
111
+ {%- elif content['type'] == 'video' -%}
112
+ {%- set counters.videos = counters.videos + 1 -%}
113
+ {%- elif content['type'] == 'text' -%}
114
+ {%- set msg.content = msg.content + content['text'] -%}
115
+ {%- endif -%}
116
+ {%- endfor -%}
117
+ {%- if '<image>' in msg.content -%}
118
+ {%- set counters.images = 0 -%}
119
+ {%- endif -%}
120
+ {%- if '<video>' in msg.content -%}
121
+ {%- set counters.videos = 0 -%}
122
+ {%- endif -%}
123
+ {%- if counters.images > 1 -%}
124
+ {%- set image_tags = namespace(tags=[]) -%}
125
+ {%- for i in range(counters.images) -%}
126
+ {%- set image_tags.tags = image_tags.tags + ['<image ' + (i + 1)|string + '><image>'] -%}
127
+ {%- endfor -%}
128
+ {%- set mm_content = ' '.join(image_tags.tags) + '\n' -%}
129
+ {%- elif counters.images == 1 -%}
130
+ {%- set mm_content = '<image>\n' -%}
131
+ {%- endif -%}
132
+ {%- set mm_content = mm_content + '<video>\n' * counters.videos -%}
133
+ {%- set msg.content = mm_content + msg.content.lstrip('\n') -%}
134
+ {%- endif -%}
135
+
136
+ {%- if message['role'] == 'user' %}
137
+ {{- '<SPECIAL_11>User\n' + msg.content.replace('</think>', '<_end_think>').replace('/think', '').replace('/no_think', '').replace('<_end_think>', '</think>').strip() + '\n' }}
138
+ {%- elif message['role'] == 'tool' %}
139
+ {%- if loop.first or (messages[loop.index0 - 1].role != 'tool') -%}
140
+ {{- '<SPECIAL_11>User\n' + '<TOOL_RESPONSE>[' }}
141
+ {%- endif -%}
142
+ {{- msg.content -}}
143
+ {{- ', ' if not loop.last and (messages[loop.index0 + 1].role == 'tool') else '' -}}
144
+ {%- if loop.last or (messages[loop.index0 + 1].role != 'tool') -%}
145
+ {{- ']</TOOL_RESPONSE>\n' -}}
146
+ {%- endif -%}
147
+ {%- elif message['role'] == 'assistant' %}
148
+ {%- if '</think>' in msg.content %}
149
+ {%- set msg.content = msg.content.split('</think>')[1].strip() %}
150
+ {%- endif %}
151
+ {{- '<SPECIAL_11>Assistant\n' + msg.content.strip() }}
152
+ {%- if message.tool_calls -%}
153
+ {%- if msg.content.strip() != '' -%}
154
+ {{- '\n\n' -}}
155
+ {%- endif -%}
156
+ {{- '<TOOLCALL>[' -}}
157
+ {%- for call in message.tool_calls -%}
158
+ {%- set fn = call.function if call.function is defined else call -%}
159
+ {{- '{"name": "' + fn.name + '", "arguments": ' -}}
160
+ {%- if fn.arguments is string -%}
161
+ {{- fn.arguments -}}
162
+ {%- else -%}
163
+ {{- fn.arguments | tojson -}}
164
+ {%- endif -%}
165
+ {{- '}' + (', ' if not loop.last else '') -}}
166
+ {%- endfor -%}
167
+ {{- ']</TOOLCALL>' -}}
168
+ {%- endif -%}
169
+ {{- '\n<SPECIAL_12>\n' -}}
170
+ {%- endif %}
171
+ {%- endfor -%}
172
+ {%- if add_generation_prompt %}
173
+ {{- '<SPECIAL_11>Assistant\n' }}
174
+ {%- if ns.enable_thinking is defined and ns.enable_thinking is false %}
175
+ {{- '<think></think>' }}
176
+ {%- else %}
177
+ {{- '<think>\n' }}
178
+ {%- endif %}
179
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "NemotronH_Nano_VL_V2"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration.NemotronH_Nano_VL_V2_Config",
7
+ "AutoModel": "modeling.NemotronH_Nano_VL_V2",
8
+ "AutoModelForCausalLM": "modeling.NemotronH_Nano_VL_V2"
9
+ },
10
+ "downsample_ratio": 0.5,
11
+ "eos_token_id": 12,
12
+ "force_image_size": 512,
13
+ "image_tag_type": "internvl",
14
+ "img_context_token": "<image>",
15
+ "img_context_token_id": 131072,
16
+ "img_end_token": "</img>",
17
+ "img_start_token": "<img>",
18
+ "llm_config": {
19
+ "architectures": [
20
+ "NemotronHForCausalLM"
21
+ ],
22
+ "attention_bias": false,
23
+ "attention_dropout": 0.0,
24
+ "attention_head_dim": 128,
25
+ "auto_map": {
26
+ "AutoConfig": "nvidia/NVIDIA-Nemotron-Nano-12B-v2-Base--configuration_nemotron_h.NemotronHConfig",
27
+ "AutoModelForCausalLM": "nvidia/NVIDIA-Nemotron-Nano-12B-v2-Base--modeling_nemotron_h.NemotronHForCausalLM"
28
+ },
29
+ "chunk_size": 128,
30
+ "conv_kernel": 4,
31
+ "eos_token_id": 12,
32
+ "expand": 2,
33
+ "head_dim": 128,
34
+ "hidden_dropout": 0.0,
35
+ "hidden_size": 5120,
36
+ "hybrid_override_pattern": "M-M-M-M*-M-M-M-M*-M-M-M-M*-M-M-M-M*-M-M-M-M*-M-M-M-M*-M-M-M-M-",
37
+ "initializer_range": 0.02,
38
+ "intermediate_size": 20480,
39
+ "layer_norm_epsilon": 1e-05,
40
+ "mamba_head_dim": 80,
41
+ "mamba_hidden_act": "silu",
42
+ "mamba_num_heads": 128,
43
+ "mamba_proj_bias": false,
44
+ "max_position_embeddings": 131072,
45
+ "mlp_bias": false,
46
+ "mlp_hidden_act": "relu2",
47
+ "model_type": "nemotron_h",
48
+ "n_groups": 8,
49
+ "num_attention_heads": 40,
50
+ "num_hidden_layers": 62,
51
+ "num_key_value_heads": 8,
52
+ "num_logits_to_keep": 1,
53
+ "rescale_prenorm_residual": true,
54
+ "residual_in_fp32": false,
55
+ "rms_norm_eps": 1e-05,
56
+ "sliding_window": null,
57
+ "ssm_state_size": 128,
58
+ "time_step_floor": 0.0001,
59
+ "time_step_limit": [
60
+ 0.0,
61
+ Infinity
62
+ ],
63
+ "time_step_max": 0.1,
64
+ "time_step_min": 0.001,
65
+ "time_step_rank": 256,
66
+ "torch_dtype": "bfloat16",
67
+ "use_bias": false,
68
+ "use_cache": true,
69
+ "use_conv_bias": true,
70
+ "use_mamba_kernels": true,
71
+ "vocab_size": 132096
72
+ },
73
+ "max_sequence_length": 131072,
74
+ "model_type": "NemotronH_Nano_VL_V2",
75
+ "norm_mean": [
76
+ 0.48145466,
77
+ 0.4578275,
78
+ 0.40821073
79
+ ],
80
+ "norm_std": [
81
+ 0.26862954,
82
+ 0.26130258,
83
+ 0.27577711
84
+ ],
85
+ "patch_size": 16,
86
+ "projector_hidden_size": 20480,
87
+ "ps_version": "v2",
88
+ "template": "n5h_5p5_nanov2",
89
+ "torch_dtype": "bfloat16",
90
+ "transformers_version": "4.53.3",
91
+ "use_thumbnail": true,
92
+ "video_context_token": "<video>",
93
+ "video_context_token_id": 131081,
94
+ "video_pruning_rate": 0.7,
95
+ "vision_config": {
96
+ "adaptor_configs": {},
97
+ "adaptor_names": null,
98
+ "architectures": [
99
+ "RADIOModel"
100
+ ],
101
+ "args": {
102
+ "aa": null,
103
+ "amp": true,
104
+ "amp_dtype": "bfloat16",
105
+ "amp_impl": "native",
106
+ "aug_repeats": 0,
107
+ "aug_splits": 0,
108
+ "bn_eps": null,
109
+ "bn_momentum": null,
110
+ "cache_dir": null,
111
+ "channels_last": false,
112
+ "checkpoint_hist": 10,
113
+ "chk_keep_forever": 100,
114
+ "class_map": "",
115
+ "clip_grad": null,
116
+ "clip_mode": "norm",
117
+ "cls_token_per_teacher": true,
118
+ "coco_annotations_file": "/datasets/coco2017-adlsa/annotations/captions_val2017.json",
119
+ "coco_image_dir": "/datasets/coco2017-adlsa/val2017",
120
+ "color_jitter": 0.4,
121
+ "cooldown_epochs": 0,
122
+ "cpe_max_size": 2048,
123
+ "crd_loss": false,
124
+ "crd_loss_weight": 0.8,
125
+ "crop_pct": null,
126
+ "cutmix": 0.0,
127
+ "cutmix_minmax": null,
128
+ "dataset_download": false,
129
+ "debug_full_knn": false,
130
+ "decay_epochs": 90,
131
+ "decay_milestones": [
132
+ 90,
133
+ 180,
134
+ 270
135
+ ],
136
+ "decay_rate": 0.1,
137
+ "depchain": true,
138
+ "dist_bn": "reduce",
139
+ "dist_norm_weight": 0.0,
140
+ "distributed": true,
141
+ "drop": 0.0,
142
+ "drop_block": null,
143
+ "drop_connect": null,
144
+ "drop_path": null,
145
+ "dtype": "bfloat16",
146
+ "epoch_repeats": 0.0,
147
+ "eval": false,
148
+ "eval_metric": "knn_top1",
149
+ "eval_teacher": false,
150
+ "eval_teacher_only": false,
151
+ "eval_throughput": false,
152
+ "fast_norm": false,
153
+ "fd_loss_fn": "MSE",
154
+ "feature_normalization": "SHIP_NORM",
155
+ "feature_summarizer": "cls_token",
156
+ "feature_upscale_factor": null,
157
+ "force_new_wandb_id": false,
158
+ "force_spectral_reparam": true,
159
+ "freeze_bn": false,
160
+ "fsdp": false,
161
+ "fuser": "",
162
+ "gp": null,
163
+ "grad_accum_steps": 1,
164
+ "grad_checkpointing": false,
165
+ "head_init_bias": null,
166
+ "head_init_scale": null,
167
+ "head_warmup": 5,
168
+ "head_weight_decay": 0.001,
169
+ "hflip": 0.5,
170
+ "img_size": null,
171
+ "in_chans": null,
172
+ "initial_checkpoint": null,
173
+ "input_size": null,
174
+ "interpolation": "",
175
+ "layer_decay": null,
176
+ "local_rank": 0,
177
+ "log_interval": 50,
178
+ "log_mlflow": false,
179
+ "log_wandb": true,
180
+ "loss_auto_balance": false,
181
+ "lr_base": 0.1,
182
+ "lr_base_scale": "",
183
+ "lr_base_size": 256,
184
+ "lr_cycle_decay": 0.5,
185
+ "lr_cycle_limit": 1,
186
+ "lr_cycle_mul": 1.0,
187
+ "lr_k_decay": 1.0,
188
+ "lr_noise": null,
189
+ "lr_noise_pct": 0.67,
190
+ "lr_noise_std": 1.0,
191
+ "mean": null,
192
+ "mesa": false,
193
+ "min_lr": 0,
194
+ "mixup": 0.0,
195
+ "mixup_mode": "batch",
196
+ "mixup_off_epoch": 0,
197
+ "mixup_prob": 1.0,
198
+ "mixup_switch_prob": 0.5,
199
+ "mlp_hidden_size": 1520,
200
+ "mlp_num_inner": 3,
201
+ "mlp_version": "v2",
202
+ "model": "vit_huge_patch16_224",
203
+ "model_kwargs": {},
204
+ "model_norm": false,
205
+ "momentum": 0.9,
206
+ "no_aug": false,
207
+ "no_ddp_bb": true,
208
+ "no_prefetcher": false,
209
+ "no_resume_opt": false,
210
+ "num_classes": null,
211
+ "opt_betas": null,
212
+ "opt_eps": null,
213
+ "patience_epochs": 10,
214
+ "pin_mem": false,
215
+ "prefetcher": true,
216
+ "pretrained": false,
217
+ "rank": 0,
218
+ "ratio": [
219
+ 0.75,
220
+ 1.3333333333333333
221
+ ],
222
+ "recount": 1,
223
+ "recovery_interval": 0,
224
+ "register_multiple": 16,
225
+ "remode": "pixel",
226
+ "reprob": 0.0,
227
+ "reset_loss_state": false,
228
+ "resplit": false,
229
+ "save_images": false,
230
+ "scale": [
231
+ 0.5,
232
+ 1.0
233
+ ],
234
+ "sched": "cosine",
235
+ "seed": 42,
236
+ "smoothing": 0.1,
237
+ "spectral_heads": false,
238
+ "spectral_reparam": false,
239
+ "split_bn": false,
240
+ "start_epoch": null,
241
+ "std": null,
242
+ "stream_teachers": true,
243
+ "sync_bn": false,
244
+ "synchronize_step": false,
245
+ "teachers": [
246
+ {
247
+ "fd_normalize": false,
248
+ "feature_distillation": true,
249
+ "input_size": 378,
250
+ "model": "ViT-H-14-378-quickgelu",
251
+ "name": "clip",
252
+ "pretrained": "dfn5b",
253
+ "type": "open_clip",
254
+ "use_summary": true
255
+ },
256
+ {
257
+ "fd_normalize": false,
258
+ "feature_distillation": true,
259
+ "input_size": 378,
260
+ "model": "ViT-SO400M-14-SigLIP-384",
261
+ "name": "siglip",
262
+ "pretrained": "webli",
263
+ "type": "open_clip",
264
+ "use_summary": true
265
+ },
266
+ {
267
+ "fd_normalize": false,
268
+ "feature_distillation": true,
269
+ "input_size": 378,
270
+ "model": "dinov2_vitg14_reg",
271
+ "name": "dino_v2",
272
+ "type": "dino_v2",
273
+ "use_summary": true
274
+ },
275
+ {
276
+ "fd_normalize": false,
277
+ "feature_distillation": true,
278
+ "input_size": 1024,
279
+ "model": "vit-h",
280
+ "name": "sam",
281
+ "type": "sam",
282
+ "use_summary": false
283
+ }
284
+ ],
285
+ "torchcompile": null,
286
+ "torchscript": false,
287
+ "train_interpolation": "random",
288
+ "train_split": "train",
289
+ "tta": 0,
290
+ "use_coco": false,
291
+ "use_multi_epochs_loader": false,
292
+ "val_ema_only": false,
293
+ "val_split": "val",
294
+ "vflip": 0.0,
295
+ "vitdet_version": 1,
296
+ "wandb_entity": "",
297
+ "wandb_job_type": "",
298
+ "wandb_name": "",
299
+ "wandb_project": "",
300
+ "warmup_lr": 1e-05,
301
+ "warmup_prefix": false,
302
+ "worker_seeding": "all",
303
+ "workers": 8,
304
+ "world_size": 256
305
+ },
306
+ "auto_map": {
307
+ "AutoConfig": "nvidia/C-RADIOv2-H--hf_model.RADIOConfig",
308
+ "AutoModel": "nvidia/C-RADIOv2-H--hf_model.RADIOModel"
309
+ },
310
+ "feature_normalizer_config": null,
311
+ "inter_feature_normalizer_config": null,
312
+ "max_resolution": 2048,
313
+ "model_type": "",
314
+ "patch_size": 16,
315
+ "preferred_resolution": [
316
+ 768,
317
+ 768
318
+ ],
319
+ "torch_dtype": "bfloat16",
320
+ "use_flash_attn": false,
321
+ "version": "radio_v2.5-h",
322
+ "vitdet_window_size": null
323
+ },
324
+ "vit_hidden_size": 1280,
325
+ "quantization_config": {
326
+ "config_groups": {
327
+ "group_0": {
328
+ "input_activations": {
329
+ "dynamic": false,
330
+ "num_bits": 8,
331
+ "type": "float"
332
+ },
333
+ "weights": {
334
+ "dynamic": false,
335
+ "num_bits": 8,
336
+ "type": "float"
337
+ },
338
+ "targets": [
339
+ "Linear"
340
+ ]
341
+ }
342
+ },
343
+ "ignore": [
344
+ "model.layers.language_model.lm_head",
345
+ "model.layers.mlp1*",
346
+ "model.layers.*.conv1d*",
347
+ "model.layers.vision_model*",
348
+ "lm_head"
349
+ ],
350
+ "quant_algo": "FP8",
351
+ "producer": {
352
+ "name": "modelopt",
353
+ "version": "0.37.0.dev5+g76fb12d47.d20250905"
354
+ },
355
+ "quant_method": "modelopt"
356
+ }
357
+ }
configuration.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # Adapted from https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B under MIT License
3
+ # LICENSE is in incl_licenses directory.
4
+ # --------------------------------------------------------
5
+
6
+ from transformers.configuration_utils import PretrainedConfig
7
+ from transformers.utils import logging
8
+ from .configuration_nemotron_h import NemotronHConfig
9
+ from .configuration_radio import RADIOConfig
10
+
11
+ logger = logging.get_logger(__name__)
12
+
13
+ class NemotronH_Nano_VL_V2_Config(PretrainedConfig):
14
+ model_type = 'NemotronH_Nano_VL_V2'
15
+ is_composition = True
16
+
17
+ def __init__(
18
+ self,
19
+ vision_config=None,
20
+ llm_config=None,
21
+ force_image_size=None,
22
+ downsample_ratio=0.5,
23
+ template=None,
24
+ ps_version='v1',
25
+ image_tag_type="internvl",
26
+ projector_hidden_size=4096,
27
+ vit_hidden_size=1280,
28
+ attn_implementation="flash_attention_2",
29
+ video_pruning_rate: float = 0.0,
30
+ **kwargs
31
+ ):
32
+ super().__init__(**kwargs)
33
+
34
+ if vision_config is not None:
35
+ self.vision_config = RADIOConfig(**vision_config)
36
+ else:
37
+ self.vision_config = RADIOConfig()
38
+
39
+ # Handle both cases: when loading from JSON (llm_config is dict) and when called internally by transformers (llm_config is None)
40
+ if llm_config is not None:
41
+ self.llm_config = NemotronHConfig(**llm_config)
42
+ else:
43
+ self.llm_config = NemotronHConfig()
44
+
45
+ # Assign configuration values
46
+ self.force_image_size = force_image_size
47
+ self.downsample_ratio = downsample_ratio
48
+ self.template = template # TODO move out of here and into the tokenizer
49
+ self.ps_version = ps_version # Pixel shuffle version
50
+ self.image_tag_type = image_tag_type # TODO: into the tokenizer too?
51
+ self.projector_hidden_size = projector_hidden_size
52
+ self.vit_hidden_size = vit_hidden_size
53
+ self.video_pruning_rate = video_pruning_rate
54
+
55
+ self._attn_implementation = attn_implementation
56
+ self.vision_config.use_flash_attn = self._attn_implementation is not None and "flash_attention" in self._attn_implementation
57
+ self.llm_config._attn_implementation = self._attn_implementation
configuration_nemotron_h.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
3
+ # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """NemotronH model configuration"""
17
+
18
+ import re
19
+
20
+ from transformers.configuration_utils import PretrainedConfig
21
+ from transformers.utils import logging
22
+
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ class NemotronHConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`NemotronHModel`]. It is used to instantiate a
30
+ NemotronH model according to the specified arguments, defining the model architecture. Instantiating a configuration
31
+ with the defaults will yield a similar configuration to that of the NemotronH-v0.1 model.
32
+
33
+ [todo](todo)
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 131072):
41
+ Vocabulary size of the NemotronH model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`NemotronHModel`]
43
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
44
+ Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
45
+ model has a output word embedding layer.
46
+ hidden_size (`int`, *optional*, defaults to 4096):
47
+ Dimension of the hidden representations.
48
+ intermediate_size (`int`, *optional*, defaults to 21504):
49
+ Dimension of the MLP representations.
50
+ num_hidden_layers (`int`, *optional*, defaults to 52):
51
+ Number of hidden layers in the Transformer encoder.
52
+ hybrid_override_pattern (`str`, *optional*, defaults to `"M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-"`):
53
+ The pattern of the hybrid model. The pattern is a string of characters where each character represents M: Mamba2, *: Attention, -: MLP
54
+ num_attention_heads (`int`, *optional*, defaults to 32):
55
+ Number of attention heads for each attention layer in the Transformer encoder.
56
+ attention_head_dim (`int`, *optional*, defaults to 128):
57
+ Dimension of each attention head.
58
+ num_key_value_heads (`int`, *optional*, defaults to 8):
59
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
60
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
61
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
62
+ mlp_hidden_act (`str`, *optional*, defaults to "relu2"):
63
+ The non-linear activation function in the MLP layers.
64
+ attention_bias (`bool`, *optional*, defaults to `False`):
65
+ Whether to use bias in attention layers.
66
+ mlp_bias (`bool`, *optional*, defaults to `False`):
67
+ Whether to use bias in MLP layers.
68
+ use_bias (`bool`, *optional*, defaults to `False`):
69
+ Whether to use bias in the model.
70
+ initializer_range (`float`, *optional*, defaults to 0.02):
71
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
72
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
73
+ The epsilon used by the layer normalization layers.
74
+ residual_in_fp32 (`bool`, *optional*, defaults to `False`):
75
+ Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`.
79
+ num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
80
+ Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
81
+ integer value, only last `num_logits_to_keep` logits will be calculated.
82
+ pad_token_id (`int`, *optional*, defaults to 0):
83
+ The id of the padding token.
84
+ bos_token_id (`int`, *optional*, defaults to 1):
85
+ The id of the "beginning-of-sequence" token.
86
+ eos_token_id (`int`, *optional*, defaults to 2):
87
+ The id of the "end-of-sequence" token.
88
+ sliding_window (`int`, *optional*, defaults to None):
89
+ Sliding window attention window size.
90
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
91
+ The maximum sequence length that this model might ever be used with.
92
+ attention_dropout (`float`, *optional*, defaults to 0.0):
93
+ The dropout ratio for the attention probabilities.
94
+ hidden_dropout (`float`, *optional*, defaults to 0.0):
95
+ The dropout ratio for the hidden states.
96
+ use_mamba_kernels (`bool`, *optional*, defaults to `True`):
97
+ Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
98
+ `causal-conv1d` are installed, and the mamba modules are running on a CUDA device.
99
+ ssm_state_size (`int`, *optional*, defaults to 128):
100
+ The dimension of the mamba state space latents.
101
+ mamba_num_heads (`int`, *optional*, defaults to 128):
102
+ Number of heads in Mamba layers.
103
+ mamba_n_groups (`int`, *optional*, defaults to 8):
104
+ Number of groups in Mamba layers.
105
+ mamba_head_dim (`int`, *optional*, defaults to 64):
106
+ Dimension of each Mamba head.
107
+ mamba_d_conv (`int`, *optional*, defaults to 4):
108
+ The size of the mamba convolution kernel.
109
+ mamba_expand (`int`, *optional*, defaults to 2):
110
+ Expanding factor used to determine the mamba intermediate size.
111
+ mamba_hidden_act (`str`, *optional*, defaults to "silu"):
112
+ The non-linear activation function in the Mamba layers.
113
+ mamba_dt_min (`float`, *optional*, defaults to 0.001):
114
+ Minimum value for the time step in Mamba.
115
+ mamba_dt_max (`float`, *optional*, defaults to 0.1):
116
+ Maximum value for the time step in Mamba.
117
+ mamba_dt_limit (`tuple`, *optional*, defaults to (0.0, float("inf"))):
118
+ Limits for the time step in Mamba.
119
+ mamba_dt_init_floor (`float`, *optional*, defaults to 1e-4):
120
+ Floor value for time step initialization in Mamba.
121
+ mamba_conv_bias (`bool`, *optional*, defaults to `True`):
122
+ Whether to use bias in the convolution layer of the mamba mixer block.
123
+ mamba_proj_bias (`bool`, *optional*, defaults to `False`):
124
+ Whether to use bias in the input and output projections of the mamba mixer block.
125
+ mamba_chunk_size (`int`, *optional*, defaults to 256):
126
+ Size of chunks for Mamba processing.
127
+ rescale_prenorm_residual (`bool`, *optional*, defaults to `True`):
128
+ Whether to rescale the pre-normalization residual connections.
129
+ """
130
+
131
+ model_type = "nemotron_h"
132
+ keys_to_ignore_at_inference = ["past_key_values"]
133
+
134
+ def __init__(
135
+ self,
136
+ vocab_size=131072,
137
+ tie_word_embeddings=False,
138
+ hidden_size=4096,
139
+ intermediate_size=21504,
140
+ num_hidden_layers=52,
141
+ hybrid_override_pattern="M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-",
142
+ num_attention_heads=32,
143
+ #attention_head_dim=128,
144
+ head_dim=128,
145
+ num_key_value_heads=8, # nemo: num_query_groups
146
+ mlp_hidden_act="relu2",
147
+ attention_bias=False,
148
+ mlp_bias=False,
149
+ use_bias=False,
150
+ initializer_range=0.02, # nemo: init_method_std
151
+ layer_norm_epsilon=1e-5, # nemo: layernorm_epsilon
152
+ residual_in_fp32=False, # Megatron Core default value
153
+ use_cache=True,
154
+ num_logits_to_keep=1,
155
+ pad_token_id=0,
156
+ bos_token_id=1,
157
+ eos_token_id=2,
158
+ sliding_window=None,
159
+ max_position_embeddings=4096,
160
+ attention_dropout=0.0,
161
+ hidden_dropout=0.0, # * ADDED
162
+ use_mamba_kernels=True,
163
+ ssm_state_size=128, # mamba_state_size
164
+ mamba_num_heads=128,
165
+ mamba_n_groups=8, # nemo: mamba_ssm_ngroups = num_heads
166
+ mamba_head_dim=64,
167
+ mamba_d_conv=4,
168
+ mamba_expand=2,
169
+ mamba_hidden_act="silu",
170
+ mamba_dt_min=0.001,
171
+ mamba_dt_max=0.1,
172
+ mamba_dt_limit=(0.0, float("inf")),
173
+ mamba_dt_init_floor=1e-4,
174
+ mamba_conv_bias=True,
175
+ mamba_proj_bias=False,
176
+ mamba_chunk_size=256,
177
+ rescale_prenorm_residual=True,
178
+ **kwargs,
179
+ ):
180
+ self.vocab_size = vocab_size
181
+ self.tie_word_embeddings = tie_word_embeddings
182
+ self.hidden_size = hidden_size
183
+ self.intermediate_size = intermediate_size
184
+ self.num_hidden_layers = num_hidden_layers
185
+ self.hybrid_override_pattern = hybrid_override_pattern
186
+ self.num_attention_heads = num_attention_heads
187
+ #self.attention_head_dim = attention_head_dim
188
+ self.head_dim = head_dim
189
+ self.sliding_window = sliding_window
190
+ self.max_position_embeddings = max_position_embeddings
191
+ self.attention_dropout = attention_dropout
192
+ self.hidden_dropout = hidden_dropout
193
+
194
+ # Validate hybrid_override_pattern
195
+ # M: Mamba2, *: Attention, -: MLP
196
+ assert len(self.hybrid_override_pattern) == self.num_hidden_layers, "hybrid_override_pattern must have the same length as num_hidden_layers"
197
+ assert re.match(r"^[*-M]+$", self.hybrid_override_pattern), "hybrid_override_pattern must only contain characters 'M', '*', or '-'"
198
+
199
+ # for backward compatibility
200
+ if num_key_value_heads is None:
201
+ num_key_value_heads = num_attention_heads
202
+
203
+ self.num_key_value_heads = num_key_value_heads
204
+ self.mlp_hidden_act = mlp_hidden_act
205
+ self.attention_bias = attention_bias
206
+ self.mlp_bias = mlp_bias
207
+ self.use_bias = use_bias
208
+ self.initializer_range = initializer_range
209
+ self.layer_norm_epsilon = layer_norm_epsilon
210
+ self.residual_in_fp32 = residual_in_fp32
211
+
212
+ self.use_cache = use_cache
213
+ self.num_logits_to_keep = num_logits_to_keep
214
+
215
+ self.use_mamba_kernels = use_mamba_kernels
216
+ self.n_groups = mamba_n_groups
217
+ self.mamba_head_dim = mamba_head_dim
218
+ self.ssm_state_size = ssm_state_size
219
+ self.mamba_num_heads = mamba_num_heads
220
+ self.conv_kernel = mamba_d_conv
221
+ self.expand = mamba_expand
222
+ self.mamba_hidden_act = mamba_hidden_act
223
+ self.time_step_min = mamba_dt_min
224
+ self.time_step_max = mamba_dt_max
225
+ self.time_step_limit = mamba_dt_limit
226
+ self.time_step_floor = mamba_dt_init_floor
227
+ self.use_conv_bias = mamba_conv_bias
228
+ self.mamba_proj_bias = mamba_proj_bias
229
+ self.chunk_size = mamba_chunk_size
230
+ self.rescale_prenorm_residual = rescale_prenorm_residual
231
+
232
+ super().__init__(
233
+ pad_token_id=pad_token_id,
234
+ bos_token_id=bos_token_id,
235
+ eos_token_id=eos_token_id,
236
+ tie_word_embeddings=tie_word_embeddings,
237
+ **kwargs,
238
+ )
239
+
240
+ @property
241
+ def layers_block_type(self):
242
+ return [
243
+ "mamba" if self.hybrid_override_pattern[i] == "M" else
244
+ "attention" if self.hybrid_override_pattern[i] == "*" else "mlp"
245
+ for i in range(self.num_hidden_layers)]
configuration_radio.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from dataclasses import dataclass
10
+ from typing import Optional, NamedTuple, Union, List, Dict
11
+
12
+ from transformers import PretrainedConfig
13
+
14
+
15
+ class Resolution(NamedTuple):
16
+ height: int
17
+ width: int
18
+
19
+
20
+ @dataclass
21
+ class RadioResource:
22
+ url: str
23
+ patch_size: int
24
+ max_resolution: int
25
+ preferred_resolution: Resolution
26
+ vitdet_num_windowed: Optional[int] = None
27
+ vitdet_num_global: Optional[int] = None
28
+
29
+
30
+ RESOURCE_MAP = {
31
+ # RADIOv2.5
32
+ "radio_v2.5-b": RadioResource(
33
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-b_half.pth.tar?download=true",
34
+ patch_size=16,
35
+ max_resolution=2048,
36
+ preferred_resolution=(768, 768),
37
+ vitdet_num_global=4,
38
+ ),
39
+ "radio_v2.5-l": RadioResource(
40
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-l_half.pth.tar?download=true",
41
+ patch_size=16,
42
+ max_resolution=2048,
43
+ preferred_resolution=(768, 768),
44
+ vitdet_num_global=4,
45
+ ),
46
+ "radio_v2.5-h": RadioResource(
47
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-h.pth.tar?download=true",
48
+ patch_size=16,
49
+ max_resolution=2048,
50
+ preferred_resolution=(768, 768),
51
+ vitdet_num_global=4,
52
+ ),
53
+ "radio_v2.5-h-norm": RadioResource(
54
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-h-norm.pth.tar?download=true",
55
+ patch_size=16,
56
+ max_resolution=2048,
57
+ preferred_resolution=(768, 768),
58
+ vitdet_num_global=4,
59
+ ),
60
+ "radio_v2.5-g": RadioResource(
61
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-g.pth.tar?download=true",
62
+ patch_size=14,
63
+ max_resolution=1792,
64
+ preferred_resolution=(896, 896),
65
+ vitdet_num_global=8,
66
+ ),
67
+ # RADIO
68
+ "radio_v2.1": RadioResource(
69
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.1_bf16.pth.tar?download=true",
70
+ patch_size=16,
71
+ max_resolution=2048,
72
+ preferred_resolution=Resolution(432, 432),
73
+ vitdet_num_windowed=5,
74
+ ),
75
+ "radio_v2": RadioResource(
76
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.pth.tar?download=true",
77
+ patch_size=16,
78
+ max_resolution=2048,
79
+ preferred_resolution=Resolution(432, 432),
80
+ vitdet_num_windowed=5,
81
+ ),
82
+ "radio_v1": RadioResource(
83
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v1.pth.tar?download=true",
84
+ patch_size=14,
85
+ max_resolution=1050,
86
+ preferred_resolution=Resolution(378, 378),
87
+ ),
88
+ # E-RADIO
89
+ "e-radio_v2": RadioResource(
90
+ "https://huggingface.co/nvidia/RADIO/resolve/main/eradio_v2.pth.tar?download=true",
91
+ patch_size=16,
92
+ max_resolution=2048,
93
+ preferred_resolution=Resolution(512, 512),
94
+ ),
95
+ # C-RADIO
96
+ "c-radio_v2.5-g": RadioResource(
97
+ "https://huggingface.co/nvidia/C-RADIOv2-g/resolve/main/c-radio_v2-g_half.pth.tar",
98
+ patch_size=16,
99
+ max_resolution=2048,
100
+ preferred_resolution=(768, 768),
101
+ vitdet_num_global=8,
102
+ ),
103
+ "c-radio_v3-l": RadioResource(
104
+ # NOTE: Currently, this model cannot be loaded via TorchHub. Instead, use the transformers API at https://huggingface.co/nvidia/C-RADIOv3-L
105
+ # and accept the license terms.
106
+ "https://huggingface.co/nvidia/C-RADIOv3-L/resolve/main/c-radio-v3_l_half.pth.tar?download=true",
107
+ patch_size=16,
108
+ max_resolution=2048,
109
+ preferred_resolution=Resolution(512, 512),
110
+ ),
111
+ }
112
+
113
+ DEFAULT_VERSION = "radio_v2.5-h"
114
+
115
+
116
+ class RADIOConfig(PretrainedConfig):
117
+ """Pretrained Hugging Face configuration for RADIO models."""
118
+
119
+ def __init__(
120
+ self,
121
+ args: Optional[dict] = None,
122
+ version: Optional[str] = DEFAULT_VERSION,
123
+ patch_size: Optional[int] = None,
124
+ max_resolution: Optional[int] = None,
125
+ preferred_resolution: Optional[Resolution] = None,
126
+ adaptor_names: Union[str, List[str]] = None,
127
+ adaptor_configs: Dict[str, Dict[str, int]] = None,
128
+ vitdet_window_size: Optional[int] = None,
129
+ feature_normalizer_config: Optional[dict] = None,
130
+ inter_feature_normalizer_config: Optional[dict] = None,
131
+ **kwargs,
132
+ ):
133
+ self.args = args
134
+ for field in ["dtype", "amp_dtype"]:
135
+ if self.args is not None and field in self.args:
136
+ # Convert to a string in order to make it serializable.
137
+ # For example for torch.float32 we will store "float32",
138
+ # for "bfloat16" we will store "bfloat16".
139
+ self.args[field] = str(args[field]).split(".")[-1]
140
+ self.version = version
141
+ resource = RESOURCE_MAP[version]
142
+ self.patch_size = patch_size or resource.patch_size
143
+ self.max_resolution = max_resolution or resource.max_resolution
144
+ self.preferred_resolution = (
145
+ preferred_resolution or resource.preferred_resolution
146
+ )
147
+ self.adaptor_names = adaptor_names
148
+ self.adaptor_configs = adaptor_configs
149
+ self.vitdet_window_size = vitdet_window_size
150
+ self.feature_normalizer_config = feature_normalizer_config
151
+ self.inter_feature_normalizer_config = inter_feature_normalizer_config
152
+ super().__init__(**kwargs)
evs.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from typing import Tuple
3
+
4
+ class EfficientVideoSampling:
5
+ @staticmethod
6
+ def compute_retention_mask(
7
+ *,
8
+ video_embeds: torch.FloatTensor,
9
+ thw: torch.LongTensor,
10
+ spatial_merge_size: int,
11
+ q: float,
12
+ ):
13
+ """
14
+ Computes the retention mask for video embeddings based on the grid dimensions.
15
+
16
+ Args:
17
+ video_embeds (`torch.FloatTensor` of shape `(T * H * W, hidden_size)`):
18
+ The video embeddings to compute the retention mask for.
19
+ thw (`torch.LongTensor` of shape `(3)`):
20
+ The temporal, height and width of feature shape of each video in LLM.
21
+ spatial_merge_size (`int`): The spatial merge size of the video embeddings.
22
+ If embeddings will be downsampled *later*, this should be the downsampling factor.
23
+ q: (`float`): Pruning rate factor, indicating number of tokens to prune (remove)
24
+
25
+ Returns:
26
+ `torch.Tensor`: The retention mask for the video embeddings (T * H * W).
27
+ 1 for tokens to keep, 0 for tokens to prune.
28
+ """
29
+ T, H, W = thw
30
+
31
+ # video_embeds = einops.rearrange(
32
+ # video_embeds,
33
+ # "(T H W) C -> T H W C",
34
+ # T=T,
35
+ # H=H // spatial_merge_size,
36
+ # W=W // spatial_merge_size,
37
+ # )
38
+ # Use reshape instead of einops to avoid graph breaks
39
+ video_embeds = video_embeds.reshape(
40
+ T, H // spatial_merge_size, W // spatial_merge_size, video_embeds.size(-1)
41
+ )
42
+
43
+ # Core EVS
44
+ similarity = torch.nn.functional.cosine_similarity(
45
+ video_embeds[1:, ...], video_embeds[:-1, ...], dim=-1
46
+ )
47
+ dissimilarity = 1 - similarity
48
+
49
+ # Always ensure we include all tokens from the first frame
50
+ dissimilarity = torch.cat(
51
+ [255 * torch.ones_like(video_embeds[:1, :, :, 0]), dissimilarity], dim=0
52
+ )
53
+ dissimilarity_flat = dissimilarity.view(-1)
54
+
55
+ min_num_tokens = (H // spatial_merge_size) * (W // spatial_merge_size) # a single frame
56
+ evs_num_tokens = int(T * min_num_tokens * (1 - q))
57
+ num_tokens_to_keep = max(min_num_tokens, evs_num_tokens)
58
+
59
+ order = torch.argsort(dissimilarity_flat,
60
+ dim=-1,
61
+ descending=True,
62
+ stable=True)
63
+ topk_indices = order[:num_tokens_to_keep]
64
+
65
+ retention_mask = torch.zeros_like(dissimilarity_flat, dtype=torch.bool)
66
+ retention_mask[topk_indices] = True
67
+ retention_mask = retention_mask.reshape(dissimilarity.size())
68
+
69
+ # print(
70
+ # f"Computed retention mask of shape {retention_mask.shape=} with sparsity {retention_mask.float().mean().item():.4f} for {q=}",
71
+ # )
72
+ mask = retention_mask.view(-1) # "T H W -> (T H W)"
73
+ return mask
explainability.md ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Field | Response
2
+ :------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------
3
+ Intended Task/Domain: | Visual Question Answering
4
+ Model Type: | Transformer
5
+ Intended Users: | Individuals and businesses that need to process documents such as invoices, receipts, and manuals. Also, users who are building multi-modal agents and RAG systems.
6
+ Output: | Text
7
+ Tools used to evaluate datasets to identify synthetic data and ensure data authenticity. | We used a Gemma-3 4B-based filtering model fine-tuned on [Nemotron Content Safety Dataset v2](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0) to ensure the quality of synthetic data.
8
+ Describe how the model works: | Vision Encoder and a Nemotron 5.5H -12B Language Encoder. It processes multiple input modalities, including text, multiple images, and video. It fuses these inputs and uses its large language model backbone with a 128K context length to perform visual Q&A, summarization, and data extraction.
9
+ Name the adversely impacted groups this has been tested to deliver comparable outcomes regardless of: | Not Applicable
10
+ Technical Limitations & Mitigation: | The model has a limited maximum resolution determined by a 12-tile layout constraint, where each tile is 512x512 pixels. It also supports a limited number of input images (up to 4) and has a maximum context length of 128K tokens for combined input and output.
11
+ Verified to have met prescribed NVIDIA quality standards: | Yes
12
+ Performance Metrics: | Accuracy (Visual Question Answering), Latency, Throughput
13
+ Potential Known Risks: | The Model may produce output that is biased, toxic, or incorrect responses. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The Model may also generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text, producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.While we have taken safety and security into account and are continuously improving, outputs may still contain political content, misleading information, or unwanted bias beyond our control.
14
+ Licensing: | Governing Terms: Use of this model is governed by the [ NVIDIA Open Model License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/)
15
+
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": [
5
+ 2,
6
+ 11,
7
+ 12
8
+ ],
9
+ "pad_token_id": 0,
10
+ "transformers_version": "4.51.3"
11
+ }
hf_quant_config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "producer": {
3
+ "name": "modelopt",
4
+ "version": "0.37.0.dev5+g76fb12d47.d20250905"
5
+ },
6
+ "quantization": {
7
+ "quant_algo": "FP8",
8
+ "kv_cache_quant_algo": null,
9
+ "exclude_modules": [
10
+ "model.layers.language_model.lm_head",
11
+ "model.layers.mlp1*",
12
+ "model.layers.*.conv1d*",
13
+ "model.layers.vision_model*",
14
+ "lm_head"
15
+ ]
16
+ }
17
+ }
image_processing.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Union, Any, Dict
2
+
3
+ from PIL import Image
4
+ import torch
5
+ from transformers.image_processing_base import BatchFeature
6
+ from transformers.image_processing_utils_fast import BaseImageProcessorFast, divide_to_patches
7
+ from transformers.image_utils import (make_list_of_images, get_image_size,
8
+ get_image_type, ImageInput, ImageType, ChannelDimension)
9
+ from transformers.utils import TensorType
10
+ import torchvision.transforms as T
11
+
12
+
13
+
14
+ class NemotronNanoVLV2ImageProcessor(BaseImageProcessorFast):
15
+ model_input_names = ["pixel_values"]
16
+
17
+ def __init__(self, image_size=512, max_num_tiles=12, use_thumbnail=True, norm_mean=None, norm_std=None, do_rescale=True, patch_size=16, downsample_ratio=0.5, **kwargs):
18
+ super().__init__(**kwargs)
19
+ self.image_size = image_size
20
+ self.max_num_tiles = max_num_tiles
21
+ self.use_thumbnail = use_thumbnail
22
+ self.norm_mean = norm_mean
23
+ self.norm_std = norm_std
24
+ self.do_rescale = do_rescale
25
+ self.num_image_token = int((image_size // patch_size) ** 2 * (downsample_ratio ** 2))
26
+
27
+ def _process_image(
28
+ self,
29
+ image: ImageInput,
30
+ **kwargs,
31
+ ) -> torch.Tensor:
32
+ image_type = get_image_type(image)
33
+ if image_type == ImageType.PIL:
34
+ if image.mode != 'RGB':
35
+ image = image.convert('RGB')
36
+ image = T.ToTensor()(image)
37
+ return image
38
+
39
+ def _preprocess(
40
+ self,
41
+ images: List[torch.Tensor],
42
+ image_size: int = None,
43
+ max_num_tiles: int = None,
44
+ use_thumbnail: bool = None,
45
+ do_rescale: bool = None,
46
+ return_tensors: Optional[Union[str, TensorType]] = None,
47
+ **kwargs,
48
+ ) -> List[torch.Tensor]:
49
+ image_size = image_size if image_size is not None else self.image_size
50
+ max_num_tiles = max_num_tiles if max_num_tiles is not None else self.max_num_tiles
51
+ use_thumbnail = use_thumbnail if use_thumbnail is not None else self.use_thumbnail
52
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
53
+
54
+ images = make_list_of_images(images)
55
+
56
+ all_patches = []
57
+ num_patches = []
58
+ for image in images:
59
+ patches = dynamic_preprocess(image, image_size, max_num_tiles, use_thumbnail)
60
+ all_patches.extend(patches)
61
+ num_patches.append(len(patches))
62
+
63
+ pixel_values = torch.stack(all_patches, dim=0)
64
+ norm_mean = torch.Tensor(self.norm_mean).view(1, 3, 1, 1)
65
+ norm_std = torch.Tensor(self.norm_std).view(1, 3, 1, 1)
66
+ pixel_values = (pixel_values - norm_mean) / norm_std
67
+ return BatchFeature(data={"pixel_values": pixel_values, "num_patches": num_patches}, tensor_type=return_tensors)
68
+
69
+
70
+ def get_internvl_target_ratios(
71
+ min_num: int,
72
+ max_num: int,
73
+ ) -> list[tuple[int, int]]:
74
+ target_ratios = {(i, j)
75
+ for n in range(min_num, max_num + 1)
76
+ for i in range(1, n + 1)
77
+ for j in range(1, n + 1) if min_num <= i * j <= max_num}
78
+ return sorted(target_ratios, key=lambda x: x[0] * x[1])
79
+
80
+
81
+ # From https://github.com/OpenGVLab/InternVL/blob/c62fa4f7c850165d7386bdc48ac6bc5a6fab0864/internvl_chat/internvl/train/dataset.py#L685
82
+ # Copyright (c) 2023 OpenGVLab.
83
+ def find_closest_aspect_ratio(
84
+ aspect_ratio: float,
85
+ target_ratios: list[tuple[int, int]],
86
+ width: int,
87
+ height: int,
88
+ image_size: int,
89
+ ) -> tuple[int, int]:
90
+ best_ratio_diff = float("inf")
91
+ best_ratio = (1, 1)
92
+ area = width * height
93
+ for ratio in target_ratios:
94
+ target_aspect_ratio = ratio[0] / ratio[1]
95
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
96
+ if ratio_diff < best_ratio_diff:
97
+ best_ratio_diff = ratio_diff
98
+ best_ratio = ratio
99
+ elif ratio_diff == best_ratio_diff:
100
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
101
+ best_ratio = ratio
102
+ return best_ratio
103
+
104
+
105
+ def calculate_targets(
106
+ orig_width: int,
107
+ orig_height: int,
108
+ target_ratios: list[tuple[int, int]],
109
+ image_size: int,
110
+ ) -> tuple[int, int, int]:
111
+ aspect_ratio = orig_width / orig_height
112
+
113
+ # find the closest aspect ratio to the target
114
+ target_aspect_ratio = find_closest_aspect_ratio(
115
+ aspect_ratio,
116
+ target_ratios,
117
+ width=orig_width,
118
+ height=orig_height,
119
+ image_size=image_size,
120
+ )
121
+
122
+ # calculate the target width and height
123
+ target_width = image_size * target_aspect_ratio[0]
124
+ target_height = image_size * target_aspect_ratio[1]
125
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
126
+
127
+ return blocks, target_width, target_height
128
+
129
+
130
+ def dynamic_preprocess(image, image_size=512, max_num_tiles=12, use_thumbnail=True):
131
+ orig_height, orig_width = get_image_size(image, channel_dim=ChannelDimension.FIRST)
132
+ target_ratios = get_internvl_target_ratios(1, max_num_tiles)
133
+
134
+ blocks, target_width, target_height = calculate_targets(
135
+ orig_width,
136
+ orig_height,
137
+ target_ratios,
138
+ image_size
139
+ )
140
+ # resize the image
141
+ resized_img = T.Resize((target_height, target_width), interpolation=T.InterpolationMode.BICUBIC)(image)
142
+ patches = divide_to_patches(resized_img, image_size)
143
+ assert len(patches) == blocks
144
+ if use_thumbnail and len(patches) != 1:
145
+ thumbnail_img = T.Resize((image_size, image_size), interpolation=T.InterpolationMode.BICUBIC)(image)
146
+ patches.append(thumbnail_img)
147
+
148
+ return patches
llama_nemotron_toolcall_parser_no_streaming.py ADDED
@@ -0,0 +1,470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ import ast
4
+ import json
5
+ import re
6
+ from collections.abc import Sequence
7
+ from typing import Union
8
+
9
+ import partial_json_parser
10
+ from partial_json_parser.core.options import Allow
11
+
12
+ from vllm.entrypoints.openai.protocol import (
13
+ ChatCompletionRequest,
14
+ DeltaFunctionCall, DeltaMessage,
15
+ DeltaToolCall,
16
+ ExtractedToolCallInformation,
17
+ FunctionCall,
18
+ ToolCall,
19
+ )
20
+ from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import (
21
+ ToolParser,
22
+ ToolParserManager,
23
+ )
24
+ from vllm.logger import init_logger
25
+ from vllm.transformers_utils.tokenizer import AnyTokenizer
26
+ from vllm.utils import random_uuid
27
+
28
+ logger = init_logger(__name__)
29
+
30
+
31
+ @ToolParserManager.register_module("llama_nemotron_xml")
32
+ class LlamaNemotronXMLToolParser(ToolParser):
33
+
34
+ def __init__(self, tokenizer: AnyTokenizer):
35
+ super().__init__(tokenizer)
36
+
37
+ self.current_tool_name_sent: bool = False
38
+ self.prev_tool_call_arr: list[dict] = []
39
+ self.current_tool_id: int = -1 # Potentially for streaming
40
+ self.streamed_args_for_tool: list[str] = [] # Potentially for streaming
41
+
42
+ self.tool_call_start_token: str = "<tool_call>"
43
+ self.tool_call_end_token: str = "</tool_call>"
44
+
45
+ # Regex to find full <tool_call>...</tool_call> blocks and capture their content
46
+ self.tool_call_block_regex = re.compile(r"<tool_call>(.*?)</tool_call>", re.DOTALL)
47
+ # Regex to find <tool>...</tool> within a tool_call block content
48
+ self.name_regex = re.compile(r"<tool>(.*?)</tool>", re.DOTALL)
49
+ # Regex to find <key>value</key> pairs within the tool_call block content (excluding <tool> tags)
50
+ self.param_regex = re.compile(r"<([^/>\s]+)>(.*?)</\1>", re.DOTALL)
51
+
52
+ def extract_tool_calls(
53
+ self,
54
+ model_output: str,
55
+ request: ChatCompletionRequest,
56
+ ) -> ExtractedToolCallInformation:
57
+
58
+ tool_call_start_index = model_output.find(self.tool_call_start_token)
59
+
60
+ if tool_call_start_index == -1:
61
+ return ExtractedToolCallInformation(
62
+ tools_called=False,
63
+ tool_calls=[],
64
+ content=model_output,
65
+ )
66
+
67
+ content = model_output[:tool_call_start_index].strip()
68
+ tool_calls_str_content = model_output[tool_call_start_index:]
69
+
70
+ parsed_tool_calls = []
71
+
72
+ try:
73
+ # Find all occurrences of <tool_call>...</tool_call>
74
+ xml_tool_call_contents = self.tool_call_block_regex.findall(tool_calls_str_content)
75
+
76
+ for tool_content_str in xml_tool_call_contents:
77
+ name_match = self.name_regex.search(tool_content_str)
78
+ if not name_match:
79
+ logger.warning(f"Could not find tool name in XML block: {tool_content_str}")
80
+ continue
81
+ tool_name = name_match.group(1).strip()
82
+
83
+ parsed_arguments = {}
84
+
85
+ # Find all parameter tags in the tool_call content, excluding the <tool> tag
86
+ param_matches = self.param_regex.finditer(tool_content_str)
87
+
88
+ for match in param_matches:
89
+ param_name = match.group(1).strip()
90
+ param_value_str = match.group(2).strip()
91
+
92
+ # Skip the <tool> tag since it's not a parameter
93
+ if param_name == "tool":
94
+ continue
95
+
96
+ target_type = None
97
+ # Try to get type from request.tools schema
98
+ if request.tools:
99
+ for tool_def in request.tools:
100
+ if tool_def.function.name == tool_name:
101
+ if tool_def.function.parameters and \
102
+ isinstance(tool_def.function.parameters, dict) and \
103
+ "properties" in tool_def.function.parameters and \
104
+ isinstance(tool_def.function.parameters["properties"], dict) and \
105
+ param_name in tool_def.function.parameters["properties"] and \
106
+ isinstance(tool_def.function.parameters["properties"][param_name], dict):
107
+ target_type = tool_def.function.parameters["properties"][param_name].get("type")
108
+ break
109
+
110
+ typed_param_value = param_value_str # Default to string
111
+ if target_type:
112
+ try:
113
+ if target_type == "string":
114
+ typed_param_value = param_value_str
115
+ elif target_type == "integer":
116
+ typed_param_value = int(param_value_str)
117
+ elif target_type == "number":
118
+ typed_param_value = float(param_value_str)
119
+ elif target_type == "boolean":
120
+ typed_param_value = param_value_str.lower() == 'true'
121
+ elif target_type in ["object", "array"]:
122
+ try:
123
+ typed_param_value = json.loads(param_value_str)
124
+ except json.JSONDecodeError:
125
+ # Fallback for non-strict JSON like Python dict/list string
126
+ typed_param_value = ast.literal_eval(param_value_str)
127
+ else: # Unknown type, keep as string
128
+ typed_param_value = param_value_str
129
+ except (ValueError, SyntaxError, json.JSONDecodeError) as e:
130
+ logger.warning(
131
+ f"Could not convert param '{param_name}' with value '{param_value_str}' "
132
+ f"to type '{target_type}'. Error: {e}. Using string value."
133
+ )
134
+ typed_param_value = param_value_str
135
+ else: # No schema type, try ast.literal_eval
136
+ try:
137
+ # For values like "true", "123", "['a', 'b']"
138
+ # ast.literal_eval('some_string_without_quotes') will raise SyntaxError
139
+ if (param_value_str.startswith("'") and param_value_str.endswith("'")) or \
140
+ (param_value_str.startswith('"') and param_value_str.endswith('"')) or \
141
+ (param_value_str.startswith('[') and param_value_str.endswith(']')) or \
142
+ (param_value_str.startswith('{') and param_value_str.endswith('}')) or \
143
+ param_value_str.lower() in ['true', 'false', 'none'] or \
144
+ param_value_str.replace('.', '', 1).isdigit() or \
145
+ (param_value_str.startswith('-') and param_value_str[1:].replace('.', '', 1).isdigit()):
146
+ typed_param_value = ast.literal_eval(param_value_str)
147
+ else: # It's likely a plain string not meant for ast.literal_eval
148
+ typed_param_value = param_value_str
149
+ except (ValueError, SyntaxError):
150
+ typed_param_value = param_value_str # Keep as string if ast.literal_eval fails
151
+
152
+ parsed_arguments[param_name] = typed_param_value
153
+
154
+ parsed_tool_calls.append(ToolCall(
155
+ id=f"call_{random_uuid()}",
156
+ type="function",
157
+ function=FunctionCall(
158
+ name=tool_name,
159
+ arguments=json.dumps(parsed_arguments, ensure_ascii=False),
160
+ ),
161
+ ))
162
+
163
+ return ExtractedToolCallInformation(
164
+ tools_called=len(parsed_tool_calls) > 0,
165
+ tool_calls=parsed_tool_calls,
166
+ content=content if content else None,
167
+ )
168
+
169
+ except Exception:
170
+ logger.exception(f"Error in extracting XML tool call from response. Response: {model_output}")
171
+ # Fallback to original model output if parsing fails catastrophically
172
+ return ExtractedToolCallInformation(
173
+ tools_called=False,
174
+ tool_calls=[],
175
+ content=model_output,
176
+ )
177
+
178
+ def extract_tool_calls_streaming(
179
+ self,
180
+ previous_text: str,
181
+ current_text: str,
182
+ delta_text: str,
183
+ previous_token_ids: Sequence[int],
184
+ current_token_ids: Sequence[int],
185
+ delta_token_ids: Sequence[int],
186
+ request: ChatCompletionRequest,
187
+ ) -> Union[DeltaMessage, None]:
188
+
189
+ raise NotImplementedError("Tool calling is not supported in streaming mode!")
190
+
191
+
192
+ @ToolParserManager.register_module("llama_nemotron_json")
193
+ class LlamaNemotronJSONToolParser(ToolParser):
194
+
195
+ def __init__(self, tokenizer: AnyTokenizer):
196
+ super().__init__(tokenizer)
197
+
198
+ self.current_tool_name_sent: bool = False
199
+ self.prev_tool_call_arr: list[dict] = []
200
+ self.current_tool_id: int = -1
201
+ self.streamed_args_for_tool: list[str] = []
202
+
203
+ self.tool_call_start_token: str = "<TOOLCALL>"
204
+ self.tool_call_end_token: str = "</TOOLCALL>"
205
+
206
+ self.tool_call_regex = re.compile(r"<TOOLCALL>(.*?)</TOOLCALL>", re.DOTALL)
207
+
208
+ def extract_tool_calls(
209
+ self,
210
+ model_output: str,
211
+ request: ChatCompletionRequest,
212
+ ) -> ExtractedToolCallInformation:
213
+
214
+ if self.tool_call_start_token not in model_output:
215
+ return ExtractedToolCallInformation(
216
+ tools_called=False,
217
+ tool_calls=[],
218
+ content=model_output,
219
+ )
220
+
221
+ else:
222
+
223
+ try:
224
+ str_tool_calls = self.tool_call_regex.findall(model_output)[0].strip()
225
+ if not str_tool_calls.startswith("["):
226
+ str_tool_calls = "[" + str_tool_calls
227
+ if not str_tool_calls.endswith("]"):
228
+ str_tool_calls = str_tool_calls + "]"
229
+ json_tool_calls = json.loads(str_tool_calls)
230
+ tool_calls = []
231
+ for tool_call in json_tool_calls:
232
+ try:
233
+ tool_calls.append(ToolCall(
234
+ type="function",
235
+ function=FunctionCall(
236
+ name=tool_call["name"],
237
+ arguments=json.dumps(tool_call["arguments"], ensure_ascii=False) \
238
+ if isinstance(tool_call["arguments"], dict) else tool_call["arguments"],
239
+ ),
240
+ ))
241
+ except:
242
+ continue
243
+
244
+ content = model_output[:model_output.rfind(self.tool_call_start_token)]
245
+
246
+ return ExtractedToolCallInformation(
247
+ tools_called=True,
248
+ tool_calls=tool_calls,
249
+ content=content if content else None,
250
+ )
251
+
252
+ except Exception:
253
+ logger.exception(f"Error in extracting tool call from response. Response: {model_output}")
254
+ return ExtractedToolCallInformation(
255
+ tools_called=False,
256
+ tool_calls=[],
257
+ content=model_output,
258
+ )
259
+
260
+ def extract_tool_calls_streaming(
261
+ self,
262
+ previous_text: str,
263
+ current_text: str,
264
+ delta_text: str,
265
+ previous_token_ids: Sequence[int],
266
+ current_token_ids: Sequence[int],
267
+ delta_token_ids: Sequence[int],
268
+ request: ChatCompletionRequest,
269
+ ) -> Union[DeltaMessage, None]:
270
+
271
+ raise NotImplementedError("Tool calling is not supported in streaming mode!")
272
+
273
+
274
+ @ToolParserManager.register_module("llama_nemotron_pythonic")
275
+ class LlamaNemotronPythonicToolParser(ToolParser):
276
+
277
+ def __init__(self, tokenizer: AnyTokenizer):
278
+ super().__init__(tokenizer)
279
+
280
+ self.current_tool_name_sent: bool = False
281
+ self.prev_tool_call_arr: list[dict] = []
282
+ self.current_tool_id: int = -1
283
+ self.streamed_args_for_tool: list[str] = []
284
+
285
+ self.tool_call_start_token: str = "<TOOLCALL>"
286
+ self.tool_call_end_token: str = "</TOOLCALL>"
287
+
288
+ self.tool_call_regex = re.compile(r"<TOOLCALL>(.*?)</TOOLCALL>", re.DOTALL)
289
+ # Regex to parse pythonic function calls: function_name(arg1="value1", arg2=123, arg3=True)
290
+ self.function_call_regex = re.compile(r"(\w+)\((.*?)\)$", re.DOTALL)
291
+
292
+ def parse_function_arguments(self, args_str: str) -> dict:
293
+ """Parse pythonic function arguments string into a dictionary"""
294
+ if not args_str.strip():
295
+ return {}
296
+
297
+ # Use ast.parse to safely parse the function call arguments
298
+ # We'll construct a temporary function call and parse it
299
+ try:
300
+ # Create a dummy function call to parse arguments
301
+ dummy_code = f"dummy_func({args_str})"
302
+ parsed = ast.parse(dummy_code, mode='eval')
303
+
304
+ # Extract arguments from the AST
305
+ call_node = parsed.body
306
+ if not isinstance(call_node, ast.Call):
307
+ return {}
308
+
309
+ arguments = {}
310
+
311
+ # Handle keyword arguments
312
+ for keyword in call_node.keywords:
313
+ if keyword.arg is None: # **kwargs
314
+ continue
315
+
316
+ # Convert AST value to Python value
317
+ try:
318
+ value = ast.literal_eval(keyword.value)
319
+ arguments[keyword.arg] = value
320
+ except (ValueError, TypeError):
321
+ # If literal_eval fails, try to get the raw value
322
+ if isinstance(keyword.value, ast.Name):
323
+ arguments[keyword.arg] = keyword.value.id
324
+ elif isinstance(keyword.value, ast.Constant):
325
+ arguments[keyword.arg] = keyword.value.value
326
+ else:
327
+ # Fallback: convert to string
328
+ arguments[keyword.arg] = ast.unparse(keyword.value)
329
+
330
+ # Handle positional arguments (less common in tool calls but supported)
331
+ for i, arg in enumerate(call_node.args):
332
+ try:
333
+ value = ast.literal_eval(arg)
334
+ arguments[f"arg_{i}"] = value
335
+ except (ValueError, TypeError):
336
+ if isinstance(arg, ast.Name):
337
+ arguments[f"arg_{i}"] = arg.id
338
+ elif isinstance(arg, ast.Constant):
339
+ arguments[f"arg_{i}"] = arg.value
340
+ else:
341
+ arguments[f"arg_{i}"] = ast.unparse(arg)
342
+
343
+ return arguments
344
+
345
+ except (SyntaxError, ValueError) as e:
346
+ logger.warning(f"Failed to parse function arguments '{args_str}': {e}")
347
+ return {}
348
+
349
+ def extract_tool_calls(
350
+ self,
351
+ model_output: str,
352
+ request: ChatCompletionRequest,
353
+ ) -> ExtractedToolCallInformation:
354
+
355
+ if self.tool_call_start_token not in model_output:
356
+ return ExtractedToolCallInformation(
357
+ tools_called=False,
358
+ tool_calls=[],
359
+ content=model_output,
360
+ )
361
+
362
+ tool_call_start_index = model_output.find(self.tool_call_start_token)
363
+ content = model_output[:tool_call_start_index].strip()
364
+
365
+ try:
366
+ # Extract content between <TOOLCALL> tags
367
+ tool_call_matches = self.tool_call_regex.findall(model_output)
368
+ if not tool_call_matches:
369
+ return ExtractedToolCallInformation(
370
+ tools_called=False,
371
+ tool_calls=[],
372
+ content=model_output,
373
+ )
374
+
375
+ tool_calls_content = tool_call_matches[0].strip()
376
+
377
+ # Split by lines to get individual function calls
378
+ function_lines = [line.strip() for line in tool_calls_content.split('\n') if line.strip()]
379
+
380
+ parsed_tool_calls = []
381
+
382
+ for func_line in function_lines:
383
+ # Parse each function call
384
+ match = self.function_call_regex.match(func_line)
385
+ if not match:
386
+ logger.warning(f"Could not parse function call: {func_line}")
387
+ continue
388
+
389
+ function_name = match.group(1)
390
+ args_str = match.group(2)
391
+
392
+ # Parse arguments
393
+ parsed_arguments = self.parse_function_arguments(args_str)
394
+
395
+ # Apply type conversion based on schema if available
396
+ if request.tools:
397
+ for tool_def in request.tools:
398
+ if tool_def.function.name == function_name:
399
+ schema_properties = {}
400
+ if (tool_def.function.parameters and
401
+ isinstance(tool_def.function.parameters, dict) and
402
+ "properties" in tool_def.function.parameters and
403
+ isinstance(tool_def.function.parameters["properties"], dict)):
404
+ schema_properties = tool_def.function.parameters["properties"]
405
+
406
+ # Convert arguments based on schema types
407
+ for arg_name, arg_value in parsed_arguments.items():
408
+ if arg_name in schema_properties:
409
+ param_info = schema_properties[arg_name]
410
+ target_type = param_info.get("type")
411
+
412
+ try:
413
+ if target_type == "string" and not isinstance(arg_value, str):
414
+ parsed_arguments[arg_name] = str(arg_value)
415
+ elif target_type == "integer" and not isinstance(arg_value, int):
416
+ parsed_arguments[arg_name] = int(arg_value)
417
+ elif target_type == "number" and not isinstance(arg_value, (int, float)):
418
+ parsed_arguments[arg_name] = float(arg_value)
419
+ elif target_type == "boolean" and not isinstance(arg_value, bool):
420
+ if isinstance(arg_value, str):
421
+ parsed_arguments[arg_name] = arg_value.lower() in ['true', '1', 'yes']
422
+ else:
423
+ parsed_arguments[arg_name] = bool(arg_value)
424
+ elif target_type in ["object", "array"]:
425
+ if isinstance(arg_value, str):
426
+ try:
427
+ parsed_arguments[arg_name] = json.loads(arg_value)
428
+ except json.JSONDecodeError:
429
+ # Keep as string if JSON parsing fails
430
+ pass
431
+ except (ValueError, TypeError) as e:
432
+ logger.warning(f"Type conversion failed for {arg_name}: {e}")
433
+ # Keep original value if conversion fails
434
+ break
435
+
436
+ parsed_tool_calls.append(ToolCall(
437
+ id=f"call_{random_uuid()}",
438
+ type="function",
439
+ function=FunctionCall(
440
+ name=function_name,
441
+ arguments=json.dumps(parsed_arguments, ensure_ascii=False),
442
+ ),
443
+ ))
444
+
445
+ return ExtractedToolCallInformation(
446
+ tools_called=len(parsed_tool_calls) > 0,
447
+ tool_calls=parsed_tool_calls,
448
+ content=content if content else None,
449
+ )
450
+
451
+ except Exception:
452
+ logger.exception(f"Error in extracting pythonic tool call from response. Response: {model_output}")
453
+ return ExtractedToolCallInformation(
454
+ tools_called=False,
455
+ tool_calls=[],
456
+ content=model_output,
457
+ )
458
+
459
+ def extract_tool_calls_streaming(
460
+ self,
461
+ previous_text: str,
462
+ current_text: str,
463
+ delta_text: str,
464
+ previous_token_ids: Sequence[int],
465
+ current_token_ids: Sequence[int],
466
+ delta_token_ids: Sequence[int],
467
+ request: ChatCompletionRequest,
468
+ ) -> Union[DeltaMessage, None]:
469
+
470
+ raise NotImplementedError("Tool calling is not supported in streaming mode!")
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae4461eba110cf3251a45c60a3a71e27c587f7df8d2bfccecd8c4aeb63298914
3
+ size 4999458416
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20552cb6e7fb2d94e7976f2b60aaba540695498cd3582aba31a82569ba3a8b0f
3
+ size 4990786200
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc5884919e5d9af689f2908cd97963f8f8ddbbbfbe05ec0796fcd344210d3bdd
3
+ size 4988690304
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e2c02d5ea330834358c3031121cad2d3a9b5071fb589d8b85b88e06cd9658a1
3
+ size 419430616
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import warnings
3
+ from typing import List, Optional, Tuple, Union
4
+
5
+ import torch
6
+ import transformers
7
+ from torch import nn
8
+ from torch.nn import CrossEntropyLoss
9
+ from transformers import AutoModel, AutoModelForCausalLM, GenerationConfig
10
+ from transformers.modeling_outputs import CausalLMOutputWithPast
11
+ from transformers.modeling_utils import PreTrainedModel
12
+ from transformers.utils import logging
13
+
14
+ from .configuration import NemotronH_Nano_VL_V2_Config
15
+ from .modeling_nemotron_h import NemotronHForCausalLM
16
+ from .evs import EfficientVideoSampling
17
+
18
+ logger = logging.get_logger(__name__)
19
+
20
+
21
+ """
22
+ The following code is adapted from the
23
+ https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B/blob/main/modeling_internvl_chat.py repository
24
+
25
+ The chat function is adapted to handle NVLM 1-D tile-tagging design for dynamic high-resolution images.
26
+ """
27
+
28
+
29
+ class SquaredReLU(nn.Module):
30
+ def forward(self, x):
31
+ return torch.pow(torch.nn.functional.relu(x), 2)
32
+
33
+
34
+ class RMSNorm(nn.Module):
35
+ def __init__(self, hidden_size, eps=1e-5):
36
+ super().__init__()
37
+ self.weight = nn.Parameter(torch.ones(hidden_size))
38
+ self.eps = eps
39
+
40
+ def forward(self, hidden_states):
41
+ input_dtype = hidden_states.dtype
42
+ hidden_states = hidden_states.to(torch.float32)
43
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
44
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
45
+ return (self.weight.to(torch.float32) * hidden_states).to(input_dtype)
46
+
47
+
48
+ def version_cmp(v1, v2, op='eq'):
49
+ import operator
50
+
51
+ from packaging import version
52
+ op_func = getattr(operator, op)
53
+ return op_func(version.parse(v1), version.parse(v2))
54
+
55
+
56
+ class NemotronH_Nano_VL_V2(PreTrainedModel):
57
+ config_class = NemotronH_Nano_VL_V2_Config
58
+ main_input_name = 'pixel_values'
59
+ _supports_flash_attn_2 = True
60
+ _no_split_modules = ['NemotronHBlock']
61
+
62
+ def __init__(self, config: NemotronH_Nano_VL_V2_Config):
63
+ super().__init__(config)
64
+
65
+ assert version_cmp(transformers.__version__, '4.36.2', 'ge')
66
+ image_size = config.force_image_size
67
+ patch_size = config.patch_size
68
+ self.patch_size = patch_size
69
+ self.template = config.template
70
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
71
+ self.downsample_ratio = config.downsample_ratio
72
+ self.ps_version = config.ps_version
73
+ self.image_tag_type = config.image_tag_type
74
+ self.img_context_token_id = config.img_context_token_id
75
+ self.video_context_token_id = config.video_context_token_id
76
+
77
+ logger.info(f'num_image_token: {self.num_image_token}')
78
+ logger.info(f'ps_version: {self.ps_version}')
79
+
80
+ self.language_model = AutoModelForCausalLM.from_config(config.llm_config, trust_remote_code=True)
81
+ self.vision_model = AutoModel.from_config(config.vision_config, trust_remote_code=True)
82
+ self.vision_model.model._initialize_weights = self.vision_model.model._init_weights # WAR for transformers issue 38358
83
+ self.vision_model.radio_model.make_preprocessor_external()
84
+ self.vision_model = self.vision_model.to(self.language_model.config.torch_dtype)
85
+
86
+ self.drop_vision_class_token = True
87
+
88
+ # Construct the vision projection.
89
+ # Default
90
+ vit_hidden_size = config.vit_hidden_size
91
+ vision_projection_hidden_size = config.projector_hidden_size
92
+ llm_hidden_size = config.llm_config.hidden_size
93
+
94
+ self.video_pruning_rate = config.video_pruning_rate
95
+
96
+ self.mlp1 = nn.Sequential(
97
+ RMSNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, eps=1e-5),
98
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, vision_projection_hidden_size, bias=False),
99
+ SquaredReLU(),
100
+ nn.Linear(vision_projection_hidden_size, llm_hidden_size, bias=False)
101
+ )
102
+ self.mlp1 = self.mlp1.to(self.language_model.config.torch_dtype)
103
+
104
+ def forward(
105
+ self,
106
+ pixel_values: torch.FloatTensor,
107
+ input_ids: torch.LongTensor = None,
108
+ attention_mask: Optional[torch.Tensor] = None,
109
+ position_ids: Optional[torch.LongTensor] = None,
110
+ image_flags: Optional[torch.LongTensor] = None,
111
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
112
+ labels: Optional[torch.LongTensor] = None,
113
+ inputs_embeds = None,
114
+ use_cache: Optional[bool] = None,
115
+ output_attentions: Optional[bool] = None,
116
+ output_hidden_states: Optional[bool] = None,
117
+ return_dict: Optional[bool] = None,
118
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
119
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
120
+
121
+ if inputs_embeds is None:
122
+ inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
123
+
124
+ image_flags = image_flags.squeeze(-1)
125
+
126
+ B, N, C = inputs_embeds.shape
127
+ inputs_embeds = inputs_embeds.reshape(B * N, C)
128
+
129
+ input_ids = input_ids.reshape(B * N)
130
+ selected = (input_ids == self.img_context_token_id)
131
+
132
+ vit_batch_size = pixel_values.shape[0]
133
+ vit_embeds = self.extract_feature(pixel_values)
134
+
135
+ del pixel_values
136
+
137
+ if torch.distributed.get_rank() == 0:
138
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
139
+
140
+ vit_embeds = vit_embeds[image_flags == 1]
141
+ try:
142
+ inputs_embeds[selected] = inputs_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
143
+ except Exception as e:
144
+ vit_embeds = vit_embeds.reshape(-1, C)
145
+ print(f'warning: {e}, inputs_embeds[selected].shape={inputs_embeds[selected].shape}, '
146
+ f'vit_embeds.shape={vit_embeds.shape}')
147
+ n_token = selected.sum()
148
+ inputs_embeds[selected] = inputs_embeds[selected] * 0.0 + vit_embeds[:n_token]
149
+
150
+ del vit_embeds
151
+
152
+ inputs_embeds = inputs_embeds.reshape(B, N, C)
153
+
154
+ outputs = self.language_model(
155
+ inputs_embeds=inputs_embeds,
156
+ attention_mask=attention_mask,
157
+ position_ids=position_ids,
158
+ past_key_values=past_key_values,
159
+ use_cache=use_cache,
160
+ output_attentions=output_attentions,
161
+ output_hidden_states=output_hidden_states,
162
+ return_dict=return_dict,
163
+ )
164
+ logits = outputs.logits
165
+
166
+ loss = None
167
+ if labels is not None:
168
+ # Shift so that tokens < n predict n
169
+ shift_logits = logits[..., :-1, :].contiguous()
170
+ shift_labels = labels[..., 1:].contiguous()
171
+ # Flatten the tokens
172
+ loss_fct = CrossEntropyLoss()
173
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
174
+ shift_labels = shift_labels.view(-1)
175
+ # Enable model parallelism
176
+ shift_labels = shift_labels.to(shift_logits.device)
177
+ loss = loss_fct(shift_logits, shift_labels)
178
+
179
+ if not return_dict:
180
+ output = (logits,) + outputs[1:]
181
+ return (loss,) + output if loss is not None else output
182
+
183
+ return CausalLMOutputWithPast(
184
+ loss=loss,
185
+ logits=logits,
186
+ past_key_values=outputs.past_key_values,
187
+ hidden_states=outputs.hidden_states,
188
+ attentions=outputs.attentions,
189
+ )
190
+
191
+ def pixel_shuffle(self, x, scale_factor=0.5):
192
+ n, w, h, c = x.size()
193
+ # N, W, H, C --> N, W, H * scale, C // scale
194
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
195
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
196
+ x = x.permute(0, 2, 1, 3).contiguous()
197
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
198
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
199
+ int(c / (scale_factor * scale_factor)))
200
+ if self.ps_version == 'v1':
201
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
202
+ 'which results in a transposed image.')
203
+ else:
204
+ x = x.permute(0, 2, 1, 3).contiguous()
205
+ return x
206
+
207
+ def extract_feature(self, pixel_values):
208
+ vit_embeds = self.vision_model(pixel_values).features
209
+ vit_embeds = vit_embeds.to(dtype=torch.bfloat16)
210
+ h = w = int(vit_embeds.shape[1] ** 0.5)
211
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
212
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
213
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
214
+ vit_embeds = self.mlp1(vit_embeds)
215
+ return vit_embeds
216
+
217
+ @torch.no_grad()
218
+ def generate(
219
+ self,
220
+ pixel_values: Optional[torch.FloatTensor] = None,
221
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
222
+ input_ids: Optional[torch.FloatTensor] = None,
223
+ attention_mask: Optional[torch.LongTensor] = None,
224
+ generation_config: Optional[GenerationConfig] = None,
225
+ output_hidden_states: Optional[bool] = None,
226
+ return_dict: Optional[bool] = None,
227
+ **generate_kwargs,
228
+ ) -> torch.LongTensor:
229
+ assert self.img_context_token_id is not None
230
+ if pixel_values is not None or pixel_values_videos is not None:
231
+ image_vit_embeds, video_vit_embeds = None, None
232
+ if pixel_values is not None:
233
+ pixel_values = pixel_values.to(dtype=self.vision_model.config.torch_dtype)
234
+ image_vit_embeds = self.extract_feature(pixel_values)
235
+ if pixel_values_videos is not None:
236
+ pixel_values_videos = pixel_values_videos.to(dtype=self.vision_model.config.torch_dtype)
237
+ video_vit_embeds = self.extract_feature(pixel_values_videos)
238
+ inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
239
+ B, N, C = inputs_embeds.shape
240
+ inputs_embeds = inputs_embeds.reshape(B * N, C)
241
+ input_ids_copy = input_ids.reshape(B * N)
242
+ if image_vit_embeds is not None:
243
+ image_mask = (input_ids_copy == self.img_context_token_id)
244
+ assert image_mask.sum() != 0
245
+ inputs_embeds[image_mask] = image_vit_embeds.reshape(-1, C).to(inputs_embeds.device, inputs_embeds.dtype)
246
+ if video_vit_embeds is not None:
247
+ if B > 1:
248
+ raise NotImplementedError("Video is not supported for batch size > 1")
249
+ video_mask = (input_ids_copy == self.video_context_token_id)
250
+ assert video_mask.sum() != 0
251
+ inputs_embeds[video_mask] = video_vit_embeds.reshape(-1, C).to(inputs_embeds.device, inputs_embeds.dtype)
252
+ if video_vit_embeds is not None and self.video_pruning_rate > 0: # EVS
253
+ h = w = int(video_vit_embeds.shape[1] ** 0.5) # assumption here (and everywhere else) is that shape is square
254
+ evs_mask = EfficientVideoSampling.compute_retention_mask(
255
+ video_embeds=video_vit_embeds,
256
+ thw=(video_vit_embeds.shape[0], h, w),
257
+ spatial_merge_size=1, # we already work on vision embeddings, so no downsampling to follow
258
+ q=self.video_pruning_rate,
259
+ )
260
+ print(f"pruning rate: {self.video_pruning_rate}, EVS mask: {evs_mask.sum().item()} tokens retained out of {evs_mask.numel()} total video tokens ({evs_mask.sum().item() / evs_mask.numel() * 100:.2f}%)")
261
+
262
+ retention_mask = torch.ones_like(input_ids_copy, dtype=torch.bool)
263
+ retention_mask[video_mask] = evs_mask.view(-1)
264
+ inputs_embeds = inputs_embeds[retention_mask].unsqueeze(0) # adding batch=1
265
+ if attention_mask is not None:
266
+ attention_mask = attention_mask[:, retention_mask].contiguous()
267
+ if input_ids is not None:
268
+ input_ids = input_ids[:, retention_mask].contiguous()
269
+ else:
270
+ inputs_embeds = inputs_embeds.reshape(B, N, C)
271
+ else:
272
+ inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
273
+ # print(f"DEBUG: input_ids shape: {input_ids.shape}")
274
+ # print(f"DEBUG: input text: {self._tokenizer.decode(input_ids[0])}")
275
+ outputs = self.language_model.generate(
276
+ input_ids=input_ids,
277
+ inputs_embeds=inputs_embeds,
278
+ attention_mask=attention_mask,
279
+ generation_config=generation_config,
280
+ output_hidden_states=output_hidden_states,
281
+ use_cache=True,
282
+ # return_dict_in_generate=True,
283
+ # output_scores=True,
284
+ **generate_kwargs,
285
+ )
286
+
287
+ return outputs
modeling_nemotron_h.py ADDED
@@ -0,0 +1,1636 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 HuggingFace Inc. team.
3
+ # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch NemotronH model."""
17
+
18
+ import math
19
+ from dataclasses import dataclass
20
+ from typing import Any, Dict, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+ from torch.nn import CrossEntropyLoss
26
+
27
+ from transformers.activations import ACT2FN
28
+ from transformers.cache_utils import DynamicCache # we need __iter__ and __len__ of pkv
29
+ from transformers.generation import GenerationMixin
30
+ from transformers.modeling_attn_mask_utils import (
31
+ AttentionMaskConverter,
32
+ )
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (
35
+ ModelOutput,
36
+ add_code_sample_docstrings,
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ logging,
40
+ )
41
+ from transformers.utils.import_utils import (
42
+ is_causal_conv1d_available,
43
+ is_flash_attn_2_available,
44
+ is_flash_attn_greater_or_equal_2_10,
45
+ is_mamba_2_ssm_available,
46
+ )
47
+ from .configuration_nemotron_h import NemotronHConfig
48
+
49
+
50
+ logger = logging.get_logger(__name__)
51
+
52
+
53
+ # Copied from transformers.models.mamba.modeling_mamba2.modeling_mamba2.py with MAMBA2->NEMOTRONH,Mamba2->NemotronH
54
+ # For Mamba2 components Mamba2->NemotronHMamba2
55
+ if is_mamba_2_ssm_available():
56
+ from mamba_ssm.ops.triton.selective_state_update import selective_state_update
57
+ from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
58
+ else:
59
+ mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined, selective_state_update = None, None, None
60
+
61
+ try:
62
+ #from mamba_ssm.ops.triton.layernorm_gated import RMSNorm as RMSNormGated
63
+ from mamba_ssm.ops.triton.layernorm_gated import rmsnorm_fn
64
+ except ImportError:
65
+ raise ImportError("mamba-ssm is required by the Mamba model but cannot be imported")
66
+
67
+ if is_causal_conv1d_available():
68
+ from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
69
+ else:
70
+ causal_conv1d_update, causal_conv1d_fn = None, None
71
+
72
+ if is_flash_attn_2_available():
73
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
74
+
75
+ is_fast_path_available = all(
76
+ (
77
+ selective_state_update,
78
+ mamba_chunk_scan_combined,
79
+ mamba_split_conv1d_scan_combined,
80
+ causal_conv1d_fn,
81
+ causal_conv1d_update,
82
+ )
83
+ )
84
+
85
+
86
+ _CHECKPOINT_FOR_DOC = "nvidia/Nemotron-H-56B-Base-8K"
87
+ _CONFIG_FOR_DOC = "NemotronHConfig"
88
+
89
+
90
+ # Helper methods for segment sum computation
91
+
92
+
93
+ def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
94
+ """
95
+ Padding x tensor with `pad_size` on the seq_len dim (dim=1)
96
+
97
+ Assumes that we only have tensors of either size 4 or 3
98
+ """
99
+ pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0)
100
+
101
+ return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0)
102
+
103
+
104
+ def reshape_into_chunks(input_tensor, pad_size, chunk_size):
105
+ """
106
+ Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and
107
+ simultaneously splitting it into chunk sequences.
108
+
109
+ Assumes that we only have tensors of either size 4 or 3
110
+ """
111
+ # [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
112
+ input_tensor = pad_tensor_by_size(input_tensor, pad_size)
113
+
114
+ if len(input_tensor.shape) == 3:
115
+ # [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
116
+ return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2])
117
+ else:
118
+ # [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
119
+ return input_tensor.reshape(
120
+ input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3]
121
+ )
122
+
123
+
124
+ def segment_sum(input_tensor):
125
+ """
126
+ More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
127
+ """
128
+ chunk_size = input_tensor.size(-1)
129
+ # 1. expand input tensor to have an additional dimension and repeat along that dimension
130
+ # [..., chunk_size] -> [..., chunk_size, chunk_size]
131
+ input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
132
+ # 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag
133
+ mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1)
134
+ input_tensor = input_tensor.masked_fill(~mask, 0)
135
+ # 3. compute actual cumsum
136
+ tensor_segsum = torch.cumsum(input_tensor, dim=-2)
137
+
138
+ # 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time)
139
+ mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0)
140
+ tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf)
141
+ return tensor_segsum
142
+
143
+
144
+ def apply_mask_to_padding_states(hidden_states, attention_mask):
145
+ """
146
+ Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66
147
+ """
148
+ if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
149
+ dtype = hidden_states.dtype
150
+ hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
151
+
152
+ return hidden_states
153
+
154
+ # Copied from https://github.com/huggingface/transformers/blob/main/src/transformers/models/jamba/modeling_jamba.py
155
+ class HybridMambaAttentionDynamicCache(DynamicCache):
156
+ """
157
+ A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
158
+ (which has a constant shape regardless of seq_len).
159
+
160
+ This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
161
+ and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
162
+ For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
163
+ while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
164
+ For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
165
+ while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
166
+ and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
167
+ """
168
+
169
+ def __init__(self, config, batch_size, dtype=torch.float16, device=None):
170
+ super().__init__()
171
+ self.dtype = dtype
172
+ self.hybrid_override_pattern = config.hybrid_override_pattern
173
+ self.has_previous_state = False # only used by mamba
174
+ #intermediate_size = config.expand * config.hidden_size
175
+ intermediate_size = config.mamba_num_heads * config.mamba_head_dim
176
+ ssm_state_size = config.ssm_state_size
177
+ conv_kernel_size = config.conv_kernel
178
+ self.conv_states = []
179
+ self.ssm_states = []
180
+ self.transformer_layers = []
181
+ for i in range(config.num_hidden_layers):
182
+ if self.hybrid_override_pattern[i] == "M":
183
+ # Mamba layer
184
+ self.conv_states += [
185
+ torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
186
+ ]
187
+ self.ssm_states += [
188
+ torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=torch.float32)
189
+ ]
190
+ else:
191
+ # Attention or MLP layer
192
+ self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
193
+ self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
194
+ self.transformer_layers.append(i)
195
+
196
+ self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
197
+ self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
198
+
199
+ def update(
200
+ self,
201
+ key_states: torch.Tensor,
202
+ value_states: torch.Tensor,
203
+ layer_idx: int,
204
+ cache_kwargs: Optional[Dict[str, Any]] = None,
205
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
206
+ # Update the cache
207
+ if self.key_cache[layer_idx].shape[-1] == 0:
208
+ self.key_cache[layer_idx] = key_states
209
+ self.value_cache[layer_idx] = value_states
210
+ else:
211
+ self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
212
+ self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
213
+
214
+ return self.key_cache[layer_idx], self.value_cache[layer_idx]
215
+
216
+ def reorder_cache(self, beam_idx: torch.LongTensor):
217
+ """Reorders the cache for beam search, given the selected beam indices."""
218
+ for layer_idx in range(len(self.key_cache)):
219
+ device = self.key_cache[layer_idx].device
220
+ self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
221
+ device = self.value_cache[layer_idx].device
222
+ self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
223
+
224
+ device = self.conv_states[layer_idx].device
225
+ self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
226
+ device = self.ssm_states[layer_idx].device
227
+ self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
228
+
229
+ def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
230
+ """Returns the sequence length of the cached states. A layer index can be optionally passed."""
231
+ # take any layer that contains cache and not empty tensor
232
+ layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
233
+ if len(self.key_cache) <= layer_idx:
234
+ return 0
235
+ return self.key_cache[layer_idx].shape[-2]
236
+
237
+ def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
238
+ raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
239
+
240
+ @classmethod
241
+ def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
242
+ raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
243
+
244
+ # Copied from modeling_mamba2.py
245
+ def update_conv_state(
246
+ self, layer_idx: int, new_conv_state: torch.Tensor, cache_init: bool = False
247
+ ) -> torch.Tensor:
248
+ if cache_init:
249
+ self.conv_states[layer_idx] = new_conv_state.to(self.conv_states.device)
250
+ else:
251
+ self.conv_states[layer_idx] = self.conv_states[layer_idx].roll(shifts=-1, dims=-1)
252
+ self.conv_states[layer_idx][:, :, -1] = new_conv_state[:, 0, :].to(self.conv_states.device)
253
+ return self.conv_states[layer_idx]
254
+
255
+ def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor):
256
+ self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device)
257
+ return self.ssm_states[layer_idx]
258
+
259
+ def reset(self):
260
+ self.conv_states.zero_()
261
+ self.ssm_states.zero_()
262
+
263
+ class MambaRMSNormGated(torch.nn.Module):
264
+ def __init__(self, hidden_size, group_size, eps=1e-5):
265
+ super().__init__()
266
+ self.weight = nn.Parameter(torch.ones(hidden_size))
267
+ self.variance_epsilon = eps
268
+ self.group_size = group_size
269
+
270
+ # jan28b version
271
+ def forward(self, hidden_states, gate=None):
272
+ return rmsnorm_fn(x=hidden_states,
273
+ weight=self.weight,
274
+ bias=None, # No bias
275
+ z=gate,
276
+ eps=self.variance_epsilon,
277
+ group_size=self.group_size,
278
+ norm_before_gate=False
279
+ )
280
+
281
+ class NemotronHMamba2Mixer(nn.Module):
282
+ """
283
+ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
284
+ A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
285
+ ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
286
+ and is why Mamba is called **selective** state spaces)
287
+ """
288
+
289
+ def __init__(self, config: NemotronHConfig, layer_idx: int):
290
+ super().__init__()
291
+ self.num_heads = config.mamba_num_heads
292
+ self.hidden_size = config.hidden_size
293
+ self.ssm_state_size = config.ssm_state_size
294
+ self.conv_kernel_size = config.conv_kernel
295
+ self.intermediate_size = config.mamba_num_heads * config.mamba_head_dim
296
+ self.layer_idx = layer_idx
297
+ self.use_conv_bias = config.use_conv_bias
298
+ self.activation = config.mamba_hidden_act
299
+ self.act = ACT2FN[config.mamba_hidden_act]
300
+
301
+ self.layer_norm_epsilon = config.layer_norm_epsilon
302
+
303
+ self.n_groups = config.n_groups
304
+ self.head_dim = config.mamba_head_dim
305
+ self.chunk_size = config.chunk_size
306
+
307
+ self.time_step_limit = config.time_step_limit
308
+ self.time_step_min = config.time_step_min
309
+ self.time_step_max = config.time_step_max
310
+
311
+ self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
312
+ self.conv1d = nn.Conv1d(
313
+ in_channels=self.conv_dim,
314
+ out_channels=self.conv_dim,
315
+ bias=config.use_conv_bias,
316
+ kernel_size=config.conv_kernel,
317
+ groups=self.conv_dim,
318
+ padding=config.conv_kernel - 1,
319
+ )
320
+
321
+ # projection of the input hidden states
322
+ projection_size = self.intermediate_size + self.conv_dim + self.num_heads
323
+ self.in_proj = nn.Linear(
324
+ self.hidden_size,
325
+ projection_size,
326
+ bias=config.use_bias,
327
+ )
328
+ # selective projection used to make dt, B and C input dependant
329
+
330
+ # time step projection (discretization)
331
+ # instantiate once and copy inv_dt in init_weights of PretrainedModel
332
+ self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
333
+
334
+ # S4D real initialization. These are not discretized!
335
+ # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
336
+ A = torch.arange(1, self.num_heads + 1)
337
+ self.A_log = nn.Parameter(torch.log(A))
338
+ self.A_log._no_weight_decay = True
339
+ self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon, group_size=self.intermediate_size // self.n_groups)
340
+ self.D = nn.Parameter(torch.ones(self.num_heads))
341
+ self.D._no_weight_decay = True
342
+
343
+ self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
344
+ self.use_bias = config.use_bias
345
+
346
+ if not is_fast_path_available:
347
+ logger.warning_once(
348
+ "The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`"
349
+ " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
350
+ " https://github.com/Dao-AILab/causal-conv1d"
351
+ )
352
+
353
+ def cuda_kernels_forward(
354
+ self,
355
+ hidden_states: torch.Tensor,
356
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
357
+ cache_position: Optional[torch.LongTensor] = None,
358
+ attention_mask: Optional[torch.Tensor] = None,
359
+ ):
360
+ # 1. Gated MLP's linear projection
361
+ hidden_states = apply_mask_to_padding_states(hidden_states, attention_mask)
362
+ projected_states = self.in_proj(hidden_states)
363
+
364
+ # Set up dimensions for reshapes later
365
+ batch_size, seq_len, _ = hidden_states.shape
366
+ groups_time_state_size = self.n_groups * self.ssm_state_size
367
+ d_mlp = (
368
+ projected_states.shape[-1]
369
+ - 2 * self.intermediate_size
370
+ - 2 * self.n_groups * self.ssm_state_size
371
+ - self.num_heads
372
+ ) // 2
373
+
374
+ # Single step calculations via cache
375
+ if cache_params is not None and cache_position is not None and cache_position[0] > 0:
376
+ _, _, gate, hidden_states_B_C, dt = projected_states.squeeze(1).split(
377
+ [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
378
+ )
379
+
380
+ # 2. Convolution sequence transformation
381
+ hidden_states_B_C = causal_conv1d_update(
382
+ hidden_states_B_C,
383
+ cache_params.conv_states[self.layer_idx],
384
+ self.conv1d.weight.squeeze(1),
385
+ self.conv1d.bias,
386
+ self.activation,
387
+ )
388
+
389
+ hidden_states, B, C = torch.split(
390
+ hidden_states_B_C,
391
+ [self.intermediate_size, groups_time_state_size, groups_time_state_size],
392
+ dim=-1,
393
+ )
394
+
395
+ # 3. SSM transformation
396
+ A = -torch.exp(self.A_log.float()) # (nheads,)
397
+ A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
398
+ dt = dt[:, :, None].expand(-1, -1, self.head_dim)
399
+ dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
400
+ D = self.D[:, None, ...].expand(-1, self.head_dim)
401
+ B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups)
402
+ C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups)
403
+ hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim)
404
+ hidden_states = selective_state_update(
405
+ cache_params.ssm_states[self.layer_idx],
406
+ hidden_states_reshaped,
407
+ dt,
408
+ A,
409
+ B,
410
+ C,
411
+ D,
412
+ z=None,
413
+ dt_bias=dt_bias,
414
+ dt_softplus=True,
415
+ )
416
+ hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim)
417
+ hidden_states = self.norm(hidden_states, gate)
418
+
419
+ # 4. Final linear projection
420
+ out = self.out_proj(hidden_states)[:, None, ...]
421
+
422
+ # Fused calculations or step by step if no initialized cache is found
423
+ else:
424
+ A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size)
425
+ dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit}
426
+
427
+ # 2-4. Fused kernel for conv1d, SSM, and the final projection
428
+ if self.training and cache_params is None:
429
+ out = mamba_split_conv1d_scan_combined(
430
+ projected_states,
431
+ self.conv1d.weight.squeeze(1),
432
+ self.conv1d.bias,
433
+ self.dt_bias,
434
+ A,
435
+ D=self.D,
436
+ chunk_size=self.chunk_size,
437
+ seq_idx=None, # was seq_idx
438
+ activation=self.activation,
439
+ rmsnorm_weight=self.norm.weight,
440
+ rmsnorm_eps=self.norm.variance_epsilon,
441
+ outproj_weight=self.out_proj.weight,
442
+ outproj_bias=self.out_proj.bias,
443
+ headdim=self.head_dim,
444
+ ngroups=self.n_groups,
445
+ norm_before_gate=False,
446
+ return_final_states=False,
447
+ **dt_limit_kwargs,
448
+ )
449
+
450
+ else:
451
+ _, _, gate, hidden_states_B_C, dt = projected_states.split(
452
+ [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
453
+ )
454
+
455
+ # 2. Convolution sequence transformation
456
+ # Init cache
457
+ if cache_params is not None:
458
+ hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
459
+ conv_states = nn.functional.pad(
460
+ hidden_states_B_C_transposed,
461
+ (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0),
462
+ )
463
+ cache_params.update_conv_state(
464
+ layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True
465
+ )
466
+
467
+ if self.activation not in ["silu", "swish"]:
468
+ hidden_states_B_C = self.act(
469
+ self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2)
470
+ )
471
+ else:
472
+ hidden_states_B_C = causal_conv1d_fn(
473
+ x=hidden_states_B_C.transpose(1, 2),
474
+ weight=self.conv1d.weight.squeeze(1),
475
+ bias=self.conv1d.bias,
476
+ activation=self.activation,
477
+ ).transpose(1, 2)
478
+ hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
479
+ hidden_states, B, C = torch.split(
480
+ hidden_states_B_C,
481
+ [self.intermediate_size, groups_time_state_size, groups_time_state_size],
482
+ dim=-1,
483
+ )
484
+
485
+ # 3. SSM transformation
486
+ scan_output, ssm_state = mamba_chunk_scan_combined(
487
+ hidden_states.view(batch_size, seq_len, -1, self.head_dim),
488
+ dt,
489
+ A,
490
+ B.view(batch_size, seq_len, self.n_groups, -1),
491
+ C.view(batch_size, seq_len, self.n_groups, -1),
492
+ chunk_size=self.chunk_size,
493
+ D=self.D,
494
+ z=None,
495
+ seq_idx=None,
496
+ return_final_states=True,
497
+ dt_bias=self.dt_bias,
498
+ dt_softplus=True,
499
+ **dt_limit_kwargs,
500
+ )
501
+
502
+ # Init cache
503
+ if ssm_state is not None and cache_params is not None:
504
+ cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state)
505
+
506
+ scan_output = scan_output.view(batch_size, seq_len, -1)
507
+
508
+ # Multiply "gate" branch and apply extra normalization layer
509
+ scan_output = self.norm(scan_output, gate)
510
+
511
+ # 4. Final linear projection
512
+ out = self.out_proj(scan_output)
513
+ return out
514
+
515
+ # fmt: off
516
+ def torch_forward(self, input_states, cache_params: Optional[HybridMambaAttentionDynamicCache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None):
517
+ batch_size, seq_len, _ = input_states.shape
518
+ dtype = input_states.dtype
519
+
520
+ # 1. Gated MLP's linear projection
521
+ input_states = apply_mask_to_padding_states(input_states, attention_mask)
522
+ projected_states = self.in_proj(input_states)
523
+ d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size-self.num_heads) // 2
524
+ _, _, gate, hidden_states_B_C, dt = projected_states.split(
525
+ [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
526
+ )
527
+
528
+ # 2. Convolution sequence transformation
529
+ if cache_params is not None and cache_position is not None and cache_position[0] > 0:
530
+ cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=hidden_states_B_C, cache_init=False)
531
+
532
+ # We need to guarantee that anything regarding the cache is on the same device
533
+ conv_states = cache_params.conv_states[self.layer_idx].to(device=self.conv1d.weight.device)
534
+
535
+ hidden_states_B_C = torch.sum(
536
+ conv_states * self.conv1d.weight.squeeze(1), dim=-1
537
+ )
538
+ if self.use_conv_bias:
539
+ hidden_states_B_C = hidden_states_B_C + self.conv1d.bias
540
+ hidden_states_B_C = self.act(hidden_states_B_C)
541
+ else:
542
+ # Init cache
543
+ if cache_params is not None:
544
+ hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
545
+ conv_states = nn.functional.pad(
546
+ hidden_states_B_C_transposed, (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0)
547
+ )
548
+ cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True)
549
+
550
+ hidden_states_B_C = self.act(self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2))
551
+
552
+ hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
553
+ hidden_states, B, C = torch.split(
554
+ hidden_states_B_C,
555
+ [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size],
556
+ dim=-1
557
+ )
558
+
559
+ # 3. SSM transformation
560
+ A = -torch.exp(self.A_log.float()) # [num_heads]
561
+ if cache_params is not None and cache_position is not None and cache_position[0] > 0:
562
+ # We need to guarantee that anything regarding the cache is on the same device
563
+ cache_device = cache_params.ssm_states.device
564
+
565
+ # Note: there is no need to pad parameter matrices here, as there is just one new token
566
+ # for batched generation
567
+ dt = dt[:, 0, :][:, None, ...]
568
+ dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
569
+ # [num_heads] -> [num_heads, head_dim]
570
+ dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
571
+
572
+ dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
573
+ dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
574
+ A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
575
+ # [bsz, num_heads, head_dim, state_size]
576
+ dA = (torch.exp(dt[..., None] * A)).to(device=cache_device)
577
+
578
+ # Discretize B
579
+ # [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
580
+ # -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
581
+ B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
582
+ B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
583
+ B = B.reshape(batch_size, -1, B.shape[-1])
584
+ # [bsz, num_heads, head_dim, state_size]
585
+ dB = dt[..., None] * B[..., None, :]
586
+
587
+ # Discretize x into dB
588
+ # [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
589
+ hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
590
+ dBx = (dB * hidden_states[..., None]).to(device=cache_device)
591
+
592
+ # State calculation
593
+ cache_params.update_ssm_state(
594
+ layer_idx=self.layer_idx,
595
+ new_ssm_state=cache_params.ssm_states[self.layer_idx] * dA + dBx
596
+ )
597
+
598
+ # Subsequent output
599
+ # [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
600
+ C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
601
+ C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
602
+ C = C.reshape(batch_size, -1, C.shape[-1])
603
+ # [bsz, num_heads, head_dim]
604
+
605
+ ssm_states = cache_params.ssm_states[self.layer_idx].to(device=C.device, dtype=C.dtype) # Shape: [b, h, d, n]
606
+ # Reshape ssm_states to merge the first two dimensions
607
+ ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n]
608
+ C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1]
609
+ y = torch.bmm(ssm_states_reshaped, C_reshaped)
610
+ y = y.view(batch_size, self.num_heads, self.head_dim)
611
+
612
+ # D skip connection
613
+ # [num_heads] -> [num_heads, head_dim]
614
+ D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
615
+ y = (y + hidden_states * D).to(y.dtype)
616
+
617
+ # [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
618
+ y = y.reshape(batch_size, -1)[:, None, ...]
619
+ else:
620
+ # begin ssd naive implementation without einsums
621
+ dt = nn.functional.softplus(dt + self.dt_bias)
622
+ dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
623
+ hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
624
+ B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
625
+ C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
626
+ B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
627
+ C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
628
+ pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size
629
+
630
+ D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
631
+
632
+ # Discretize x and A
633
+ hidden_states = hidden_states * dt[..., None]
634
+ A = A.to(hidden_states.dtype) * dt
635
+
636
+ # Rearrange into blocks/chunks
637
+ hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
638
+
639
+ # [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
640
+ A = A.permute(0, 3, 1, 2)
641
+ A_cumsum = torch.cumsum(A, dim=-1)
642
+
643
+ # 1. Compute the output for each intra-chunk (diagonal blocks)
644
+ # This is the analog of a causal mask
645
+ L = torch.exp(segment_sum(A))
646
+
647
+ # Contraction of C and B to get G (attention-weights like)
648
+ G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, :, :] # shape: (b, c, l, s, h, n)
649
+ G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
650
+
651
+ # Compute M, equivalent to applying attention mask to weights
652
+ M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
653
+ M = M_intermediate.sum(dim=-1)
654
+
655
+ # Compute Y_diag (apply to values)
656
+ Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(dim=3)
657
+
658
+ # 2. Compute the state for each intra-chunk
659
+ # (right term of low-rank factorization of off-diagonal blocks; B terms)
660
+ decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
661
+ B_decay = B * decay_states.permute(0, -2, -1, 1)[..., None]
662
+ states = (B_decay[..., None, :] * hidden_states[..., None]).sum(dim=2)
663
+
664
+ # 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
665
+ # (middle term of factorization of off-diag blocks; A terms)
666
+ if cache_params is not None and cache_position is not None and cache_position[0] > 0:
667
+ previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...].to(device=states.device)
668
+ else:
669
+ previous_states = torch.zeros_like(states[:, :1])
670
+ states = torch.cat([previous_states, states], dim=1)
671
+ decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
672
+ decay_chunk = decay_chunk.transpose(1, 3)
673
+ new_states = (decay_chunk[..., None, None] * states[:, :, None, ...]).sum(dim=1)
674
+ states, ssm_state = new_states[:, :-1], new_states[:, -1]
675
+
676
+ # 4. Compute state -> output conversion per chunk
677
+ # (left term of low-rank factorization of off-diagonal blocks; C terms)
678
+ state_decay_out = torch.exp(A_cumsum)
679
+ C_times_states = (C[..., None, :] * states[:, :, None, ...])
680
+ state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
681
+ Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
682
+
683
+ # Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
684
+ y = Y_diag + Y_off
685
+ # [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
686
+ y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
687
+
688
+ y = y + D_residual
689
+ # Cutting off padded chunks
690
+ if pad_size > 0:
691
+ y = y[:, :seq_len, :, :]
692
+ y = y.reshape(batch_size, seq_len, -1)
693
+
694
+ # Init cache
695
+ if ssm_state is not None and cache_params is not None:
696
+ cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state)
697
+
698
+ scan_output = self.norm(y, gate)
699
+
700
+ # end ssd naive
701
+
702
+ # 4. Final linear projection
703
+ contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size]
704
+ return contextualized_states
705
+ # fmt: on
706
+
707
+ def forward(
708
+ self,
709
+ hidden_states,
710
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
711
+ cache_position: Optional[torch.LongTensor] = None,
712
+ attention_mask: Optional[torch.Tensor] = None,
713
+ ):
714
+ if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
715
+ return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
716
+ dtype = hidden_states.dtype
717
+ if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
718
+ # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
719
+ hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
720
+
721
+ return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask)
722
+
723
+
724
+ class NemotronHRMSNorm(nn.Module):
725
+ def __init__(self, hidden_size, eps=1e-6):
726
+ """
727
+ NemotronHRMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
728
+ """
729
+ super().__init__()
730
+ self.weight = nn.Parameter(torch.ones(hidden_size))
731
+ self.variance_epsilon = eps
732
+
733
+ def forward(self, hidden_states):
734
+ input_dtype = hidden_states.dtype
735
+ hidden_states = hidden_states.to(torch.float32)
736
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
737
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
738
+ # Weights are in float32
739
+ return (self.weight.to(torch.float32) * hidden_states).to(input_dtype)
740
+
741
+ class NemotronHBlock(nn.Module):
742
+ def __init__(self, config, layer_idx):
743
+ super().__init__()
744
+ self.config = config
745
+ self.layer_idx = layer_idx
746
+ self.residual_in_fp32 = config.residual_in_fp32
747
+ self.norm = NemotronHRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
748
+
749
+ # M: Mamba2, *: Attention, -: MLP
750
+ self.block_type = config.layers_block_type[layer_idx]
751
+ if self.block_type == "mamba":
752
+ self.mixer = NemotronHMamba2Mixer(config, layer_idx=layer_idx)
753
+ elif self.block_type == "attention":
754
+ self.mixer = NEMOTRONH_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
755
+ elif self.block_type == "mlp":
756
+ self.mixer = NemotronHMLP(config, layer_idx=layer_idx)
757
+ else:
758
+ raise ValueError(f"Invalid layer pattern {config.hybrid_override_pattern[layer_idx]}")
759
+
760
+ def forward(
761
+ self,
762
+ hidden_states,
763
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
764
+ cache_position: Optional[torch.LongTensor] = None,
765
+ attention_mask: Optional[torch.Tensor] = None,
766
+ ):
767
+ with torch.cuda.stream(torch.cuda.default_stream(hidden_states.device)):
768
+ # * Use torch.cuda.stream() to avoid NaN issues when using multiple GPUs
769
+ residual = hidden_states
770
+ hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
771
+ if self.residual_in_fp32:
772
+ residual = residual.to(torch.float32)
773
+
774
+ if self.block_type == "mamba":
775
+ hidden_states = self.mixer(
776
+ hidden_states, cache_params=cache_params, cache_position=cache_position
777
+ )
778
+ elif self.block_type == "attention":
779
+ hidden_states = self.mixer(
780
+ hidden_states, cache_position=cache_position
781
+ )
782
+ hidden_states = hidden_states[0]
783
+ elif self.block_type == "mlp":
784
+ hidden_states = self.mixer(
785
+ hidden_states
786
+ )
787
+ else:
788
+ raise ValueError(f"Invalid block_type: {self.block_type}")
789
+
790
+ hidden_states = residual + hidden_states
791
+ return hidden_states
792
+
793
+
794
+ # Copied from transformers.models.nemotron.modeling_nemotron Nemotron->NemotronH
795
+ class NemotronHMLP(nn.Module):
796
+ def __init__(self, config, layer_idx: Optional[int] = None):
797
+ super().__init__()
798
+ self.config = config
799
+ self.layer_idx = layer_idx
800
+ if layer_idx is None:
801
+ logger.warning_once(
802
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
803
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
804
+ "when creating this class."
805
+ )
806
+ self.hidden_size = config.hidden_size
807
+ #intermediate_size = config.expand * config.hidden_size
808
+ self.intermediate_size = config.intermediate_size
809
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
810
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
811
+ self.act_fn = ACT2FN[config.mlp_hidden_act]
812
+
813
+ def forward(self, x):
814
+ return self.down_proj(self.act_fn(self.up_proj(x)))
815
+
816
+
817
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
818
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
819
+ """
820
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
821
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
822
+ """
823
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
824
+ if n_rep == 1:
825
+ return hidden_states
826
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
827
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
828
+
829
+
830
+ class NemotronHAttention(nn.Module):
831
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
832
+
833
+ def __init__(self, config: NemotronHConfig, layer_idx: Optional[int] = None):
834
+ super().__init__()
835
+ self.config = config
836
+ self.layer_idx = layer_idx
837
+ if layer_idx is None:
838
+ logger.warning_once(
839
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
840
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
841
+ "when creating this class."
842
+ )
843
+
844
+ self.attention_dropout = config.attention_dropout
845
+ self.hidden_size = config.hidden_size
846
+ self.num_heads = config.num_attention_heads
847
+ if config.head_dim is not None:
848
+ self.head_dim = config.head_dim
849
+ else:
850
+ self.head_dim = config.hidden_size // config.num_attention_heads
851
+ self.num_key_value_heads = config.num_key_value_heads
852
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
853
+ self.max_position_embeddings = config.max_position_embeddings
854
+ self.is_causal = True
855
+
856
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
857
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
858
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
859
+ self.o_proj = nn.Linear(self.head_dim * self.num_heads, self.hidden_size, bias=config.attention_bias)
860
+
861
+ def forward(
862
+ self,
863
+ hidden_states: torch.Tensor,
864
+ # position_embeddings: Tuple[torch.Tensor, torch.Tensor], #TODO
865
+ attention_mask: Optional[torch.Tensor] = None,
866
+ position_ids: Optional[torch.LongTensor] = None,
867
+ past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
868
+ output_attentions: bool = False,
869
+ use_cache: bool = False,
870
+ cache_position: Optional[torch.LongTensor] = None,
871
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
872
+ bsz, q_len, _ = hidden_states.size()
873
+
874
+ query_states = self.q_proj(hidden_states)
875
+ key_states = self.k_proj(hidden_states)
876
+ value_states = self.v_proj(hidden_states)
877
+
878
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
879
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
880
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
881
+
882
+ if past_key_value is not None:
883
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
884
+
885
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
886
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
887
+
888
+ causal_mask = attention_mask
889
+ if attention_mask is not None: # no matter the length, we just slice it
890
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
891
+
892
+ if query_states.device.type == "cuda" and attention_mask is not None:
893
+ query_states = query_states.contiguous()
894
+ key_states = key_states.contiguous()
895
+ value_states = value_states.contiguous()
896
+
897
+ is_causal = True if causal_mask is None and q_len > 1 else False
898
+
899
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
900
+ query_states,
901
+ key_states,
902
+ value_states,
903
+ attn_mask=causal_mask,
904
+ dropout_p=self.attention_dropout if self.training else 0.0,
905
+ is_causal=is_causal,
906
+ )
907
+ attn_output = attn_output.transpose(1, 2).contiguous()
908
+ #attn_output = attn_output.view(bsz, q_len, self.hidden_size)
909
+ attn_output = attn_output.view(bsz, q_len, self.num_heads * self.head_dim)
910
+
911
+ attn_output = self.o_proj(attn_output)
912
+
913
+ return attn_output, None, past_key_value
914
+
915
+
916
+ # Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Jamba
917
+ #class JambaFlashAttention2(JambaAttention):
918
+ class NemotronHFlashAttention2(NemotronHAttention):
919
+ """
920
+ Jamba flash attention module. This module inherits from `JambaAttention` as the weights of the module stays
921
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
922
+ flash attention and deal with padding tokens in case the input contains any of them.
923
+ """
924
+ def __init__(self, *args, **kwargs):
925
+ super().__init__(*args, **kwargs)
926
+
927
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
928
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
929
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
930
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
931
+
932
+ def forward(
933
+ self,
934
+ hidden_states: torch.Tensor,
935
+ attention_mask: Optional[torch.Tensor] = None,
936
+ position_ids: Optional[torch.LongTensor] = None,
937
+ past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
938
+ output_attentions: bool = False,
939
+ use_cache: bool = False,
940
+ cache_position: Optional[torch.LongTensor] = None,
941
+ **kwargs,
942
+ ):
943
+ bsz, q_len, _ = hidden_states.size()
944
+
945
+ query_states = self.q_proj(hidden_states)
946
+ key_states = self.k_proj(hidden_states)
947
+ value_states = self.v_proj(hidden_states)
948
+
949
+ # Flash attention requires the input to have the shape
950
+ # batch_size x seq_length x head_dim x hidden_dim
951
+ # therefore we just need to keep the original shape
952
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
953
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
954
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
955
+
956
+ if past_key_value is not None:
957
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
958
+
959
+ # repeat k/v heads if n_kv_heads < n_heads
960
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
961
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
962
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
963
+
964
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
965
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
966
+ # cast them back in float16 just to be sure everything works as expected.
967
+ input_dtype = query_states.dtype
968
+ if input_dtype == torch.float32:
969
+ if torch.is_autocast_enabled():
970
+ target_dtype = torch.get_autocast_gpu_dtype()
971
+ # Handle the case where the model is quantized
972
+ elif hasattr(self.config, "_pre_quantization_dtype"):
973
+ target_dtype = self.config._pre_quantization_dtype
974
+ else:
975
+ target_dtype = self.q_proj.weight.dtype
976
+
977
+ logger.warning_once(
978
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
979
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
980
+ f" {target_dtype}."
981
+ )
982
+
983
+ query_states = query_states.to(target_dtype)
984
+ key_states = key_states.to(target_dtype)
985
+ value_states = value_states.to(target_dtype)
986
+
987
+ # Reashape to the expected shape for Flash Attention
988
+ key_states = key_states.transpose(1, 2)
989
+ value_states = value_states.transpose(1, 2)
990
+
991
+ attn_output = _flash_attention_forward(
992
+ query_states,
993
+ key_states,
994
+ value_states,
995
+ attention_mask,
996
+ q_len,
997
+ dropout=dropout_rate,
998
+ sliding_window=getattr(self.config, "sliding_window", None),
999
+ is_causal=self.is_causal,
1000
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
1001
+ )
1002
+
1003
+ #attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
1004
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim).contiguous()
1005
+ attn_output = self.o_proj(attn_output)
1006
+
1007
+ if not output_attentions:
1008
+ attn_weights = None
1009
+
1010
+ return attn_output, attn_weights, past_key_value
1011
+
1012
+
1013
+ # Adapted from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Jamba
1014
+ #class JambaSdpaAttention(JambaAttention):
1015
+ class NemotronHSdpaAttention(NemotronHAttention):
1016
+ """
1017
+ Jamba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
1018
+ `JambaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
1019
+ SDPA API.
1020
+ """
1021
+
1022
+ # Adapted from NemotronHAttention.forward
1023
+ def forward(
1024
+ self,
1025
+ hidden_states: torch.Tensor,
1026
+ attention_mask: Optional[torch.Tensor] = None,
1027
+ position_ids: Optional[torch.LongTensor] = None,
1028
+ past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
1029
+ output_attentions: bool = False,
1030
+ use_cache: bool = False,
1031
+ cache_position: Optional[torch.LongTensor] = None,
1032
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
1033
+ if output_attentions:
1034
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
1035
+ logger.warning_once(
1036
+ "NemotronHModel is using NemotronHSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
1037
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
1038
+ )
1039
+ return super().forward(
1040
+ hidden_states=hidden_states,
1041
+ attention_mask=attention_mask,
1042
+ position_ids=position_ids,
1043
+ past_key_value=past_key_value,
1044
+ output_attentions=output_attentions,
1045
+ use_cache=use_cache,
1046
+ )
1047
+
1048
+ bsz, q_len, _ = hidden_states.size()
1049
+
1050
+ query_states = self.q_proj(hidden_states)
1051
+ key_states = self.k_proj(hidden_states)
1052
+ value_states = self.v_proj(hidden_states)
1053
+
1054
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
1055
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1056
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1057
+
1058
+ if past_key_value is not None:
1059
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
1060
+
1061
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
1062
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
1063
+
1064
+ causal_mask = attention_mask
1065
+ if attention_mask is not None:
1066
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
1067
+
1068
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
1069
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
1070
+ if query_states.device.type == "cuda" and attention_mask is not None:
1071
+ query_states = query_states.contiguous()
1072
+ key_states = key_states.contiguous()
1073
+ value_states = value_states.contiguous()
1074
+
1075
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
1076
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
1077
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
1078
+ is_causal = True if self.is_causal and causal_mask is None and q_len > 1 else False
1079
+
1080
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
1081
+ query_states,
1082
+ key_states,
1083
+ value_states,
1084
+ attn_mask=causal_mask,
1085
+ dropout_p=self.attention_dropout if self.training else 0.0,
1086
+ is_causal=is_causal,
1087
+ )
1088
+
1089
+ attn_output = attn_output.transpose(1, 2).contiguous()
1090
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
1091
+
1092
+ attn_output = self.o_proj(attn_output)
1093
+
1094
+ return attn_output, None, past_key_value
1095
+
1096
+
1097
+ NEMOTRONH_ATTENTION_CLASSES = {
1098
+ "eager": NemotronHAttention,
1099
+ "flash_attention_2": NemotronHFlashAttention2,
1100
+ "sdpa": NemotronHSdpaAttention,
1101
+ }
1102
+
1103
+ # Copied from transformers.models.mamba.modeling_mamba2.Mamba2PreTrainedModel
1104
+ class NemotronHPreTrainedModel(PreTrainedModel):
1105
+ """
1106
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
1107
+ models.
1108
+ """
1109
+
1110
+ config_class = NemotronHConfig
1111
+ base_model_prefix = "backbone"
1112
+ _no_split_modules = ["NemotronHBlock"]
1113
+ supports_gradient_checkpointing = True
1114
+ _is_stateful = True
1115
+
1116
+ def _init_weights(self, module):
1117
+ """Initialize the weights."""
1118
+ if isinstance(module, NemotronHMamba2Mixer):
1119
+ module.A_log._no_weight_decay = True
1120
+ module.D._no_weight_decay = True
1121
+
1122
+ dt = torch.exp(
1123
+ torch.rand(self.config.mamba_num_heads)
1124
+ * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
1125
+ + math.log(self.config.time_step_min)
1126
+ ).clamp(min=self.config.time_step_floor)
1127
+
1128
+ # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
1129
+ inv_dt = dt + torch.log(-torch.expm1(-dt))
1130
+ with torch.no_grad():
1131
+ module.dt_bias.copy_(inv_dt)
1132
+ module.dt_bias._no_reinit = True
1133
+
1134
+ if isinstance(module, nn.Linear):
1135
+ if module.bias is not None:
1136
+ if not getattr(module.bias, "_no_reinit", False):
1137
+ nn.init.zeros_(module.bias)
1138
+ elif isinstance(module, nn.Embedding):
1139
+ nn.init.normal_(module.weight, std=self.config.initializer_range)
1140
+
1141
+ # TODO: Check
1142
+ if self.config.rescale_prenorm_residual:
1143
+ # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
1144
+ # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
1145
+ # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
1146
+ # > -- GPT-2 :: https://openai.com/blog/better-language-models/
1147
+ #
1148
+ # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
1149
+ for name, p in module.named_parameters():
1150
+ if name in ["out_proj.weight"]:
1151
+ # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
1152
+ # Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
1153
+ # We need to reinit p since this code could be called multiple times
1154
+ # Having just p *= scale would repeatedly scale it down
1155
+ nn.init.kaiming_uniform_(p, a=math.sqrt(5))
1156
+ with torch.no_grad():
1157
+ p /= math.sqrt(self.config.num_hidden_layers)
1158
+
1159
+
1160
+ @dataclass
1161
+ # Copied from transformers.models.mamba.modeling_mamba2.Mamba2Output with MAMBA2->NemotronH,Mamba2->NemotronH
1162
+ class NemotronHOutput(ModelOutput):
1163
+ """
1164
+ Class for the NemotronH model outputs.
1165
+
1166
+ Args:
1167
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
1168
+ Sequence of hidden-states at the output of the last layer of the model.
1169
+ cache_params (`HybridMambaAttentionDynamicCache`):
1170
+ The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
1171
+ avoid providing the old `input_ids`.
1172
+
1173
+ Includes both the State space model state matrices after the selective scan, and the Convolutional states
1174
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
1175
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
1176
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
1177
+
1178
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
1179
+ """
1180
+
1181
+ last_hidden_state: Optional[torch.FloatTensor] = None
1182
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None
1183
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
1184
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
1185
+
1186
+
1187
+ @dataclass
1188
+ # Copied from transformers.models.mamba2.modeling_mamba2.MambaCausalLMOutput with Mamba2->NemotronH
1189
+ class NemotronHCausalLMOutput(ModelOutput):
1190
+ """
1191
+ Base class for causal language model (or autoregressive) outputs.
1192
+
1193
+ Args:
1194
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
1195
+ Language modeling loss (for next-token prediction).
1196
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
1197
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
1198
+ cache_params (`HybridMambaAttentionDynamicCache`):
1199
+ The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
1200
+ avoid providing the old `input_ids`.
1201
+
1202
+ Includes both the State space model state matrices after the selective scan, and the Convolutional states
1203
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
1204
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
1205
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
1206
+
1207
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
1208
+ """
1209
+
1210
+ loss: Optional[torch.FloatTensor] = None
1211
+ logits: Optional[torch.FloatTensor] = None
1212
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None
1213
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
1214
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
1215
+
1216
+
1217
+ NEMOTRONH_START_DOCSTRING = r"""
1218
+
1219
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1220
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1221
+ etc.)
1222
+
1223
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1224
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1225
+ and behavior.
1226
+
1227
+ Parameters:
1228
+ config ([`NemotronHConfig`]): Model configuration class with all the parameters of the model.
1229
+ Initializing with a config file does not load the weights associated with the model, only the
1230
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1231
+ """
1232
+
1233
+ NEMOTRONH_INPUTS_DOCSTRING = r"""
1234
+ Args:
1235
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
1236
+ Indices of input sequence tokens in the vocabulary.
1237
+
1238
+ If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
1239
+ `input_ids`.
1240
+
1241
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1242
+ [`PreTrainedTokenizer.__call__`] for details.
1243
+
1244
+ [What are input IDs?](../glossary#input-ids)
1245
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1246
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1247
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1248
+ model's internal embedding lookup matrix.
1249
+ position_ids (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1250
+ Indices of positions of each input sequence tokens in the position embeddings.
1251
+ cache_params (`HybridMambaAttentionDynamicCache`, *optional*):
1252
+ If passed along, the model uses the previous state in all the blocks (which will give the output for the
1253
+ `input_ids` provided as if the model add `state_input_ids + input_ids` as context).
1254
+ use_cache (`bool`, *optional*):
1255
+ If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
1256
+ output_attentions (`bool`, *optional*):
1257
+ Whether or not to return the attentions tensors of all attention layers.
1258
+ output_hidden_states (`bool`, *optional*):
1259
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1260
+ more detail.
1261
+ return_dict (`bool`, *optional*):
1262
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1263
+ cache_position (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1264
+ The position of the current input in the cache. This is used to ensure that the cache is correctly updated.
1265
+ If `cache_params` is passed, `cache_position` should also be passed.
1266
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1267
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1268
+
1269
+ - 1 for tokens that are **not masked**,
1270
+ - 0 for tokens that are **masked**.
1271
+
1272
+ [What are attention masks?](../glossary#attention-mask)
1273
+ """
1274
+
1275
+
1276
+ @add_start_docstrings(
1277
+ "The bare NemotronH Model transformer outputting raw hidden-states without any specific head on top.",
1278
+ NEMOTRONH_START_DOCSTRING,
1279
+ )
1280
+ class NemotronHModel(NemotronHPreTrainedModel):
1281
+ def __init__(self, config):
1282
+ super().__init__(config)
1283
+
1284
+ self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
1285
+ self.layers = nn.ModuleList([NemotronHBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
1286
+
1287
+ self.gradient_checkpointing = False
1288
+ self.norm_f = NemotronHRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
1289
+ # Initialize weights and apply final processing
1290
+ self._register_load_state_dict_pre_hook(self.load_hook)
1291
+ self.post_init()
1292
+
1293
+ def load_hook(self, state_dict, prefix, *args):
1294
+ for k in state_dict:
1295
+ if "embedding." in k:
1296
+ state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
1297
+ break
1298
+
1299
+ def get_input_embeddings(self):
1300
+ return self.embeddings
1301
+
1302
+ def set_input_embeddings(self, new_embeddings):
1303
+ self.embeddings = new_embeddings
1304
+
1305
+ @add_start_docstrings_to_model_forward(NEMOTRONH_INPUTS_DOCSTRING)
1306
+ @add_code_sample_docstrings(
1307
+ checkpoint=_CHECKPOINT_FOR_DOC,
1308
+ output_type=NemotronHOutput,
1309
+ config_class=_CONFIG_FOR_DOC,
1310
+ )
1311
+ def forward(
1312
+ self,
1313
+ input_ids: Optional[torch.LongTensor] = None,
1314
+ inputs_embeds: Optional[torch.LongTensor] = None,
1315
+ position_ids: Optional[torch.LongTensor] = None,
1316
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
1317
+ use_cache: Optional[bool] = None,
1318
+ output_attentions: Optional[bool] = None,
1319
+ output_hidden_states: Optional[bool] = None,
1320
+ return_dict: Optional[bool] = None,
1321
+ cache_position: Optional[torch.LongTensor] = None,
1322
+ attention_mask: Optional[torch.Tensor] = None,
1323
+ **kwargs,
1324
+ ) -> Union[Tuple, NemotronHOutput]:
1325
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1326
+ output_hidden_states = (
1327
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1328
+ )
1329
+ # use_cache = use_cache if use_cache is not None else self.config.use_cache
1330
+ use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
1331
+
1332
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1333
+
1334
+ if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
1335
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
1336
+
1337
+ if inputs_embeds is None:
1338
+ inputs_embeds = self.embeddings(input_ids)
1339
+
1340
+ if self.gradient_checkpointing and self.training and use_cache:
1341
+ logger.warning_once(
1342
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
1343
+ )
1344
+ use_cache = False
1345
+
1346
+ # From zamba_modeling.py
1347
+ if use_cache and cache_params is None:
1348
+ logger.warning_once(
1349
+ "NemotronH requires an initialized `NemotronHHybridDynamicCache` to return a cache. None was "
1350
+ "provided, so no cache will be returned."
1351
+ )
1352
+
1353
+ hidden_states = inputs_embeds
1354
+
1355
+ if cache_position is None:
1356
+ cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
1357
+ if position_ids is None:
1358
+ position_ids = cache_position.unsqueeze(0)
1359
+
1360
+ causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
1361
+ mamba_mask = self._update_mamba_mask(attention_mask, cache_position)
1362
+
1363
+ all_hidden_states = () if output_hidden_states else None
1364
+ all_self_attns = () if output_attentions else None
1365
+ # Until HERE
1366
+
1367
+ for layer_idx, mixer_block in enumerate(self.layers):
1368
+ # Depending on the layer type we opt for 2D base attention mask (Mamba) or 4D causal mask (Attention)
1369
+ if mixer_block.block_type == "mamba":
1370
+ layer_mask = mamba_mask
1371
+ elif mixer_block.block_type == "attention":
1372
+ layer_mask = causal_mask
1373
+ elif mixer_block.block_type == "mlp":
1374
+ layer_mask = None
1375
+ else:
1376
+ raise ValueError(f"Invalid block_type: {self.block_type}")
1377
+
1378
+ if output_hidden_states:
1379
+ all_hidden_states += (hidden_states,)
1380
+
1381
+ if self.gradient_checkpointing and self.training:
1382
+ hidden_states = self._gradient_checkpointing_func(
1383
+ mixer_block.__call__, hidden_states, cache_params, cache_position, layer_mask
1384
+ )
1385
+ else:
1386
+ hidden_states = mixer_block(
1387
+ hidden_states,
1388
+ cache_params=cache_params,
1389
+ cache_position=cache_position,
1390
+ attention_mask=layer_mask,
1391
+ )
1392
+
1393
+ # TODO: Store attentions
1394
+ # if output_attentions:
1395
+ # if layer_outputs[1] is not None:
1396
+ # # append attentions only of attention layers. Mamba layers return `None` as the attention weights
1397
+ # all_self_attns += (layer_outputs[1],)
1398
+
1399
+ # TODO (Check): should it happen before the forward pass?
1400
+ # if output_hidden_states:
1401
+ # all_hidden_states = all_hidden_states + (hidden_states,)
1402
+
1403
+ hidden_states = self.norm_f(hidden_states)
1404
+
1405
+ if output_hidden_states:
1406
+ all_hidden_states = all_hidden_states + (hidden_states,)
1407
+
1408
+ if not return_dict:
1409
+ return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
1410
+
1411
+ return NemotronHOutput(
1412
+ last_hidden_state=hidden_states,
1413
+ cache_params=cache_params if use_cache else None,
1414
+ hidden_states=all_hidden_states,
1415
+ attentions=all_self_attns,
1416
+ )
1417
+
1418
+ # Copied from transformers.models.jamba.modeling_jamba.JambaModel._update_causal_mask
1419
+ def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
1420
+ if self.config._attn_implementation == "flash_attention_2":
1421
+ if attention_mask is not None and 0.0 in attention_mask:
1422
+ return attention_mask
1423
+ return None
1424
+
1425
+ dtype, device = input_tensor.dtype, input_tensor.device
1426
+ min_dtype = torch.finfo(dtype).min
1427
+ sequence_length = input_tensor.shape[1]
1428
+ target_length = cache_position[-1] + 1
1429
+
1430
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
1431
+ if sequence_length != 1:
1432
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1433
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1434
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1435
+ if attention_mask is not None:
1436
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1437
+ if attention_mask.dim() == 2:
1438
+ mask_length = attention_mask.shape[-1]
1439
+ padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
1440
+ causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
1441
+
1442
+ if (
1443
+ self.config._attn_implementation == "sdpa"
1444
+ and attention_mask is not None
1445
+ and attention_mask.device.type == "cuda"
1446
+ ):
1447
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1448
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1449
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1450
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1451
+
1452
+ return causal_mask
1453
+
1454
+ def _update_mamba_mask(self, attention_mask, cache_position):
1455
+ """
1456
+ No need for zeroing states when
1457
+ 1. Cached forward
1458
+ 2. Attending to all inputs
1459
+ """
1460
+ mamba_mask = attention_mask
1461
+ if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
1462
+ mamba_mask = None
1463
+ return mamba_mask
1464
+
1465
+
1466
+ @add_start_docstrings(
1467
+ """
1468
+ The NEMOTRONH Model transformer with a language modeling head on top (linear layer with weights not tied to the input
1469
+ embeddings).
1470
+ """,
1471
+ NEMOTRONH_START_DOCSTRING,
1472
+ )
1473
+ class NemotronHForCausalLM(NemotronHPreTrainedModel, GenerationMixin):
1474
+ _tied_weights_keys = ["lm_head.weight"]
1475
+
1476
+ def __init__(self, config):
1477
+ super().__init__(config)
1478
+ self.backbone = NemotronHModel(config)
1479
+ self.vocab_size = config.vocab_size
1480
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1481
+
1482
+ # Initialize weights and apply final processing
1483
+ self.post_init()
1484
+
1485
+ def get_input_embeddings(self):
1486
+ return self.backbone.get_input_embeddings()
1487
+
1488
+ def set_input_embeddings(self, new_embeddings):
1489
+ return self.backbone.set_input_embeddings(new_embeddings)
1490
+
1491
+ def get_output_embeddings(self):
1492
+ return self.lm_head
1493
+
1494
+ def set_output_embeddings(self, new_embeddings):
1495
+ self.lm_head = new_embeddings
1496
+
1497
+ def get_decoder(self):
1498
+ return self.model
1499
+
1500
+ def set_decoder(self, decoder):
1501
+ self.model = decoder
1502
+
1503
+ def prepare_inputs_for_generation(
1504
+ self,
1505
+ input_ids,
1506
+ past_key_values=None,
1507
+ attention_mask=None,
1508
+ inputs_embeds=None,
1509
+ cache_position=None,
1510
+ position_ids=None,
1511
+ use_cache=True,
1512
+ **kwargs,
1513
+ ):
1514
+ # Copy from https://github.com/huggingface/transformers/blob/main/src/transformers/models/jamba/modeling_jamba.py
1515
+ # Overwitten -- uses `cache_params` as opposed to `past_key_values`
1516
+ empty_past_kv = past_key_values is None
1517
+
1518
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1519
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1520
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1521
+ # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
1522
+ # (we can't check exception 3 while compiling)
1523
+ if not empty_past_kv:
1524
+ if (
1525
+ inputs_embeds is not None # Exception 1
1526
+ or cache_position[-1] >= input_ids.shape[1] # Exception 3
1527
+ ):
1528
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1529
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1530
+ input_ids = input_ids[:, cache_position]
1531
+ else:
1532
+ past_key_values = HybridMambaAttentionDynamicCache(
1533
+ self.config, input_ids.shape[0], self.dtype, device=self.device
1534
+ )
1535
+
1536
+ if attention_mask is not None and position_ids is None:
1537
+ # create position_ids on the fly for batch generation
1538
+ position_ids = attention_mask.long().cumsum(-1) - 1
1539
+ position_ids.masked_fill_(attention_mask == 0, 1)
1540
+ if not empty_past_kv:
1541
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1542
+
1543
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1544
+ if inputs_embeds is not None and empty_past_kv:
1545
+ if input_ids is not None and inputs_embeds.shape[1] < input_ids.shape[1]:
1546
+ new_token_embeds = self.get_input_embeddings()(input_ids[:,inputs_embeds.shape[1]:])
1547
+ inputs_embeds = torch.cat([inputs_embeds, new_token_embeds], dim=1)
1548
+ model_inputs = {"inputs_embeds": inputs_embeds}
1549
+ else:
1550
+ model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
1551
+
1552
+ model_inputs.update(
1553
+ {
1554
+ "position_ids": position_ids,
1555
+ "past_key_values": past_key_values,
1556
+ "use_cache": use_cache,
1557
+ "attention_mask": attention_mask,
1558
+ "logits_to_keep": self.config.num_logits_to_keep,
1559
+ "cache_position": cache_position,
1560
+ }
1561
+ )
1562
+ return model_inputs
1563
+
1564
+ @add_start_docstrings_to_model_forward(NEMOTRONH_INPUTS_DOCSTRING)
1565
+ @add_code_sample_docstrings(
1566
+ checkpoint=_CHECKPOINT_FOR_DOC,
1567
+ output_type=NemotronHCausalLMOutput,
1568
+ config_class=_CONFIG_FOR_DOC,
1569
+ )
1570
+ def forward(
1571
+ self,
1572
+ input_ids: Optional[torch.LongTensor] = None,
1573
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1574
+ position_ids: Optional[torch.LongTensor] = None,
1575
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
1576
+ labels: Optional[torch.LongTensor] = None,
1577
+ output_attentions: Optional[bool] = None,
1578
+ output_hidden_states: Optional[bool] = None,
1579
+ return_dict: Optional[bool] = None,
1580
+ use_cache: Optional[bool] = None,
1581
+ cache_position: Optional[torch.Tensor] = None,
1582
+ attention_mask: Optional[torch.Tensor] = None,
1583
+ **kwargs, # for now we need this for generation
1584
+ ) -> Union[Tuple, NemotronHCausalLMOutput]:
1585
+ r"""
1586
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1587
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1588
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
1589
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
1590
+ """
1591
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1592
+
1593
+ output_hidden_states = (
1594
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1595
+ )
1596
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1597
+
1598
+ nemotron_h_outputs = self.backbone(
1599
+ input_ids,
1600
+ cache_params=cache_params,
1601
+ inputs_embeds=inputs_embeds,
1602
+ output_attentions=output_attentions,
1603
+ output_hidden_states=output_hidden_states,
1604
+ return_dict=return_dict,
1605
+ use_cache=use_cache,
1606
+ cache_position=cache_position,
1607
+ attention_mask=attention_mask,
1608
+ )
1609
+ hidden_states = nemotron_h_outputs[0]
1610
+
1611
+ # TODO: Check zamba_modeling.py: https://github.com/huggingface/transformers/blob/d7188ba600e36d3fd191b12e19f1b3bb81a8404f/src/transformers/models/zamba/modeling_zamba.py#L1284C1-L1286C2
1612
+ #logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
1613
+ logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
1614
+
1615
+ loss = None
1616
+ if labels is not None:
1617
+ # move labels to correct device to enable model parallelism
1618
+ labels = labels.to(logits.device)
1619
+ # Shift so that tokens < n predict n
1620
+ shift_logits = logits[..., :-1, :].contiguous()
1621
+ shift_labels = labels[..., 1:].contiguous()
1622
+ # Flatten the tokens
1623
+ loss_fct = CrossEntropyLoss()
1624
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1625
+
1626
+ if not return_dict:
1627
+ output = (logits,) + nemotron_h_outputs[1:]
1628
+ return ((loss,) + output) if loss is not None else output
1629
+
1630
+ return NemotronHCausalLMOutput(
1631
+ loss=loss,
1632
+ logits=logits,
1633
+ cache_params=nemotron_h_outputs.cache_params,
1634
+ hidden_states=nemotron_h_outputs.hidden_states,
1635
+ attentions=nemotron_h_outputs.attentions,
1636
+ )
nano_v2_inference_chat_template.jinja ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- set ns = namespace(enable_thinking=true) -%}
2
+ {%- for message in messages -%}
3
+ {%- if message['content'] is string -%}
4
+ {%- if message['role'] == 'user' or message['role'] == 'system' -%}
5
+ {%- if '/think' in message['content'] -%}
6
+ {%- set ns.enable_thinking = true -%}
7
+ {%- elif '/no_think' in message['content'] -%}
8
+ {%- set ns.enable_thinking = false -%}
9
+ {%- endif -%}
10
+ {%- endif -%}
11
+ {%- else -%}
12
+ {%- for content in message['content'] -%}
13
+ {%- if content['type'] == 'text' -%}
14
+ {%- if message['role'] == 'user' or message['role'] == 'system' -%}
15
+ {%- if '/think' in content['text'] -%}
16
+ {%- set ns.enable_thinking = true -%}
17
+ {%- elif '/no_think' in content['text'] -%}
18
+ {%- set ns.enable_thinking = false -%}
19
+ {%- endif -%}
20
+ {%- endif -%}
21
+ {%- endif -%}
22
+ {%- endfor -%}
23
+ {%- endif -%}
24
+ {%- endfor -%}
25
+ {%- for message in messages -%}
26
+ {%- if loop.first -%}
27
+ {%- if message['role'] != 'system' -%}
28
+ {{- '<SPECIAL_10>System\n\n' }}
29
+ {%- endif -%}
30
+ {%- endif -%}
31
+
32
+ {%- if message['role'] == 'system' -%}
33
+ {{- '<SPECIAL_10>System\n' }}
34
+ {%- if message['content'] is string -%}
35
+ {{- message['content'].replace('/think', '').replace('/no_think', '').strip() }}
36
+ {%- else -%}
37
+ {%- for content in message['content'] -%}
38
+ {%- if content['type'] == 'image' -%}
39
+ {{- '' }}
40
+ {%- elif content['type'] == 'text' -%}
41
+ {{- content['text'].replace('/think', '').replace('/no_think', '').strip() }}
42
+ {%- endif -%}
43
+ {%- endfor -%}
44
+ {%- endif -%}
45
+
46
+ {%- if tools -%}
47
+ {%- if message['content'].replace('/think', '').replace('/no_think', '').strip() != '' -%}
48
+ {{- '\n\n' }}
49
+ {%- endif -%}
50
+
51
+ {{- 'You can use the following tools to assist the user if required:\n<AVAILABLE_TOOLS>[' }}
52
+ {%- for tool in tools -%}
53
+ {{- (tool.function if tool.function is defined else tool) | tojson -}}
54
+ {{- ', ' if not loop.last else '' -}}
55
+ {%- endfor -%}
56
+ {{- ']</AVAILABLE_TOOLS>\n\nIf you decide to call any tool(s), use the following format:\n<TOOLCALL>[{{\"name\": \"tool_name1\", \"arguments\": "\tool_args1\"}}, {{\"name\": \"tool_name2\", \"arguments\": \"tool_args2\"}}]</TOOLCALL>\n\nThe user will execute tool-calls and return responses from tool(s) in this format:\n<TOOL_RESPONSE>[{{\"tool_response1\"}}, {{\"tool_response2\"}}]</TOOL_RESPONSE>\n\nBased on the tool responses, you can call additional tools if needed, correct tool calls if any errors are found, or just respond to the user.' -}}
57
+ {%- endif -%}
58
+ {{- '\n' -}}
59
+
60
+ {%- elif message['role'] == 'user' -%}
61
+ {{- '<SPECIAL_11>User\n' }}
62
+ {%- if message['content'] is string -%}
63
+ {{- message['content'].replace('/think', '').replace('/no_think', '').strip() }}
64
+ {%- else -%}
65
+ {%- for content in message['content'] -%}
66
+ {%- if content['type'] == 'image' -%}
67
+ {{- '' }}
68
+ {%- elif content['type'] == 'text' -%}
69
+ {{- content['text'].replace('/think', '').replace('/no_think', '').strip() }}
70
+ {%- endif -%}
71
+ {%- endfor -%}
72
+ {%- endif -%}
73
+ {{- '\n' -}}
74
+
75
+ {%- elif message['role'] == 'tool' -%}
76
+ {%- if loop.first or (messages[loop.index0 - 1].role != 'tool') -%}
77
+ {{- '<SPECIAL_11>User\n<TOOL_RESPONSE>[' }}
78
+ {%- endif -%}
79
+
80
+ {{- message.content }}
81
+ {{- ', ' if not loop.last and (messages[loop.index0 + 1].role == 'tool') else '' -}}
82
+
83
+ {%- if loop.last or (messages[loop.index0 + 1].role != 'tool') -%}
84
+ {{- ']</TOOL_RESPONSE>\n' -}}
85
+ {%- endif -%}
86
+
87
+ {%- elif message['role'] == 'assistant' -%}
88
+ {%- if '</think>' in content -%}
89
+ {%- set content = content.split('</think>')[1].strip() -%}
90
+ {%- endif -%}
91
+
92
+ {{- '<SPECIAL_11>Assistant\n' + content.strip() }}
93
+
94
+ {%- if message.tool_calls -%}
95
+ {%- if content.strip() != '' -%}
96
+ {{- '\n\n' -}}
97
+ {%- endif -%}
98
+
99
+ {{- '<TOOLCALL>[' -}}
100
+ {%- for call in message.tool_calls -%}
101
+ {%- set fn = call.function if call.function is defined else call -%}
102
+ {{- '{"name": "' + fn.name + '", "arguments": ' -}}
103
+ {%- if fn.arguments is string -%}
104
+ {{- fn.arguments -}}
105
+ {%- else -%}
106
+ {{- fn.arguments | tojson -}}
107
+ {%- endif -%}
108
+ {{- '}' + (', ' if not loop.last else '') -}}
109
+ {%- endfor -%}
110
+ {{- ']</TOOLCALL>' -}}
111
+ {%- endif -%}
112
+ {{- '\n<SPECIAL_12>\n' -}}
113
+ {%- endif -%}
114
+ {%- endfor -%}
115
+ {%- if not add_generation_prompt is defined -%}
116
+ {%- set add_generation_prompt = false -%}
117
+ {%- endif -%}
118
+ {%- if add_generation_prompt -%}
119
+ {{- '<SPECIAL_11>Assistant\n' }}
120
+ {%- if ns.enable_thinking is defined and ns.enable_thinking is false -%}
121
+ {{- '<think></think>' }}
122
+ {%- else -%}
123
+ {{- '<think>\n' }}
124
+ {%- endif -%}
125
+ {%- endif -%}
nano_v2_llm_template.jinja ADDED
@@ -0,0 +1 @@
 
 
1
+ {%- for message in messages %}{%- set content = message['content'] %}{%- if message['role'] == 'system' %}{{- '<SPECIAL_10>System\n' + content.replace('/think', '').replace('/no_think', '').strip() }}{%- if tools -%}{%- if content.replace('/think', '').replace('/no_think', '').strip() != '' -%}{{- '\n\n' -}}{%- endif -%}{{- 'You can use the following tools to assist the user if required:\n<AVAILABLE_TOOLS>[' -}}{%- for tool in tools -%}{{- (tool.function if tool.function is defined else tool) | tojson -}}{{- ', ' if not loop.last else '' -}}{%- endfor -%}{{- ']</AVAILABLE_TOOLS>\n\nIf you decide to call any tool(s), use the following format:\n<TOOLCALL>[{{\"name\": \"tool_name1\", \"arguments\": \"tool_args1\"}}, {{\"name\": \"tool_name2\", \"arguments\": \"tool_args2\"}}]</TOOLCALL>\n\nThe user will execute tool-calls and return responses from tool(s) in this format:\n<TOOL_RESPONSE>[{{\"tool_response1\"}}, {{\"tool_response2\"}}]</TOOL_RESPONSE>\n\nBased on the tool responses, you can call additional tools if needed, correct tool calls if any errors are found, or just respond to the user.' -}}{%- endif -%}{{- '\n' -}}{%- elif message['role'] == 'user' %}{{- '<SPECIAL_11>User\n' + content.replace('/think', '').replace('/no_think', '').strip() + '\n' }}{%- elif message['role'] == 'tool' %}{%- if loop.first or (messages[loop.index0 - 1].role != 'tool') -%}{{- '<SPECIAL_11>User\n' + '<TOOL_RESPONSE>[' }}{%- endif -%}{{- message.content -}}{{- ', ' if not loop.last and (messages[loop.index0 + 1].role == 'tool') else '' -}}{%- if loop.last or (messages[loop.index0 + 1].role != 'tool') -%}{{- ']</TOOL_RESPONSE>\n' -}}{%- endif -%}{%- elif message['role'] == 'assistant' %}{%- if '</think>' in content %}{%- set content = content.split('</think>')[1].strip() %}{%- endif %}{{- '<SPECIAL_11>Assistant\n' + content.strip() }}{%- if message.tool_calls -%}{%- if content.strip() != '' -%}{{- '\n\n' -}}{%- endif -%}{{- '<TOOLCALL>[' -}}{%- for call in message.tool_calls -%}{%- set fn = call.function if call.function is defined else call -%}{{- '{\"name\": \"' + fn.name + '\", \"arguments\": ' -}}{%- if fn.arguments is string -%}{{- fn.arguments -}}{%- else -%}{{- fn.arguments | tojson -}}{%- endif -%}{{- '}' + (', ' if not loop.last else '') -}}{%- endfor -%}{{- ']</TOOLCALL>' -}}{%- endif -%}{{- '\n<SPECIAL_12>\n' -}}{%- endif %}{%- endfor %}{%- set ns = namespace(enable_thinking=true) %}{%- for message in messages %}{%- set content = message['content'] %}{%- if message['role'] == 'user' or message['role'] == 'system' %}{%- if '/think' in content %}{%- set ns.enable_thinking = true %}{%- elif '/no_think' in content %}{%- set ns.enable_thinking = false %}{%- endif %}{%- endif %}{%- endfor %}{%- if add_generation_prompt %}{{- '<SPECIAL_11>Assistant\n' }}{%- if ns.enable_thinking is defined and ns.enable_thinking is false %}{{- '<think></think>' }}{%- else %}{{- '<think>\n' }}{%- endif %}{%- endif %}
non_reasoning_nano_v2_inference_chat_template.jinja ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- for message in messages -%}
2
+ {%- if loop.first -%}
3
+ {%- if message['role'] != 'system' -%}
4
+ {{ '<SPECIAL_10>System\n\n' }}
5
+ {%- endif -%}
6
+ {%- endif -%}
7
+
8
+ {%- if message['role'] == 'system' -%}
9
+ {{ '<SPECIAL_10>System\n' }}
10
+ {%- if message['content'] is string -%}
11
+ {{ message['content'].replace('/think', '').replace('/no_think', '').strip() }}
12
+ {%- else -%}
13
+ {%- for content in message['content'] -%}
14
+ {%- if content['type'] == 'image' -%}
15
+ {{ '' }}
16
+ {%- elif content['type'] == 'text' -%}
17
+ {{ content['text'].replace('/think', '').replace('/no_think', '').strip() }}
18
+ {%- endif -%}
19
+ {%- endfor -%}
20
+ {%- endif -%}
21
+ {{ '\n' }}
22
+
23
+ {%- if tools -%}
24
+ {%- if message['content'].replace('/think', '').replace('/no_think', '').strip() != '' -%}
25
+ {{ '\n\n' }}
26
+ {%- endif -%}
27
+
28
+ {{ 'You can use the following tools to assist the user if required:\n<AVAILABLE_TOOLS>[' }}
29
+ {%- for tool in tools -%}
30
+ {{- (tool.function if tool.function is defined else tool) | tojson -}}
31
+ {{ ', ' if not loop.last else '' }}
32
+ {%- endfor -%}
33
+ {{ ']</AVAILABLE_TOOLS>\n\n' }}
34
+
35
+ {{ 'If you decide to call any tool(s), use the following format:\n' }}
36
+ {{ '<TOOLCALL>[{{"name": "tool_name1", "arguments": "tool_args1"}}, {{"name": "tool_name2", "arguments": "tool_args2"}}]</TOOLCALL>\n\n' }}
37
+
38
+ {{ 'The user will execute tool-calls and return responses from tool(s) in this format:\n' }}
39
+ {{ '<TOOL_RESPONSE>[{{"tool_response1"}}, {{"tool_response2"}}]</TOOL_RESPONSE>\n\n' }}
40
+
41
+ {{ 'Based on the tool responses, you can call additional tools if needed, correct tool calls if any errors are found, or just respond to the user.\n' }}
42
+ {%- endif -%}
43
+
44
+ {%- elif message['role'] == 'user' -%}
45
+ {{ '<SPECIAL_11>User\n' }}
46
+ {%- if message['content'] is string -%}
47
+ {{ message['content'].replace('/think', '').replace('/no_think', '').strip() }}
48
+ {%- else -%}
49
+ {%- for content in message['content'] -%}
50
+ {%- if content['type'] == 'image' -%}
51
+ {{ '' }}
52
+ {%- elif content['type'] == 'text' -%}
53
+ {{ content['text'].replace('/think', '').replace('/no_think', '').strip() }}
54
+ {%- endif -%}
55
+ {%- endfor -%}
56
+ {%- endif -%}
57
+ {{ '\n' }}
58
+
59
+ {%- elif message['role'] == 'tool' -%}
60
+ {%- if loop.first or (messages[loop.index0 - 1].role != 'tool') -%}
61
+ {{ '<SPECIAL_11>User\n<TOOL_RESPONSE>[' }}
62
+ {%- endif -%}
63
+
64
+ {{ message.content }}
65
+ {{ ', ' if not loop.last and (messages[loop.index0 + 1].role == 'tool') else '' }}
66
+
67
+ {%- if loop.last or (messages[loop.index0 + 1].role != 'tool') -%}
68
+ {{ ']</TOOL_RESPONSE>\n' }}
69
+ {%- endif -%}
70
+
71
+ {%- elif message['role'] == 'assistant' -%}
72
+ {%- if '</think>' in content -%}
73
+ {%- set content = content.split('</think>')[1].strip() -%}
74
+ {%- endif -%}
75
+
76
+ {{ '<SPECIAL_11>Assistant\n' + content.strip() }}
77
+
78
+ {%- if message.tool_calls -%}
79
+ {%- if content.strip() != '' -%}
80
+ {{ '\n\n' }}
81
+ {%- endif -%}
82
+
83
+ {{ '<TOOLCALL>[' }}
84
+ {%- for call in message.tool_calls -%}
85
+ {%- set fn = call.function if call.function is defined else call -%}
86
+ {{ '{"name": "' + fn.name + '", "arguments": ' }}
87
+ {%- if fn.arguments is string -%}
88
+ {{- fn.arguments -}}
89
+ {%- else -%}
90
+ {{- fn.arguments | tojson -}}
91
+ {%- endif -%}
92
+ {{ '}' + (', ' if not loop.last else '') }}
93
+ {%- endfor -%}
94
+ {{ ']</TOOLCALL>' }}
95
+ {%- endif -%}
96
+ {{ '\n<SPECIAL_12>\n' }}
97
+ {%- endif -%}
98
+ {%- endfor -%}
99
+
100
+ {%- set ns = namespace(enable_thinking=true) -%}
101
+ {%- for message in messages -%}
102
+ {%- set content = message['content'] -%}
103
+ {%- if message['role'] == 'user' or message['role'] == 'system' -%}
104
+ {%- if '/think' in content -%}
105
+ {%- set ns.enable_thinking = true -%}
106
+ {%- elif '/no_think' in content -%}
107
+ {%- set ns.enable_thinking = false -%}
108
+ {%- endif -%}
109
+ {%- endif -%}
110
+ {%- endfor -%}
111
+
112
+ {%- if not add_generation_prompt is defined -%}
113
+ {%- set add_generation_prompt = false -%}
114
+ {%- endif -%}
115
+ {%- if add_generation_prompt -%}
116
+ {{ '<SPECIAL_11>Assistant\n' }}
117
+ {{ '<think></think>' }}
118
+ {%- endif -%}
preprocessor_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "image_processor_type": "NemotronNanoVLV2ImageProcessor",
3
+ "auto_map": {
4
+ "AutoImageProcessor": "image_processing.NemotronNanoVLV2ImageProcessor",
5
+ "AutoVideoProcessor": "video_processing.NemotronNanoVLV2VideoProcessor",
6
+ "AutoProcessor": "processing.NemotronNanoVLV2Processor"
7
+ },
8
+ "image_size": 512,
9
+ "patch_size": 16,
10
+ "downsample_ratio": 0.5,
11
+ "max_num_tiles": 12,
12
+ "use_thumbnail": true,
13
+ "norm_mean": [0.48145466, 0.4578275, 0.40821073],
14
+ "norm_std": [0.26862954, 0.26130258, 0.27577711]
15
+ }
privacy.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Field | Response
2
+ :----------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------
3
+ Generatable or reverse engineerable personal data? | No
4
+ Personal data used to create this model? | No
5
+ Was consent obtained for any personal data used? | Not Applicable
6
+ A description of any methods implemented in data acquisition or processing, if any, to address the prevalence of personal data in the training data, where relevant and applicable. | We used only prompts that do not contain any personal data for synthetic data generation.
7
+ How often is dataset reviewed? | Before release and during dataset creation and model training <br><br>
8
+ Is there provenance for all datasets used in training? | Yes
9
+ Does data labeling (annotation, metadata) comply with privacy laws? | Yes
10
+ Is data compliant with data subject requests for data correction or removal, if such a request was made? | No, not possible with externally-sourced data.
11
+ Applicable Privacy Policy | [Privacy Policy](https://www.nvidia.com/en-us/about-nvidia/privacy-policy/)
12
+ During AI model development, strict adherence to copyright policy ensured compliance through risk mitigation and legal reviews. Post-data collection, reserved rights content is identified and removed, with verified opt-out processes for rightsholders. Detailed records document due diligence and transparency.
13
+ We employ automated tools and data processing techniques to scan for Personally Identifiable Information (PII) during pre-training to identify and filter certain categories of personal information, including public-facing contact details such as email addresses and phone numbers. Scans of Common Crawl, CC-News, and Wikimedia datasets did not detect PII in the majority of samples. However, Microsoft Presidio indicated potential findings including business contact information embedded in natural language, such as email addresses and phone numbers. These were removed using verified instances of PII through a combination of automated filtering and human-in-the-loop validation.
processing.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Union, List
2
+
3
+ import numpy as np
4
+
5
+ from transformers.feature_extraction_utils import BatchFeature
6
+ from transformers.image_utils import ImageInput
7
+ from transformers.processing_utils import ImagesKwargs, MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
8
+ from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
9
+ from transformers.video_utils import VideoInput
10
+
11
+
12
+ class NemotronNanoVLV2ImagesKwargs(ImagesKwargs):
13
+ min_pixels: Optional[int]
14
+ max_pixels: Optional[int]
15
+ patch_size: Optional[int]
16
+ temporal_patch_size: Optional[int]
17
+ merge_size: Optional[int]
18
+
19
+
20
+ class NemotronNanoVLV2ProcessorKwargs(ProcessingKwargs, total=False):
21
+ images_kwargs: NemotronNanoVLV2ImagesKwargs
22
+ videos_kwargs: VideosKwargs
23
+ _defaults = {
24
+ "text_kwargs": {
25
+ "padding": False,
26
+ },
27
+ }
28
+
29
+
30
+ class NemotronNanoVLV2Processor(ProcessorMixin):
31
+ r"""
32
+ Constructs a Nemotron Nano VL V2 processor which wraps an image processor and a tokenizer into a single processor.
33
+ [`NemotronNanoVLV2Processor`] offers all the functionalities of the image processor and tokenizer. See the
34
+ [`~NemotronNanoVLV2Processor.__call__`] and [`~NemotronNanoVLV2Processor.decode`] for more information.
35
+ Args:
36
+ image_processor ([`AutoImageProcessor`], *optional*):
37
+ The image processor is a required input.
38
+ tokenizer ([`AutoTokenizer`], *optional*):
39
+ The tokenizer is a required input.
40
+ chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
41
+ in a chat into a tokenizable string.
42
+ """
43
+
44
+ attributes = ["image_processor", "tokenizer"]
45
+
46
+ image_processor_class = "AutoImageProcessor"
47
+ video_processor_class = "AutoVideoProcessor"
48
+ tokenizer_class = ("AutoTokenizer")
49
+
50
+ def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
51
+ self.image_token = "<image>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
52
+ self.video_token = "<video>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
53
+ self.image_start_token = "<img>" if not hasattr(tokenizer, "image_start_token") else tokenizer.image_start_token
54
+ self.image_end_token = "</img>" if not hasattr(tokenizer, "image_end_token") else tokenizer.image_end_token
55
+ self.image_token_id = (
56
+ tokenizer.image_token_id
57
+ if getattr(tokenizer, "image_token_id", None)
58
+ else tokenizer.convert_tokens_to_ids(self.image_token)
59
+ )
60
+ self.video_token_id = (
61
+ tokenizer.video_token_id
62
+ if getattr(tokenizer, "video_token_id", None)
63
+ else tokenizer.convert_tokens_to_ids(self.video_token)
64
+ )
65
+ super().__init__(image_processor, tokenizer, chat_template=chat_template)
66
+
67
+ def __call__(
68
+ self,
69
+ images: ImageInput = None,
70
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
71
+ videos: VideoInput = None,
72
+ **kwargs: Unpack[NemotronNanoVLV2ProcessorKwargs],
73
+ ) -> BatchFeature:
74
+ """
75
+ Main method to prepare multimodal inputs (text, images, videos) for the model. This method processes text by
76
+ replacing image/video tokens with appropriate placeholder sequences, processes images and videos through the
77
+ image processor, and tokenizes the final text.
78
+
79
+ The method performs the following key operations:
80
+ 1. Processes images using the image processor to get pixel values and patch counts
81
+ 2. Processes videos using the image processor with max_num_tiles=1 to get video pixel values
82
+ 3. Replaces `<image>` tokens in text with `<img>` + image tokens + `</img>` sequences
83
+ 4. Replaces `<video>` tokens in text with frame-by-frame descriptions including timestamps (if metadata provided)
84
+ 5. Tokenizes the processed text and combines all outputs
85
+
86
+ Args:
87
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
88
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
89
+ tensor. Both channels-first and channels-last formats are supported.
90
+ text (`str`, `List[str]`, *optional*):
91
+ The sequence or batch of sequences to be encoded. Each sequence should be a string. The text can contain
92
+ special tokens `<image>` and `<video>` that will be replaced with appropriate token sequences.
93
+ videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
94
+ The video or batch of videos to be prepared. Each video should be a 4D NumPy array or PyTorch
95
+ tensor with shape (num_frames, channels, height, width). Both channels-first and channels-last formats
96
+ are supported. Note: Currently only supports batch size of 1 for videos.
97
+ images_kwargs (`Dict`, *optional*):
98
+ Additional keyword arguments for image processing, including:
99
+ - `min_pixels` (`int`, *optional*): Minimum number of pixels for image processing
100
+ - `max_pixels` (`int`, *optional*): Maximum number of pixels for image processing
101
+ - `patch_size` (`int`, *optional*): Size of patches for image processing
102
+ - `temporal_patch_size` (`int`, *optional*): Size of temporal patches
103
+ - `merge_size` (`int`, *optional*): Size for merging patches
104
+ videos_kwargs (`Dict`, *optional*):
105
+ Additional keyword arguments for video processing, including:
106
+ - `video_metadata` (`VideoMetadata`, *optional*): Metadata containing fps information for timestamp calculation
107
+ text_kwargs (`Dict`, *optional*):
108
+ Additional keyword arguments for text tokenization, including:
109
+ - `return_tensors` (`str` or [`~utils.TensorType`], *optional*): Framework for returned tensors ('tf', 'pt', 'np', 'jax')
110
+ - `padding` (`bool`, *optional*): Whether to pad sequences (defaults to False)
111
+
112
+ Returns:
113
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
114
+
115
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
116
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
117
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
118
+ `None`).
119
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
120
+ - **num_patches** -- Number of patches per image. Returned when `images` is not `None`.
121
+ - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
122
+
123
+ Raises:
124
+ AssertionError: If videos are provided with batch size > 1 (not currently supported).
125
+
126
+ Note:
127
+ - Image tokens `<image>` in text are replaced with `<img>` + repeated image tokens + `</img>`
128
+ - Video tokens `<video>` in text are replaced with frame-by-frame descriptions
129
+ - When video metadata with fps is provided, frame descriptions include timestamps
130
+ - Videos are processed with max_num_tiles=1 regardless of the images setting
131
+ """
132
+ output_kwargs = self._merge_kwargs(
133
+ NemotronNanoVLV2ProcessorKwargs,
134
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
135
+ **kwargs,
136
+ )
137
+ image_inputs = videos_inputs = {}
138
+ if images is not None:
139
+ image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
140
+ image_num_patches = image_inputs["num_patches"]
141
+
142
+ if videos is not None:
143
+ orig_tiles = self.image_processor.max_num_tiles
144
+ self.image_processor.max_num_tiles = 1
145
+ videos_inputs = self.image_processor(images=videos, **output_kwargs["images_kwargs"])
146
+ self.image_processor.max_num_tiles = orig_tiles
147
+ video_num_patches = [sum(videos_inputs["num_patches"])]
148
+ videos_inputs["pixel_values_videos"] = videos_inputs["pixel_values"]
149
+ del videos_inputs["pixel_values"]
150
+
151
+ if not isinstance(text, list):
152
+ text = [text]
153
+
154
+ text = text.copy() # below lines change text in-place
155
+ if images is not None:
156
+ index = 0
157
+ for i in range(len(text)):
158
+ while self.image_token in text[i]:
159
+ text[i] = text[i].replace(self.image_token, self.image_start_token + "<|placeholder|>" * image_num_patches[index] * self.image_processor.num_image_token + self.image_end_token, 1)
160
+ index += 1
161
+ text[i] = text[i].replace("<|placeholder|>", self.image_token)
162
+ if videos is not None:
163
+ assert len(text) == 1, "Video is not supported for batch size > 1"
164
+ video_metadata = output_kwargs.get("videos_kwargs", {}).get("video_metadata", None)
165
+ i = 0
166
+ index = 0
167
+ if self.video_token in text[i]:
168
+ each_frame = self.image_start_token + "<|placeholder|>" * self.image_processor.num_image_token + self.image_end_token
169
+ video_prompt = "This is a video:\n"
170
+ for j in range(video_num_patches[index]):
171
+ if video_metadata is not None and video_metadata.fps is not None:
172
+ timestamp = j / video_metadata.fps
173
+ video_prompt += f"Frame {j+1} sampled at {timestamp:.2f} seconds: {each_frame}\n"
174
+ else:
175
+ # Fallback to original format without timestamps
176
+ video_prompt += f"Frame {j+1}: {each_frame}\n"
177
+
178
+ text[i] = text[i].replace(self.video_token, video_prompt, 1)
179
+ text[i] = text[i].replace("<|placeholder|>", self.video_token)
180
+
181
+ return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
182
+ text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
183
+ return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs}, tensor_type=return_tensors)
184
+
185
+ def _get_num_multimodal_tokens(self, image_sizes=None, video_sizes=None, **kwargs):
186
+ """
187
+ Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
188
+ Args:
189
+ image_sizes (`list[list[int]]`, *optional*):
190
+ The input sizes formatted as (height, width) per each image.
191
+ video_sizes (`list[list[int]]`, *optional*):
192
+ The input sizes formatted as (num_frames, height, width) per each video.
193
+ Returns:
194
+ `MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
195
+ input modalities, along with other useful data.
196
+ """
197
+
198
+ vision_data = {}
199
+ if image_sizes is not None:
200
+ images_kwargs = NemotronNanoVLV2ProcessorKwargs._defaults.get("images_kwargs", {})
201
+ images_kwargs.update(kwargs)
202
+ merge_size = images_kwargs.get("merge_size", None) or self.image_processor.merge_size
203
+
204
+ num_image_patches = [
205
+ self.image_processor.get_number_of_image_patches(*image_size, images_kwargs)
206
+ for image_size in image_sizes
207
+ ]
208
+ num_image_tokens = [(num_patches // merge_size**2) for num_patches in num_image_patches]
209
+ vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
210
+ return MultiModalData(**vision_data)
211
+
212
+ def batch_decode(self, *args, **kwargs):
213
+ """
214
+ This method forwards all its arguments to the tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
215
+ refer to the docstring of this method for more information.
216
+ """
217
+ return self.tokenizer.batch_decode(*args, **kwargs)
218
+
219
+ def decode(self, *args, **kwargs):
220
+ """
221
+ This method forwards all its arguments to the tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
222
+ the docstring of this method for more information.
223
+ """
224
+ return self.tokenizer.decode(*args, **kwargs)
225
+
226
+ def post_process_image_text_to_text(
227
+ self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
228
+ ):
229
+ """
230
+ Post-process the output of the model to decode the text.
231
+
232
+ Args:
233
+ generated_outputs (`torch.Tensor` or `np.ndarray`):
234
+ The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
235
+ or `(sequence_length,)`.
236
+ skip_special_tokens (`bool`, *optional*, defaults to `True`):
237
+ Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
238
+ clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
239
+ Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
240
+ **kwargs:
241
+ Additional arguments to be passed to the tokenizer's `batch_decode method`.
242
+
243
+ Returns:
244
+ `list[str]`: The decoded text.
245
+ """
246
+ return self.tokenizer.batch_decode(
247
+ generated_outputs,
248
+ skip_special_tokens=skip_special_tokens,
249
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
250
+ **kwargs,
251
+ )
252
+
253
+ @property
254
+ def model_input_names(self):
255
+ tokenizer_input_names = self.tokenizer.model_input_names
256
+ image_processor_input_names = self.image_processor.model_input_names
257
+ names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
258
+ return names_from_processor + ["second_per_grid_ts"]
259
+
260
+
261
+ __all__ = ["NemotronNanoVLV2Processor"]
processing_utils.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Union, Any, Dict
2
+
3
+ from PIL import Image
4
+ import torch
5
+ from transformers.image_processing_base import BatchFeature
6
+ from transformers.image_processing_utils_fast import BaseImageProcessorFast, divide_to_patches
7
+ from transformers.image_utils import (make_list_of_images, get_image_size,
8
+ get_image_type, ImageInput, ImageType, ChannelDimension)
9
+ from transformers.utils import TensorType
10
+ import torchvision.transforms as T
11
+
12
+
13
+ def get_internvl_target_ratios(
14
+ min_num: int,
15
+ max_num: int,
16
+ ) -> list[tuple[int, int]]:
17
+ target_ratios = {(i, j)
18
+ for n in range(min_num, max_num + 1)
19
+ for i in range(1, n + 1)
20
+ for j in range(1, n + 1) if min_num <= i * j <= max_num}
21
+ return sorted(target_ratios, key=lambda x: x[0] * x[1])
22
+
23
+
24
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
25
+ best_factor = float('-inf')
26
+ best_ratio = (1, 1)
27
+ area = width * height
28
+ for ratio in target_ratios:
29
+ target_aspect_ratio = ratio[0] / ratio[1]
30
+ factor_based_on_area_n_ratio = min(
31
+ (ratio[0]*ratio[1]*image_size*image_size)/ area, 0.6
32
+ )* min(
33
+ target_aspect_ratio/aspect_ratio, aspect_ratio/target_aspect_ratio)
34
+ if factor_based_on_area_n_ratio > best_factor:
35
+ best_factor = factor_based_on_area_n_ratio
36
+ best_ratio = ratio
37
+ return best_ratio
38
+
39
+
40
+ def calculate_targets(
41
+ orig_width: int,
42
+ orig_height: int,
43
+ target_ratios: list[tuple[int, int]],
44
+ image_size: int,
45
+ ) -> tuple[int, int, int]:
46
+ aspect_ratio = orig_width / orig_height
47
+
48
+ # find the closest aspect ratio to the target
49
+ target_aspect_ratio = find_closest_aspect_ratio(
50
+ aspect_ratio,
51
+ target_ratios,
52
+ width=orig_width,
53
+ height=orig_height,
54
+ image_size=image_size,
55
+ )
56
+
57
+ # calculate the target width and height
58
+ target_width = image_size * target_aspect_ratio[0]
59
+ target_height = image_size * target_aspect_ratio[1]
60
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
61
+
62
+ return blocks, target_width, target_height
63
+
64
+
65
+ def dynamic_preprocess(image, image_size=512, max_num_tiles=12, use_thumbnail=True):
66
+ orig_height, orig_width = get_image_size(image, channel_dim=ChannelDimension.FIRST)
67
+ target_ratios = get_internvl_target_ratios(1, max_num_tiles)
68
+
69
+ blocks, target_width, target_height = calculate_targets(
70
+ orig_width,
71
+ orig_height,
72
+ target_ratios,
73
+ image_size
74
+ )
75
+ # resize the image
76
+ resized_img = T.Resize((target_width, target_height), interpolation=T.InterpolationMode.BICUBIC)(image)
77
+ patches = divide_to_patches(resized_img, image_size)
78
+ assert len(patches) == blocks
79
+ if use_thumbnail and len(patches) != 1:
80
+ thumbnail_img = T.Resize((image_size, image_size), interpolation=T.InterpolationMode.BICUBIC)(image)
81
+ patches.append(thumbnail_img)
82
+
83
+ return patches
safety.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Field | Response
2
+ :---------------------------------------------------|:----------------------------------
3
+ Model Application Field(s): | Customer Service, Media & Entertainment, Enterprise Document Intelligence and Processing & Retail
4
+ Describe the life critical impact (if present). | Not Applicable
5
+ Description of methods implemented in data acquisition or processing, if any, to address other types of potentially harmful data in the training, testing, and validation data: | We used a guard model for content safety to exclude potentially harmful data from training.
6
+ Description of any methods implemented in data acquisition or processing, if any, to address illegal or harmful content in the training data, including, but not limited to, child sexual abuse material (CSAM) and non-consensual intimate imagery (NCII) | We used a Gemma-3 4B-based guard model trained on [Nemotron Content Safety Dataset v2](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0) for content safety to exclude potentially illegal or harmful content from the training. We also did CSAM checks on our image datasets for training.
7
+ Use Case Restrictions: | Use of this model is governed by the [ NVIDIA Open Model License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/)
8
+ Model and dataset restrictions: | The Principle of least privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training, and dataset license constraints adhered to.
9
+ This AI model was developed based on our policies to ensure responsible data handling and risk mitigation. The datasets used for training have been scanned for harmful content and illegal content, consistent with our policies including scanning for Child Sexual Abuse Material (CSAM). Ongoing review and monitoring mechanisms are in place based on our policies and to maintain data integrity.
10
+ The model was optimized explicitly for instruction following and as such is more susceptible to prompt injection and jailbreaking in various forms as a result of its instruction tuning. This means that the model should be paired with additional rails or system filtering to limit exposure to instructions from malicious sources -- either directly or indirectly by retrieval (e.g. via visiting a website) -- as they may yield outputs that can lead to harmful, system-level outcomes up to and including remote code execution in agentic systems when effective security controls including guardrails are not in place. The model may generate answers that may be inaccurate, omit key information, include irrelevant or redundant text, or produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<SPECIAL_12>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db8e35444fca3a2b98e2c8e927a8f1d8b1ba9d4b349e13ce5aafdb11b6404205
3
+ size 17079976
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
video_io.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import base64
3
+ import mimetypes
4
+ from PIL import Image
5
+ import io
6
+ from transformers.video_utils import VideoMetadata
7
+
8
+
9
+ def encode_pil_to_jpeg_data_url(pil_image):
10
+ from io import BytesIO
11
+ buf = BytesIO()
12
+ pil_image.save(buf, format="JPEG")
13
+ b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
14
+ return f"data:image/jpeg;base64,{b64}"
15
+
16
+
17
+ def sample_video_frames_to_data_urls(video_path_local, fps=1, nframe=0, nframe_max=-1):
18
+ """
19
+ Sample frames from a video and return base64-encoded data URLs along with metadata.
20
+
21
+ Args:
22
+ video_path_local: Path to the video file
23
+ fps: Target frames per second for sampling (if > 0, uses fps-based sampling)
24
+ nframe: Number of frames to sample (used if fps <= 0)
25
+ nframe_max: Maximum number of frames to sample
26
+
27
+ Returns:
28
+ tuple: (frame_data_urls, metadata)
29
+ - frame_data_urls: List of base64-encoded frame images
30
+ - metadata: VideoMetadata dataclass containing info about the sampled frames:
31
+ - total_num_frames: Number of sampled frames
32
+ - fps: Effective frame rate of the sampled frames
33
+ - duration: Duration covered by the sampled frames (in seconds)
34
+ - video_backend: Backend used for video processing ('decord')
35
+ """
36
+ import numpy as np
37
+ from PIL import Image
38
+ import decord
39
+
40
+ vid = decord.VideoReader(video_path_local)
41
+ total_frames = len(vid)
42
+ video_fps = vid.get_avg_fps()
43
+ total_duration = total_frames / max(1e-6, video_fps)
44
+
45
+ if fps > 0:
46
+ required_frames = int(total_duration * fps)
47
+ desired_frames = max(1, required_frames)
48
+ if nframe_max > 0 and desired_frames > nframe_max:
49
+ desired_frames = nframe_max
50
+ if desired_frames >= total_frames:
51
+ indices = list(range(total_frames))
52
+ elif desired_frames == 1:
53
+ indices = [0] # Always use first frame for single frame sampling
54
+ else:
55
+ # Generate evenly spaced indices and ensure uniqueness
56
+ raw_indices = np.linspace(0, total_frames - 1, desired_frames)
57
+ indices = list(np.unique(np.round(raw_indices).astype(int)))
58
+ else:
59
+ desired_frames = max(1, int(nframe) if nframe and nframe > 0 else 8)
60
+ if nframe_max > 0 and desired_frames > nframe_max:
61
+ desired_frames = nframe_max
62
+ if desired_frames >= total_frames:
63
+ indices = list(range(total_frames))
64
+ elif desired_frames == 1:
65
+ indices = [0] # Always use first frame for single frame sampling
66
+ else:
67
+ # Generate evenly spaced indices and ensure uniqueness
68
+ raw_indices = np.linspace(0, total_frames - 1, desired_frames)
69
+ indices = list(np.unique(np.round(raw_indices).astype(int)))
70
+
71
+ images = [Image.fromarray(vid[i].asnumpy()) for i in indices]
72
+ frame_urls = [encode_pil_to_jpeg_data_url(im) for im in images]
73
+
74
+ # Calculate timestamps for each sampled frame
75
+ timestamps = [float(idx) / video_fps for idx in indices]
76
+
77
+ # Calculate metadata for the sampled frames
78
+ sampled_num_frames = len(indices)
79
+
80
+ # Duration is the time span from first to last frame
81
+ if len(timestamps) > 1:
82
+ sampled_duration = timestamps[-1] - timestamps[0]
83
+ sampled_fps = (sampled_num_frames - 1) / sampled_duration if sampled_duration > 0 else 1.0
84
+ else:
85
+ # Single frame case
86
+ sampled_duration = None
87
+ sampled_fps = None
88
+
89
+ metadata = VideoMetadata(
90
+ total_num_frames=sampled_num_frames,
91
+ fps=sampled_fps,
92
+ duration=sampled_duration,
93
+ video_backend=None,
94
+ )
95
+
96
+ return frame_urls, metadata
97
+
98
+
99
+ def maybe_path_or_url_to_data_urls(path_or_url, fps=1, nframe=0, nframe_max=-1):
100
+ """
101
+ Convert a path or URL to data URLs, handling videos, images, and remote files.
102
+
103
+ Args:
104
+ path_or_url: Path or URL to the media file
105
+ fps: Target frames per second for video sampling (if > 0, uses fps-based sampling)
106
+ nframe: Number of frames to sample from video (used if fps <= 0)
107
+ nframe_max: Maximum number of frames to sample
108
+
109
+ Returns:
110
+ tuple: (data_urls, metadata)
111
+ - data_urls: List of base64-encoded data URLs
112
+ - metadata: VideoMetadata dataclass with video metadata or None for images
113
+ """
114
+ val = str(path_or_url or "")
115
+ low = val.lower()
116
+
117
+ # Handle data URLs
118
+ if low.startswith("data:"):
119
+ if low.startswith("data:video/mp4"):
120
+ header, _, b64part = val.partition(",")
121
+ if not b64part:
122
+ return [val], None
123
+ import tempfile
124
+ tmp = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
125
+ try:
126
+ tmp.write(base64.b64decode(b64part))
127
+ tmp.flush(); tmp.close()
128
+ return sample_video_frames_to_data_urls(tmp.name, fps=fps, nframe=nframe, nframe_max=nframe_max)
129
+ finally:
130
+ try:
131
+ os.unlink(tmp.name)
132
+ except Exception:
133
+ pass
134
+ return [val], None
135
+
136
+ # Remote URL
137
+ if low.startswith("http://") or low.startswith("https://"):
138
+ if low.endswith(".mp4"):
139
+ try:
140
+ import tempfile, urllib.request
141
+ with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpf:
142
+ urllib.request.urlretrieve(val, tmpf.name)
143
+ local_path = tmpf.name
144
+ result = sample_video_frames_to_data_urls(local_path, fps=fps, nframe=nframe, nframe_max=nframe_max)
145
+ try:
146
+ os.unlink(local_path)
147
+ except Exception:
148
+ pass
149
+ return result
150
+ except Exception:
151
+ return [val], None
152
+ return [val], None
153
+
154
+ # Local path
155
+ if os.path.exists(val):
156
+ mime, _ = mimetypes.guess_type(val)
157
+ if mime and mime.startswith("image/"):
158
+ with open(val, "rb") as f:
159
+ b64 = base64.b64encode(f.read()).decode("utf-8")
160
+ return [f"data:{mime};base64,{b64}"], None
161
+ if mime == "video/mp4" or (mime is None and val.endswith(".mp4")):
162
+ return sample_video_frames_to_data_urls(val, fps=fps, nframe=nframe, nframe_max=nframe_max)
163
+ # Fallback: treat as binary image
164
+ with open(val, "rb") as f:
165
+ b64 = base64.b64encode(f.read()).decode("utf-8")
166
+ return [f"data:image/jpeg;base64,{b64}"], None
167
+
168
+ return [val], None
169
+
170
+
171
+ def pil_image_from_base64(b64_str: str) -> Image.Image:
172
+ # Handle data URLs like "data:image/png;base64,...."
173
+ if b64_str.startswith('data:'):
174
+ b64_str = b64_str.split(',', 1)[1]
175
+ img_bytes = base64.b64decode(b64_str)
176
+ return Image.open(io.BytesIO(img_bytes))