Upload modeling_rotary_indictrans.py with huggingface_hub
Browse files- modeling_rotary_indictrans.py +1794 -0
modeling_rotary_indictrans.py
ADDED
|
@@ -0,0 +1,1794 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 The RotaryIndicTrans2 Authors and AI4Bharat team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" PyTorch RotaryIndicTrans model."""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import math
|
| 19 |
+
from typing import List, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torch.nn as nn
|
| 23 |
+
from torch.nn import functional as F
|
| 24 |
+
from transformers.activations import ACT2FN
|
| 25 |
+
|
| 26 |
+
from transformers.modeling_attn_mask_utils import (
|
| 27 |
+
_prepare_4d_attention_mask,
|
| 28 |
+
_prepare_4d_attention_mask_for_sdpa,
|
| 29 |
+
_prepare_4d_causal_attention_mask,
|
| 30 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
|
| 34 |
+
from transformers.modeling_outputs import (
|
| 35 |
+
BaseModelOutput,
|
| 36 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 37 |
+
Seq2SeqLMOutput,
|
| 38 |
+
Seq2SeqModelOutput,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
from transformers.utils import (
|
| 42 |
+
logging,
|
| 43 |
+
is_flash_attn_2_available,
|
| 44 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
from einops import rearrange
|
| 48 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 49 |
+
from configuration_rotary_indictrans import RotaryIndicTransConfig
|
| 50 |
+
|
| 51 |
+
try:
|
| 52 |
+
from rotary_embedding_torch import RotaryEmbedding
|
| 53 |
+
except ImportError:
|
| 54 |
+
raise ImportError("Please install the rotary-embedding-torch>=0.6.4")
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
logger = logging.get_logger(__name__)
|
| 58 |
+
|
| 59 |
+
ROTARY_INDICTRANS_PRETRAINED_MODEL_ARCHIVE_LIST = [""]
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
if is_flash_attn_2_available():
|
| 63 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 64 |
+
from flash_attn.bert_padding import (
|
| 65 |
+
index_first_axis,
|
| 66 |
+
pad_input,
|
| 67 |
+
unpad_input,
|
| 68 |
+
) # noqa
|
| 69 |
+
except:
|
| 70 |
+
pass
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 74 |
+
def _get_unpad_data(attention_mask):
|
| 75 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 76 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 77 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 78 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
| 79 |
+
return (
|
| 80 |
+
indices,
|
| 81 |
+
cu_seqlens,
|
| 82 |
+
max_seqlen_in_batch,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
|
| 87 |
+
def shift_tokens_right(
|
| 88 |
+
input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int
|
| 89 |
+
):
|
| 90 |
+
"""
|
| 91 |
+
Shift input ids one token to the right.
|
| 92 |
+
"""
|
| 93 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
| 94 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
| 95 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
| 96 |
+
|
| 97 |
+
if pad_token_id is None:
|
| 98 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
| 99 |
+
# replace possible -100 values in labels by `pad_token_id`
|
| 100 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
| 101 |
+
|
| 102 |
+
return shifted_input_ids
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def create_position_ids_from_input_ids(
|
| 106 |
+
input_ids, padding_idx, past_key_values_length=0
|
| 107 |
+
):
|
| 108 |
+
"""
|
| 109 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
| 110 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
| 111 |
+
"""
|
| 112 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
| 113 |
+
mask = input_ids.ne(padding_idx).int()
|
| 114 |
+
incremental_indices = (
|
| 115 |
+
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
|
| 116 |
+
) * mask
|
| 117 |
+
return incremental_indices.long() + padding_idx
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->RotaryIndicTrans
|
| 121 |
+
class RotaryIndicTransAttention(nn.Module):
|
| 122 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 123 |
+
|
| 124 |
+
def __init__(
|
| 125 |
+
self,
|
| 126 |
+
embed_dim: int,
|
| 127 |
+
num_heads: int,
|
| 128 |
+
dropout: float = 0.0,
|
| 129 |
+
is_decoder: bool = False,
|
| 130 |
+
bias: bool = True,
|
| 131 |
+
is_causal: bool = False,
|
| 132 |
+
is_cross_attention: bool = False,
|
| 133 |
+
config: Optional[RotaryIndicTransConfig] = None,
|
| 134 |
+
):
|
| 135 |
+
super().__init__()
|
| 136 |
+
self.embed_dim = embed_dim
|
| 137 |
+
self.num_heads = num_heads
|
| 138 |
+
self.dropout = dropout
|
| 139 |
+
self.head_dim = embed_dim // num_heads
|
| 140 |
+
self.config = config
|
| 141 |
+
self.rope_args = config.rope_args
|
| 142 |
+
|
| 143 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
| 144 |
+
raise ValueError(
|
| 145 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
| 146 |
+
f" and `num_heads`: {num_heads})."
|
| 147 |
+
)
|
| 148 |
+
self.scaling = self.head_dim**-0.5
|
| 149 |
+
self.is_decoder = is_decoder
|
| 150 |
+
self.is_causal = is_causal
|
| 151 |
+
|
| 152 |
+
self.xpos = self.rope_args.get("use_xpos", False)
|
| 153 |
+
|
| 154 |
+
# partial rotation in RoPE
|
| 155 |
+
self.rotary_pos_embed = (
|
| 156 |
+
RotaryEmbedding(
|
| 157 |
+
dim=self.head_dim // 2,
|
| 158 |
+
use_xpos=self.xpos,
|
| 159 |
+
theta=self.rope_args.get("theta", 10000),
|
| 160 |
+
xpos_scale_base=self.rope_args.get("xpos_scale_base", 512),
|
| 161 |
+
)
|
| 162 |
+
if not is_cross_attention
|
| 163 |
+
else None
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
| 167 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
| 168 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
| 169 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
| 170 |
+
|
| 171 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 172 |
+
return (
|
| 173 |
+
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
| 174 |
+
.transpose(1, 2)
|
| 175 |
+
.contiguous()
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
def _apply_rotary_pos_emb(self, q, k, is_inference=False):
|
| 179 |
+
q = rearrange(q, "(b h) t d -> b h t d", h=self.num_heads)
|
| 180 |
+
k = rearrange(k, "(b h) t d -> b h t d", h=self.num_heads)
|
| 181 |
+
|
| 182 |
+
if is_inference:
|
| 183 |
+
q, k = self.rotary_pos_embed.rotate_queries_with_cached_keys(q, k)
|
| 184 |
+
else:
|
| 185 |
+
if not self.xpos:
|
| 186 |
+
q = self.rotary_pos_embed.rotate_queries_or_keys(q)
|
| 187 |
+
k = self.rotary_pos_embed.rotate_queries_or_keys(k)
|
| 188 |
+
else:
|
| 189 |
+
q, k = self.rotary_pos_embed.rotate_queries_and_keys(q, k)
|
| 190 |
+
|
| 191 |
+
q = rearrange(q, "b h t d -> (b h) t d")
|
| 192 |
+
k = rearrange(k, "b h t d -> (b h) t d")
|
| 193 |
+
return q, k
|
| 194 |
+
|
| 195 |
+
def forward(
|
| 196 |
+
self,
|
| 197 |
+
hidden_states: torch.Tensor,
|
| 198 |
+
key_value_states: Optional[torch.Tensor] = None,
|
| 199 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 200 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 201 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
| 202 |
+
output_attentions: bool = False,
|
| 203 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 204 |
+
"""Input shape: Batch x Time x Channel"""
|
| 205 |
+
|
| 206 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
| 207 |
+
# for the decoder
|
| 208 |
+
is_cross_attention = key_value_states is not None
|
| 209 |
+
|
| 210 |
+
bsz, tgt_len, _ = hidden_states.size()
|
| 211 |
+
|
| 212 |
+
# get query proj
|
| 213 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
| 214 |
+
# get key, value proj
|
| 215 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
| 216 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
| 217 |
+
# the provided `key_value_states` to support prefix tuning
|
| 218 |
+
if (
|
| 219 |
+
is_cross_attention
|
| 220 |
+
and past_key_value is not None
|
| 221 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
| 222 |
+
):
|
| 223 |
+
# reuse k,v, cross_attentions
|
| 224 |
+
key_states = past_key_value[0]
|
| 225 |
+
value_states = past_key_value[1]
|
| 226 |
+
elif is_cross_attention:
|
| 227 |
+
# cross_attentions
|
| 228 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
| 229 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
| 230 |
+
elif past_key_value is not None:
|
| 231 |
+
# reuse k, v, self_attention
|
| 232 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
| 233 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
| 234 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 235 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 236 |
+
else:
|
| 237 |
+
# self_attention
|
| 238 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
| 239 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
| 240 |
+
|
| 241 |
+
if self.is_decoder:
|
| 242 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
| 243 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
| 244 |
+
# key/value_states (first "if" case)
|
| 245 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
| 246 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
| 247 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
| 248 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
| 249 |
+
past_key_value = (key_states, value_states)
|
| 250 |
+
|
| 251 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
| 252 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
| 253 |
+
key_states = key_states.reshape(*proj_shape)
|
| 254 |
+
value_states = value_states.reshape(*proj_shape)
|
| 255 |
+
|
| 256 |
+
src_len = key_states.size(1)
|
| 257 |
+
|
| 258 |
+
if self.rotary_pos_embed is not None:
|
| 259 |
+
query_states, key_states = self._apply_rotary_pos_emb(
|
| 260 |
+
query_states, key_states, is_inference=past_key_value is not None
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
| 264 |
+
|
| 265 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
| 266 |
+
raise ValueError(
|
| 267 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
| 268 |
+
f" {attn_weights.size()}"
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
if attention_mask is not None:
|
| 272 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
| 273 |
+
raise ValueError(
|
| 274 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
| 275 |
+
)
|
| 276 |
+
attn_weights = (
|
| 277 |
+
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
| 278 |
+
+ attention_mask
|
| 279 |
+
)
|
| 280 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
| 281 |
+
|
| 282 |
+
attn_weights = F.softmax(attn_weights, dim=-1)
|
| 283 |
+
|
| 284 |
+
if layer_head_mask is not None:
|
| 285 |
+
if layer_head_mask.size() != (self.num_heads,):
|
| 286 |
+
raise ValueError(
|
| 287 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
| 288 |
+
f" {layer_head_mask.size()}"
|
| 289 |
+
)
|
| 290 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(
|
| 291 |
+
bsz, self.num_heads, tgt_len, src_len
|
| 292 |
+
)
|
| 293 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
| 294 |
+
|
| 295 |
+
if output_attentions:
|
| 296 |
+
# this operation is a bit awkward, but it's required to
|
| 297 |
+
# make sure that attn_weights keeps its gradient.
|
| 298 |
+
# In order to do so, attn_weights have to be reshaped
|
| 299 |
+
# twice and have to be reused in the following
|
| 300 |
+
attn_weights_reshaped = attn_weights.view(
|
| 301 |
+
bsz, self.num_heads, tgt_len, src_len
|
| 302 |
+
)
|
| 303 |
+
attn_weights = attn_weights_reshaped.view(
|
| 304 |
+
bsz * self.num_heads, tgt_len, src_len
|
| 305 |
+
)
|
| 306 |
+
else:
|
| 307 |
+
attn_weights_reshaped = None
|
| 308 |
+
|
| 309 |
+
attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 310 |
+
|
| 311 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
| 312 |
+
|
| 313 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
| 314 |
+
raise ValueError(
|
| 315 |
+
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
| 316 |
+
f" {attn_output.size()}"
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
| 320 |
+
attn_output = attn_output.transpose(1, 2)
|
| 321 |
+
|
| 322 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
| 323 |
+
# partitioned across GPUs when using tensor-parallelism.
|
| 324 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
| 325 |
+
|
| 326 |
+
attn_output = self.out_proj(attn_output)
|
| 327 |
+
|
| 328 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
class RotaryIndicTransFlashAttention2(RotaryIndicTransAttention):
|
| 332 |
+
"""
|
| 333 |
+
RotaryIndicTrans flash attention module. This module inherits from `RotaryIndicTransAttention` as the weights of the module stays
|
| 334 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 335 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 336 |
+
"""
|
| 337 |
+
|
| 338 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
| 339 |
+
def __init__(self, *args, **kwargs):
|
| 340 |
+
super().__init__(*args, **kwargs)
|
| 341 |
+
|
| 342 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 343 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 344 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 345 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 346 |
+
|
| 347 |
+
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 348 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
| 349 |
+
|
| 350 |
+
def forward(
|
| 351 |
+
self,
|
| 352 |
+
hidden_states: torch.Tensor,
|
| 353 |
+
key_value_states: Optional[torch.Tensor] = None,
|
| 354 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 355 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 356 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
| 357 |
+
output_attentions: bool = False,
|
| 358 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 359 |
+
# RotaryIndicTransFlashAttention2 attention does not support output_attentions
|
| 360 |
+
if output_attentions:
|
| 361 |
+
raise ValueError(
|
| 362 |
+
"RotaryIndicTransFlashAttention2 attention does not support output_attentions"
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
| 366 |
+
# for the decoder
|
| 367 |
+
is_cross_attention = key_value_states is not None
|
| 368 |
+
|
| 369 |
+
bsz, q_len, _ = hidden_states.size()
|
| 370 |
+
|
| 371 |
+
# get query proj
|
| 372 |
+
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
|
| 373 |
+
# get key, value proj
|
| 374 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
| 375 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
| 376 |
+
# the provided `key_value_states` to support prefix tuning
|
| 377 |
+
if (
|
| 378 |
+
is_cross_attention
|
| 379 |
+
and past_key_value is not None
|
| 380 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
| 381 |
+
):
|
| 382 |
+
# reuse k,v, cross_attentions
|
| 383 |
+
key_states = past_key_value[0].transpose(1, 2)
|
| 384 |
+
value_states = past_key_value[1].transpose(1, 2)
|
| 385 |
+
elif is_cross_attention:
|
| 386 |
+
# cross_attentions
|
| 387 |
+
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
|
| 388 |
+
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
|
| 389 |
+
elif past_key_value is not None:
|
| 390 |
+
# reuse k, v, self_attention
|
| 391 |
+
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
|
| 392 |
+
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
|
| 393 |
+
key_states = torch.cat(
|
| 394 |
+
[past_key_value[0].transpose(1, 2), key_states], dim=1
|
| 395 |
+
)
|
| 396 |
+
value_states = torch.cat(
|
| 397 |
+
[past_key_value[1].transpose(1, 2), value_states], dim=1
|
| 398 |
+
)
|
| 399 |
+
else:
|
| 400 |
+
# self_attention
|
| 401 |
+
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
|
| 402 |
+
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
|
| 403 |
+
|
| 404 |
+
if self.is_decoder:
|
| 405 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
| 406 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
| 407 |
+
# key/value_states (first "if" case)
|
| 408 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
| 409 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
| 410 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
| 411 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
| 412 |
+
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
|
| 413 |
+
|
| 414 |
+
kv_seq_len = key_states.shape[-2]
|
| 415 |
+
if past_key_value is not None:
|
| 416 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 417 |
+
|
| 418 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 419 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 420 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 421 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 422 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
| 423 |
+
|
| 424 |
+
input_dtype = query_states.dtype
|
| 425 |
+
if input_dtype == torch.float32:
|
| 426 |
+
if torch.is_autocast_enabled():
|
| 427 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 428 |
+
# Handle the case where the model is quantized
|
| 429 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 430 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 431 |
+
else:
|
| 432 |
+
target_dtype = self.q_proj.weight.dtype
|
| 433 |
+
|
| 434 |
+
logger.warning_once(
|
| 435 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 436 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 437 |
+
f" {target_dtype}."
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
query_states = query_states.to(target_dtype)
|
| 441 |
+
key_states = key_states.to(target_dtype)
|
| 442 |
+
value_states = value_states.to(target_dtype)
|
| 443 |
+
|
| 444 |
+
if self.rotary_pos_embed is not None:
|
| 445 |
+
query_states, key_states = self._apply_rotary_pos_emb(
|
| 446 |
+
query_states, key_states, is_inference=past_key_value is not None
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
attn_output = self._flash_attention_forward(
|
| 450 |
+
query_states,
|
| 451 |
+
key_states,
|
| 452 |
+
value_states,
|
| 453 |
+
attention_mask,
|
| 454 |
+
q_len,
|
| 455 |
+
dropout=self.dropout,
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
| 459 |
+
attn_output = self.out_proj(attn_output)
|
| 460 |
+
|
| 461 |
+
if not output_attentions:
|
| 462 |
+
attn_weights = None
|
| 463 |
+
|
| 464 |
+
return attn_output, attn_weights, past_key_value
|
| 465 |
+
|
| 466 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
| 467 |
+
def _flash_attention_forward(
|
| 468 |
+
self,
|
| 469 |
+
query_states,
|
| 470 |
+
key_states,
|
| 471 |
+
value_states,
|
| 472 |
+
attention_mask,
|
| 473 |
+
query_length,
|
| 474 |
+
dropout=0.0,
|
| 475 |
+
softmax_scale=None,
|
| 476 |
+
):
|
| 477 |
+
"""
|
| 478 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 479 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 480 |
+
|
| 481 |
+
Args:
|
| 482 |
+
query_states (`torch.Tensor`):
|
| 483 |
+
Input query states to be passed to Flash Attention API
|
| 484 |
+
key_states (`torch.Tensor`):
|
| 485 |
+
Input key states to be passed to Flash Attention API
|
| 486 |
+
value_states (`torch.Tensor`):
|
| 487 |
+
Input value states to be passed to Flash Attention API
|
| 488 |
+
attention_mask (`torch.Tensor`):
|
| 489 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 490 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 491 |
+
dropout (`float`):
|
| 492 |
+
Attention dropout
|
| 493 |
+
softmax_scale (`float`, *optional*):
|
| 494 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 495 |
+
"""
|
| 496 |
+
if not self._flash_attn_uses_top_left_mask:
|
| 497 |
+
causal = self.is_causal
|
| 498 |
+
else:
|
| 499 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
| 500 |
+
causal = self.is_causal and query_length != 1
|
| 501 |
+
|
| 502 |
+
# Contains at least one padding token in the sequence
|
| 503 |
+
if attention_mask is not None:
|
| 504 |
+
batch_size = query_states.shape[0]
|
| 505 |
+
(
|
| 506 |
+
query_states,
|
| 507 |
+
key_states,
|
| 508 |
+
value_states,
|
| 509 |
+
indices_q,
|
| 510 |
+
cu_seq_lens,
|
| 511 |
+
max_seq_lens,
|
| 512 |
+
) = self._upad_input(
|
| 513 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 517 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 518 |
+
|
| 519 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 520 |
+
query_states,
|
| 521 |
+
key_states,
|
| 522 |
+
value_states,
|
| 523 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 524 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 525 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 526 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 527 |
+
dropout_p=dropout,
|
| 528 |
+
softmax_scale=softmax_scale,
|
| 529 |
+
causal=causal,
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
attn_output = pad_input(
|
| 533 |
+
attn_output_unpad, indices_q, batch_size, query_length
|
| 534 |
+
)
|
| 535 |
+
else:
|
| 536 |
+
attn_output = flash_attn_func(
|
| 537 |
+
query_states,
|
| 538 |
+
key_states,
|
| 539 |
+
value_states,
|
| 540 |
+
dropout,
|
| 541 |
+
softmax_scale=softmax_scale,
|
| 542 |
+
causal=causal,
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
return attn_output
|
| 546 |
+
|
| 547 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
| 548 |
+
def _upad_input(
|
| 549 |
+
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
| 550 |
+
):
|
| 551 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 552 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 553 |
+
|
| 554 |
+
key_layer = index_first_axis(
|
| 555 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
| 556 |
+
indices_k,
|
| 557 |
+
)
|
| 558 |
+
value_layer = index_first_axis(
|
| 559 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
| 560 |
+
indices_k,
|
| 561 |
+
)
|
| 562 |
+
if query_length == kv_seq_len:
|
| 563 |
+
query_layer = index_first_axis(
|
| 564 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
| 565 |
+
indices_k,
|
| 566 |
+
)
|
| 567 |
+
cu_seqlens_q = cu_seqlens_k
|
| 568 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 569 |
+
indices_q = indices_k
|
| 570 |
+
elif query_length == 1:
|
| 571 |
+
max_seqlen_in_batch_q = 1
|
| 572 |
+
cu_seqlens_q = torch.arange(
|
| 573 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 574 |
+
) # There is a memcpy here, that is very bad.
|
| 575 |
+
indices_q = cu_seqlens_q[:-1]
|
| 576 |
+
query_layer = query_layer.squeeze(1)
|
| 577 |
+
else:
|
| 578 |
+
# The -q_len: slice assumes left padding.
|
| 579 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 580 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
| 581 |
+
query_layer, attention_mask
|
| 582 |
+
)
|
| 583 |
+
|
| 584 |
+
return (
|
| 585 |
+
query_layer,
|
| 586 |
+
key_layer,
|
| 587 |
+
value_layer,
|
| 588 |
+
indices_q,
|
| 589 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 590 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
class RotaryIndicTransSdpaAttention(RotaryIndicTransAttention):
|
| 595 |
+
def forward(
|
| 596 |
+
self,
|
| 597 |
+
hidden_states: torch.Tensor,
|
| 598 |
+
key_value_states: Optional[torch.Tensor] = None,
|
| 599 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 600 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 601 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
| 602 |
+
output_attentions: bool = False,
|
| 603 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 604 |
+
"""Input shape: Batch x Time x Channel"""
|
| 605 |
+
if output_attentions or layer_head_mask is not None:
|
| 606 |
+
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
|
| 607 |
+
logger.warning_once(
|
| 608 |
+
"RotaryIndicTransModel is using RotaryIndicTransSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
|
| 609 |
+
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 610 |
+
)
|
| 611 |
+
return super().forward(
|
| 612 |
+
hidden_states,
|
| 613 |
+
key_value_states=key_value_states,
|
| 614 |
+
past_key_value=past_key_value,
|
| 615 |
+
attention_mask=attention_mask,
|
| 616 |
+
layer_head_mask=layer_head_mask,
|
| 617 |
+
output_attentions=output_attentions,
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
| 621 |
+
# for the decoder
|
| 622 |
+
is_cross_attention = key_value_states is not None
|
| 623 |
+
|
| 624 |
+
bsz, tgt_len, _ = hidden_states.size()
|
| 625 |
+
|
| 626 |
+
# get query proj
|
| 627 |
+
query_states = self.q_proj(hidden_states)
|
| 628 |
+
# get key, value proj
|
| 629 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
| 630 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
| 631 |
+
# the provided `key_value_states` to support prefix tuning
|
| 632 |
+
if (
|
| 633 |
+
is_cross_attention
|
| 634 |
+
and past_key_value is not None
|
| 635 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
| 636 |
+
):
|
| 637 |
+
# reuse k,v, cross_attentions
|
| 638 |
+
key_states = past_key_value[0]
|
| 639 |
+
value_states = past_key_value[1]
|
| 640 |
+
elif is_cross_attention:
|
| 641 |
+
# cross_attentions
|
| 642 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
| 643 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
| 644 |
+
elif past_key_value is not None:
|
| 645 |
+
# reuse k, v, self_attention
|
| 646 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
| 647 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
| 648 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 649 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 650 |
+
else:
|
| 651 |
+
# self_attention
|
| 652 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
| 653 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
| 654 |
+
|
| 655 |
+
if self.is_decoder:
|
| 656 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
| 657 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
| 658 |
+
# key/value_states (first "if" case)
|
| 659 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
| 660 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
| 661 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
| 662 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
| 663 |
+
past_key_value = (key_states, value_states)
|
| 664 |
+
|
| 665 |
+
query_states = self._shape(query_states, tgt_len, bsz)
|
| 666 |
+
|
| 667 |
+
if self.rotary_pos_embed is not None:
|
| 668 |
+
query_states, key_states = self._apply_rotary_pos_emb(
|
| 669 |
+
query_states, key_states, is_inference=past_key_value is not None
|
| 670 |
+
)
|
| 671 |
+
|
| 672 |
+
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
|
| 673 |
+
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
|
| 674 |
+
attn_output = F.scaled_dot_product_attention(
|
| 675 |
+
query_states,
|
| 676 |
+
key_states,
|
| 677 |
+
value_states,
|
| 678 |
+
attn_mask=attention_mask,
|
| 679 |
+
dropout_p=self.dropout if self.training else 0.0,
|
| 680 |
+
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
|
| 681 |
+
is_causal=self.is_causal and attention_mask is None and tgt_len > 1,
|
| 682 |
+
)
|
| 683 |
+
|
| 684 |
+
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
|
| 685 |
+
raise ValueError(
|
| 686 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
| 687 |
+
f" {attn_output.size()}"
|
| 688 |
+
)
|
| 689 |
+
|
| 690 |
+
attn_output = attn_output.transpose(1, 2)
|
| 691 |
+
|
| 692 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
| 693 |
+
# partitioned across GPUs when using tensor-parallelism.
|
| 694 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
| 695 |
+
|
| 696 |
+
attn_output = self.out_proj(attn_output)
|
| 697 |
+
|
| 698 |
+
return attn_output, None, past_key_value
|
| 699 |
+
|
| 700 |
+
|
| 701 |
+
ROTARY_INDICTRANS_ATTENTION_CLASSES = {
|
| 702 |
+
"eager": RotaryIndicTransAttention,
|
| 703 |
+
"sdpa": RotaryIndicTransSdpaAttention,
|
| 704 |
+
"flash_attention_2": RotaryIndicTransFlashAttention2,
|
| 705 |
+
}
|
| 706 |
+
|
| 707 |
+
|
| 708 |
+
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->RotaryIndicTrans
|
| 709 |
+
class RotaryIndicTransEncoderLayer(nn.Module):
|
| 710 |
+
def __init__(self, config: RotaryIndicTransConfig):
|
| 711 |
+
super().__init__()
|
| 712 |
+
self.embed_dim = config.encoder_embed_dim
|
| 713 |
+
self.self_attn = ROTARY_INDICTRANS_ATTENTION_CLASSES[
|
| 714 |
+
config._attn_implementation
|
| 715 |
+
](
|
| 716 |
+
embed_dim=self.embed_dim,
|
| 717 |
+
num_heads=config.encoder_attention_heads,
|
| 718 |
+
dropout=config.attention_dropout,
|
| 719 |
+
config=config,
|
| 720 |
+
)
|
| 721 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
| 722 |
+
self.dropout = config.dropout
|
| 723 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
| 724 |
+
self.activation_dropout = config.activation_dropout
|
| 725 |
+
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
| 726 |
+
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
| 727 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
| 728 |
+
self.normalize_before = config.encoder_normalize_before
|
| 729 |
+
|
| 730 |
+
def forward(
|
| 731 |
+
self,
|
| 732 |
+
hidden_states: torch.Tensor,
|
| 733 |
+
attention_mask: torch.Tensor,
|
| 734 |
+
layer_head_mask: torch.Tensor,
|
| 735 |
+
output_attentions: bool = False,
|
| 736 |
+
) -> torch.Tensor:
|
| 737 |
+
"""
|
| 738 |
+
Args:
|
| 739 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 740 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
| 741 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 742 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
| 743 |
+
`(encoder_attention_heads,)`.
|
| 744 |
+
output_attentions (`bool`, *optional*):
|
| 745 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 746 |
+
returned tensors for more detail.
|
| 747 |
+
"""
|
| 748 |
+
residual = hidden_states
|
| 749 |
+
if self.normalize_before:
|
| 750 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
| 751 |
+
hidden_states, attn_weights, _ = self.self_attn(
|
| 752 |
+
hidden_states=hidden_states,
|
| 753 |
+
attention_mask=attention_mask,
|
| 754 |
+
layer_head_mask=layer_head_mask,
|
| 755 |
+
output_attentions=output_attentions,
|
| 756 |
+
)
|
| 757 |
+
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
| 758 |
+
hidden_states = residual + hidden_states
|
| 759 |
+
if not self.normalize_before:
|
| 760 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
| 761 |
+
|
| 762 |
+
residual = hidden_states
|
| 763 |
+
if self.normalize_before:
|
| 764 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
| 765 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
| 766 |
+
hidden_states = F.dropout(
|
| 767 |
+
hidden_states, p=self.activation_dropout, training=self.training
|
| 768 |
+
)
|
| 769 |
+
hidden_states = self.fc2(hidden_states)
|
| 770 |
+
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
| 771 |
+
hidden_states = residual + hidden_states
|
| 772 |
+
if not self.normalize_before:
|
| 773 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
| 774 |
+
|
| 775 |
+
if hidden_states.dtype == torch.float16 and (
|
| 776 |
+
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
|
| 777 |
+
):
|
| 778 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
| 779 |
+
hidden_states = torch.clamp(
|
| 780 |
+
hidden_states, min=-clamp_value, max=clamp_value
|
| 781 |
+
)
|
| 782 |
+
|
| 783 |
+
outputs = (hidden_states,)
|
| 784 |
+
|
| 785 |
+
if output_attentions:
|
| 786 |
+
outputs += (attn_weights,)
|
| 787 |
+
|
| 788 |
+
return outputs
|
| 789 |
+
|
| 790 |
+
|
| 791 |
+
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->RotaryIndicTrans
|
| 792 |
+
class RotaryIndicTransDecoderLayer(nn.Module):
|
| 793 |
+
def __init__(self, config: RotaryIndicTransConfig):
|
| 794 |
+
super().__init__()
|
| 795 |
+
self.embed_dim = config.decoder_embed_dim
|
| 796 |
+
|
| 797 |
+
self.self_attn = ROTARY_INDICTRANS_ATTENTION_CLASSES[
|
| 798 |
+
config._attn_implementation
|
| 799 |
+
](
|
| 800 |
+
embed_dim=self.embed_dim,
|
| 801 |
+
num_heads=config.decoder_attention_heads,
|
| 802 |
+
dropout=config.attention_dropout,
|
| 803 |
+
is_decoder=True,
|
| 804 |
+
is_causal=True,
|
| 805 |
+
config=config,
|
| 806 |
+
)
|
| 807 |
+
self.dropout = config.dropout
|
| 808 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
| 809 |
+
self.activation_dropout = config.activation_dropout
|
| 810 |
+
|
| 811 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
| 812 |
+
self.encoder_attn = ROTARY_INDICTRANS_ATTENTION_CLASSES[
|
| 813 |
+
config._attn_implementation
|
| 814 |
+
](
|
| 815 |
+
self.embed_dim,
|
| 816 |
+
config.decoder_attention_heads,
|
| 817 |
+
dropout=config.attention_dropout,
|
| 818 |
+
is_cross_attention=True,
|
| 819 |
+
is_decoder=True,
|
| 820 |
+
config=config,
|
| 821 |
+
)
|
| 822 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
| 823 |
+
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
| 824 |
+
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
|
| 825 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
| 826 |
+
self.normalize_before = config.decoder_normalize_before
|
| 827 |
+
|
| 828 |
+
def forward(
|
| 829 |
+
self,
|
| 830 |
+
hidden_states: torch.Tensor,
|
| 831 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 832 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 833 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 834 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
| 835 |
+
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
|
| 836 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 837 |
+
output_attentions: Optional[bool] = False,
|
| 838 |
+
use_cache: Optional[bool] = True,
|
| 839 |
+
) -> torch.Tensor:
|
| 840 |
+
"""
|
| 841 |
+
Args:
|
| 842 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 843 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
| 844 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 845 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
| 846 |
+
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 847 |
+
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
| 848 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 849 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
| 850 |
+
`(encoder_attention_heads,)`.
|
| 851 |
+
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
|
| 852 |
+
size `(decoder_attention_heads,)`.
|
| 853 |
+
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
|
| 854 |
+
output_attentions (`bool`, *optional*):
|
| 855 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 856 |
+
returned tensors for more detail.
|
| 857 |
+
"""
|
| 858 |
+
residual = hidden_states
|
| 859 |
+
if self.normalize_before:
|
| 860 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
| 861 |
+
|
| 862 |
+
# Self Attention
|
| 863 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
| 864 |
+
self_attn_past_key_value = (
|
| 865 |
+
past_key_value[:2] if past_key_value is not None else None
|
| 866 |
+
)
|
| 867 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
| 868 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 869 |
+
hidden_states=hidden_states,
|
| 870 |
+
past_key_value=self_attn_past_key_value,
|
| 871 |
+
attention_mask=attention_mask,
|
| 872 |
+
layer_head_mask=layer_head_mask,
|
| 873 |
+
output_attentions=output_attentions,
|
| 874 |
+
)
|
| 875 |
+
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
| 876 |
+
hidden_states = residual + hidden_states
|
| 877 |
+
if not self.normalize_before:
|
| 878 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
| 879 |
+
|
| 880 |
+
# Cross-Attention Block
|
| 881 |
+
cross_attn_present_key_value = None
|
| 882 |
+
cross_attn_weights = None
|
| 883 |
+
if encoder_hidden_states is not None:
|
| 884 |
+
residual = hidden_states
|
| 885 |
+
if self.normalize_before:
|
| 886 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
| 887 |
+
|
| 888 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
| 889 |
+
cross_attn_past_key_value = (
|
| 890 |
+
past_key_value[-2:] if past_key_value is not None else None
|
| 891 |
+
)
|
| 892 |
+
(
|
| 893 |
+
hidden_states,
|
| 894 |
+
cross_attn_weights,
|
| 895 |
+
cross_attn_present_key_value,
|
| 896 |
+
) = self.encoder_attn(
|
| 897 |
+
hidden_states=hidden_states,
|
| 898 |
+
key_value_states=encoder_hidden_states,
|
| 899 |
+
attention_mask=encoder_attention_mask,
|
| 900 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
| 901 |
+
past_key_value=cross_attn_past_key_value,
|
| 902 |
+
output_attentions=output_attentions,
|
| 903 |
+
)
|
| 904 |
+
hidden_states = F.dropout(
|
| 905 |
+
hidden_states, p=self.dropout, training=self.training
|
| 906 |
+
)
|
| 907 |
+
hidden_states = residual + hidden_states
|
| 908 |
+
if not self.normalize_before:
|
| 909 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
| 910 |
+
|
| 911 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
| 912 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
| 913 |
+
|
| 914 |
+
# Fully Connected
|
| 915 |
+
residual = hidden_states
|
| 916 |
+
if self.normalize_before:
|
| 917 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
| 918 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
| 919 |
+
hidden_states = F.dropout(
|
| 920 |
+
hidden_states, p=self.activation_dropout, training=self.training
|
| 921 |
+
)
|
| 922 |
+
hidden_states = self.fc2(hidden_states)
|
| 923 |
+
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
| 924 |
+
hidden_states = residual + hidden_states
|
| 925 |
+
if not self.normalize_before:
|
| 926 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
| 927 |
+
|
| 928 |
+
outputs = (hidden_states,)
|
| 929 |
+
|
| 930 |
+
if output_attentions:
|
| 931 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
| 932 |
+
|
| 933 |
+
if use_cache:
|
| 934 |
+
outputs += (present_key_value,)
|
| 935 |
+
|
| 936 |
+
return outputs
|
| 937 |
+
|
| 938 |
+
|
| 939 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100PretrainedModel->RotaryIndicTrans
|
| 940 |
+
class RotaryIndicTransPreTrainedModel(PreTrainedModel):
|
| 941 |
+
config_class = RotaryIndicTransConfig
|
| 942 |
+
base_model_prefix = "model"
|
| 943 |
+
supports_gradient_checkpointing = True
|
| 944 |
+
_no_split_modules = ["RotaryIndicTransAttention"]
|
| 945 |
+
|
| 946 |
+
def _init_weights(self, module):
|
| 947 |
+
std = self.config.init_std
|
| 948 |
+
if isinstance(module, nn.Linear):
|
| 949 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 950 |
+
if module.bias is not None:
|
| 951 |
+
module.bias.data.zero_()
|
| 952 |
+
elif isinstance(module, nn.Embedding):
|
| 953 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 954 |
+
if module.padding_idx is not None:
|
| 955 |
+
module.weight.data[module.padding_idx].zero_()
|
| 956 |
+
|
| 957 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 958 |
+
if isinstance(module, (RotaryIndicTransDecoder, RotaryIndicTransEncoder)):
|
| 959 |
+
module.gradient_checkpointing = value
|
| 960 |
+
|
| 961 |
+
|
| 962 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100EncoderLayer->RotaryIndicTrans
|
| 963 |
+
class RotaryIndicTransEncoder(RotaryIndicTransPreTrainedModel):
|
| 964 |
+
"""
|
| 965 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
| 966 |
+
[`RotaryIndicTransEncoderLayer`].
|
| 967 |
+
|
| 968 |
+
Args:
|
| 969 |
+
config: RotaryIndicTransConfig
|
| 970 |
+
embed_tokens (nn.Embedding): output embedding
|
| 971 |
+
"""
|
| 972 |
+
|
| 973 |
+
def __init__(
|
| 974 |
+
self,
|
| 975 |
+
config: RotaryIndicTransConfig,
|
| 976 |
+
embed_tokens: Optional[nn.Embedding] = None,
|
| 977 |
+
):
|
| 978 |
+
super().__init__(config)
|
| 979 |
+
|
| 980 |
+
self.dropout = config.dropout
|
| 981 |
+
self.layerdrop = config.encoder_layerdrop
|
| 982 |
+
|
| 983 |
+
embed_dim = config.encoder_embed_dim
|
| 984 |
+
self.padding_idx = config.pad_token_id
|
| 985 |
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
| 986 |
+
|
| 987 |
+
self.embed_tokens = nn.Embedding(
|
| 988 |
+
config.encoder_vocab_size, embed_dim, self.padding_idx
|
| 989 |
+
)
|
| 990 |
+
|
| 991 |
+
if embed_tokens is not None:
|
| 992 |
+
self.embed_tokens.weight = embed_tokens.weight
|
| 993 |
+
|
| 994 |
+
self.layers = nn.ModuleList(
|
| 995 |
+
[RotaryIndicTransEncoderLayer(config) for _ in range(config.encoder_layers)]
|
| 996 |
+
)
|
| 997 |
+
self.layer_norm = (
|
| 998 |
+
nn.LayerNorm(embed_dim) if config.encoder_normalize_before else None
|
| 999 |
+
)
|
| 1000 |
+
self.layernorm_embedding = (
|
| 1001 |
+
nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
|
| 1002 |
+
)
|
| 1003 |
+
|
| 1004 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 1005 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
| 1006 |
+
|
| 1007 |
+
self.gradient_checkpointing = False
|
| 1008 |
+
# Initialize weights and apply final processing
|
| 1009 |
+
self.post_init()
|
| 1010 |
+
|
| 1011 |
+
def forward(
|
| 1012 |
+
self,
|
| 1013 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1014 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1015 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1016 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1017 |
+
output_attentions: Optional[bool] = None,
|
| 1018 |
+
output_hidden_states: Optional[bool] = None,
|
| 1019 |
+
return_dict: Optional[bool] = None,
|
| 1020 |
+
):
|
| 1021 |
+
r"""
|
| 1022 |
+
Args:
|
| 1023 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1024 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
| 1025 |
+
provide it.
|
| 1026 |
+
|
| 1027 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1028 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1029 |
+
|
| 1030 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1031 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1032 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1033 |
+
|
| 1034 |
+
- 1 for tokens that are **not masked**,
|
| 1035 |
+
- 0 for tokens that are **masked**.
|
| 1036 |
+
|
| 1037 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1038 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
| 1039 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
| 1040 |
+
|
| 1041 |
+
- 1 indicates the head is **not masked**,
|
| 1042 |
+
- 0 indicates the head is **masked**.
|
| 1043 |
+
|
| 1044 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1045 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
| 1046 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
| 1047 |
+
than the model's internal embedding lookup matrix.
|
| 1048 |
+
output_attentions (`bool`, *optional*):
|
| 1049 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 1050 |
+
returned tensors for more detail.
|
| 1051 |
+
output_hidden_states (`bool`, *optional*):
|
| 1052 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 1053 |
+
for more detail.
|
| 1054 |
+
return_dict (`bool`, *optional*):
|
| 1055 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1056 |
+
"""
|
| 1057 |
+
output_attentions = (
|
| 1058 |
+
output_attentions
|
| 1059 |
+
if output_attentions is not None
|
| 1060 |
+
else self.config.output_attentions
|
| 1061 |
+
)
|
| 1062 |
+
output_hidden_states = (
|
| 1063 |
+
output_hidden_states
|
| 1064 |
+
if output_hidden_states is not None
|
| 1065 |
+
else self.config.output_hidden_states
|
| 1066 |
+
)
|
| 1067 |
+
return_dict = (
|
| 1068 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1069 |
+
)
|
| 1070 |
+
|
| 1071 |
+
# retrieve input_ids and inputs_embeds
|
| 1072 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1073 |
+
raise ValueError(
|
| 1074 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
| 1075 |
+
)
|
| 1076 |
+
elif input_ids is not None:
|
| 1077 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
| 1078 |
+
input_shape = input_ids.size()
|
| 1079 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 1080 |
+
elif inputs_embeds is not None:
|
| 1081 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 1082 |
+
else:
|
| 1083 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 1084 |
+
|
| 1085 |
+
if inputs_embeds is None:
|
| 1086 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
| 1087 |
+
|
| 1088 |
+
hidden_states = inputs_embeds
|
| 1089 |
+
|
| 1090 |
+
if self.layernorm_embedding is not None:
|
| 1091 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
| 1092 |
+
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
| 1093 |
+
|
| 1094 |
+
if attention_mask is not None:
|
| 1095 |
+
if self._use_flash_attention_2:
|
| 1096 |
+
attention_mask = attention_mask if 0 in attention_mask else None
|
| 1097 |
+
elif self._use_sdpa and head_mask is None and not output_attentions:
|
| 1098 |
+
# output_attentions=True & head_mask can not be supported when using SDPA, fall back to
|
| 1099 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
| 1100 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 1101 |
+
attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
| 1102 |
+
attention_mask, inputs_embeds.dtype
|
| 1103 |
+
)
|
| 1104 |
+
else:
|
| 1105 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 1106 |
+
attention_mask = _prepare_4d_attention_mask(
|
| 1107 |
+
attention_mask, inputs_embeds.dtype
|
| 1108 |
+
)
|
| 1109 |
+
|
| 1110 |
+
encoder_states = () if output_hidden_states else None
|
| 1111 |
+
all_attentions = () if output_attentions else None
|
| 1112 |
+
|
| 1113 |
+
# check if head_mask has a correct number of layers specified if desired
|
| 1114 |
+
if head_mask is not None:
|
| 1115 |
+
if head_mask.size()[0] != len(self.layers):
|
| 1116 |
+
raise ValueError(
|
| 1117 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
| 1118 |
+
f" {head_mask.size()[0]}."
|
| 1119 |
+
)
|
| 1120 |
+
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
| 1121 |
+
|
| 1122 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 1123 |
+
if output_hidden_states:
|
| 1124 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 1125 |
+
|
| 1126 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
| 1127 |
+
dropout_probability = torch.rand([])
|
| 1128 |
+
|
| 1129 |
+
skip_the_layer = (
|
| 1130 |
+
True
|
| 1131 |
+
if self.training and (dropout_probability < self.layerdrop)
|
| 1132 |
+
else False
|
| 1133 |
+
)
|
| 1134 |
+
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
| 1135 |
+
# under deepspeed zero3 all gpus must run in sync
|
| 1136 |
+
|
| 1137 |
+
if self.gradient_checkpointing and self.training:
|
| 1138 |
+
# create gradient checkpointing function
|
| 1139 |
+
def create_custom_forward(module):
|
| 1140 |
+
def custom_forward(*inputs):
|
| 1141 |
+
return module(*inputs, output_attentions)
|
| 1142 |
+
|
| 1143 |
+
return custom_forward
|
| 1144 |
+
|
| 1145 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 1146 |
+
create_custom_forward(encoder_layer),
|
| 1147 |
+
hidden_states,
|
| 1148 |
+
attention_mask,
|
| 1149 |
+
(head_mask[idx] if head_mask is not None else None),
|
| 1150 |
+
)
|
| 1151 |
+
else:
|
| 1152 |
+
layer_outputs = encoder_layer(
|
| 1153 |
+
hidden_states,
|
| 1154 |
+
attention_mask,
|
| 1155 |
+
layer_head_mask=(
|
| 1156 |
+
head_mask[idx] if head_mask is not None else None
|
| 1157 |
+
),
|
| 1158 |
+
output_attentions=output_attentions,
|
| 1159 |
+
)
|
| 1160 |
+
|
| 1161 |
+
hidden_states = layer_outputs[0]
|
| 1162 |
+
|
| 1163 |
+
if skip_the_layer:
|
| 1164 |
+
layer_outputs = (None, None)
|
| 1165 |
+
|
| 1166 |
+
if output_attentions:
|
| 1167 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
| 1168 |
+
|
| 1169 |
+
if self.layer_norm is not None:
|
| 1170 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 1171 |
+
|
| 1172 |
+
if output_hidden_states:
|
| 1173 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 1174 |
+
|
| 1175 |
+
if not return_dict:
|
| 1176 |
+
return tuple(
|
| 1177 |
+
v
|
| 1178 |
+
for v in [hidden_states, encoder_states, all_attentions]
|
| 1179 |
+
if v is not None
|
| 1180 |
+
)
|
| 1181 |
+
return BaseModelOutput(
|
| 1182 |
+
last_hidden_state=hidden_states,
|
| 1183 |
+
hidden_states=encoder_states,
|
| 1184 |
+
attentions=all_attentions,
|
| 1185 |
+
)
|
| 1186 |
+
|
| 1187 |
+
|
| 1188 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100DecoderLayer->RotaryIndicTrans
|
| 1189 |
+
class RotaryIndicTransDecoder(RotaryIndicTransPreTrainedModel):
|
| 1190 |
+
"""
|
| 1191 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`RotaryIndicTransDecoderLayer`]
|
| 1192 |
+
|
| 1193 |
+
Args:
|
| 1194 |
+
config: RotaryIndicTransConfig
|
| 1195 |
+
embed_tokens (nn.Embedding): output embedding
|
| 1196 |
+
"""
|
| 1197 |
+
|
| 1198 |
+
def __init__(
|
| 1199 |
+
self,
|
| 1200 |
+
config: RotaryIndicTransConfig,
|
| 1201 |
+
embed_tokens: Optional[nn.Embedding] = None,
|
| 1202 |
+
):
|
| 1203 |
+
super().__init__(config)
|
| 1204 |
+
self.dropout = config.dropout
|
| 1205 |
+
self.layerdrop = config.decoder_layerdrop
|
| 1206 |
+
|
| 1207 |
+
embed_dim = config.encoder_embed_dim
|
| 1208 |
+
self.padding_idx = config.pad_token_id
|
| 1209 |
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
| 1210 |
+
|
| 1211 |
+
self.embed_tokens = nn.Embedding(
|
| 1212 |
+
config.decoder_vocab_size, embed_dim, self.padding_idx
|
| 1213 |
+
)
|
| 1214 |
+
|
| 1215 |
+
if embed_tokens is not None:
|
| 1216 |
+
self.embed_tokens.weight = embed_tokens.weight
|
| 1217 |
+
|
| 1218 |
+
self.layers = nn.ModuleList(
|
| 1219 |
+
[RotaryIndicTransDecoderLayer(config) for _ in range(config.decoder_layers)]
|
| 1220 |
+
)
|
| 1221 |
+
self.layer_norm = (
|
| 1222 |
+
nn.LayerNorm(embed_dim) if config.decoder_normalize_before else None
|
| 1223 |
+
)
|
| 1224 |
+
self.layernorm_embedding = (
|
| 1225 |
+
nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
|
| 1226 |
+
)
|
| 1227 |
+
|
| 1228 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 1229 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
| 1230 |
+
|
| 1231 |
+
self.gradient_checkpointing = False
|
| 1232 |
+
# Initialize weights and apply final processing
|
| 1233 |
+
self.post_init()
|
| 1234 |
+
|
| 1235 |
+
def forward(
|
| 1236 |
+
self,
|
| 1237 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1238 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1239 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 1240 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 1241 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1242 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
| 1243 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1244 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1245 |
+
use_cache: Optional[bool] = None,
|
| 1246 |
+
output_attentions: Optional[bool] = None,
|
| 1247 |
+
output_hidden_states: Optional[bool] = None,
|
| 1248 |
+
return_dict: Optional[bool] = None,
|
| 1249 |
+
):
|
| 1250 |
+
r"""
|
| 1251 |
+
Args:
|
| 1252 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1253 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
| 1254 |
+
provide it.
|
| 1255 |
+
|
| 1256 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1257 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1258 |
+
|
| 1259 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1260 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1261 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1262 |
+
|
| 1263 |
+
- 1 for tokens that are **not masked**,
|
| 1264 |
+
- 0 for tokens that are **masked**.
|
| 1265 |
+
|
| 1266 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1267 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
| 1268 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
| 1269 |
+
of the decoder.
|
| 1270 |
+
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
| 1271 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
| 1272 |
+
selected in `[0, 1]`:
|
| 1273 |
+
|
| 1274 |
+
- 1 for tokens that are **not masked**,
|
| 1275 |
+
- 0 for tokens that are **masked**.
|
| 1276 |
+
|
| 1277 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1278 |
+
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
| 1279 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
| 1280 |
+
|
| 1281 |
+
- 1 indicates the head is **not masked**,
|
| 1282 |
+
- 0 indicates the head is **masked**.
|
| 1283 |
+
|
| 1284 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
| 1285 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
|
| 1286 |
+
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
|
| 1287 |
+
|
| 1288 |
+
- 1 indicates the head is **not masked**,
|
| 1289 |
+
- 0 indicates the head is **masked**.
|
| 1290 |
+
|
| 1291 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 1292 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 1293 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
| 1294 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
| 1295 |
+
|
| 1296 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
| 1297 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 1298 |
+
|
| 1299 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
| 1300 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
| 1301 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
|
| 1302 |
+
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
|
| 1303 |
+
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
|
| 1304 |
+
control over how to convert `input_ids` indices into associated vectors than the model's internal
|
| 1305 |
+
embedding lookup matrix.
|
| 1306 |
+
output_attentions (`bool`, *optional*):
|
| 1307 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 1308 |
+
returned tensors for more detail.
|
| 1309 |
+
output_hidden_states (`bool`, *optional*):
|
| 1310 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 1311 |
+
for more detail.
|
| 1312 |
+
return_dict (`bool`, *optional*):
|
| 1313 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1314 |
+
"""
|
| 1315 |
+
output_attentions = (
|
| 1316 |
+
output_attentions
|
| 1317 |
+
if output_attentions is not None
|
| 1318 |
+
else self.config.output_attentions
|
| 1319 |
+
)
|
| 1320 |
+
output_hidden_states = (
|
| 1321 |
+
output_hidden_states
|
| 1322 |
+
if output_hidden_states is not None
|
| 1323 |
+
else self.config.output_hidden_states
|
| 1324 |
+
)
|
| 1325 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1326 |
+
return_dict = (
|
| 1327 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1328 |
+
)
|
| 1329 |
+
|
| 1330 |
+
# retrieve input_ids and inputs_embeds
|
| 1331 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1332 |
+
raise ValueError(
|
| 1333 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
| 1334 |
+
)
|
| 1335 |
+
elif input_ids is not None:
|
| 1336 |
+
input_shape = input_ids.size()
|
| 1337 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 1338 |
+
elif inputs_embeds is not None:
|
| 1339 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 1340 |
+
else:
|
| 1341 |
+
raise ValueError(
|
| 1342 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
| 1343 |
+
)
|
| 1344 |
+
|
| 1345 |
+
# past_key_values_length
|
| 1346 |
+
past_key_values_length = (
|
| 1347 |
+
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 1348 |
+
)
|
| 1349 |
+
|
| 1350 |
+
if inputs_embeds is None:
|
| 1351 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
| 1352 |
+
|
| 1353 |
+
if self._use_flash_attention_2:
|
| 1354 |
+
# 2d mask is passed through the layers
|
| 1355 |
+
attention_mask = (
|
| 1356 |
+
attention_mask
|
| 1357 |
+
if (attention_mask is not None and 0 in attention_mask)
|
| 1358 |
+
else None
|
| 1359 |
+
)
|
| 1360 |
+
elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None:
|
| 1361 |
+
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
|
| 1362 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
| 1363 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
| 1364 |
+
attention_mask,
|
| 1365 |
+
input_shape,
|
| 1366 |
+
inputs_embeds,
|
| 1367 |
+
past_key_values_length,
|
| 1368 |
+
)
|
| 1369 |
+
else:
|
| 1370 |
+
# 4d mask is passed through the layers
|
| 1371 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
| 1372 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
| 1373 |
+
)
|
| 1374 |
+
|
| 1375 |
+
# expand encoder attention mask
|
| 1376 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
| 1377 |
+
if self._use_flash_attention_2:
|
| 1378 |
+
encoder_attention_mask = (
|
| 1379 |
+
encoder_attention_mask if 0 in encoder_attention_mask else None
|
| 1380 |
+
)
|
| 1381 |
+
elif (
|
| 1382 |
+
self._use_sdpa
|
| 1383 |
+
and cross_attn_head_mask is None
|
| 1384 |
+
and not output_attentions
|
| 1385 |
+
):
|
| 1386 |
+
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
|
| 1387 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
| 1388 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 1389 |
+
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
| 1390 |
+
encoder_attention_mask,
|
| 1391 |
+
inputs_embeds.dtype,
|
| 1392 |
+
tgt_len=input_shape[-1],
|
| 1393 |
+
)
|
| 1394 |
+
else:
|
| 1395 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 1396 |
+
encoder_attention_mask = _prepare_4d_attention_mask(
|
| 1397 |
+
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
| 1398 |
+
)
|
| 1399 |
+
|
| 1400 |
+
hidden_states = inputs_embeds
|
| 1401 |
+
|
| 1402 |
+
if self.layernorm_embedding is not None:
|
| 1403 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
| 1404 |
+
|
| 1405 |
+
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
| 1406 |
+
|
| 1407 |
+
if self.gradient_checkpointing and self.training:
|
| 1408 |
+
if use_cache:
|
| 1409 |
+
logger.warning_once(
|
| 1410 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting"
|
| 1411 |
+
" `use_cache=False`..."
|
| 1412 |
+
)
|
| 1413 |
+
use_cache = False
|
| 1414 |
+
|
| 1415 |
+
# decoder layers
|
| 1416 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1417 |
+
all_self_attns = () if output_attentions else None
|
| 1418 |
+
all_cross_attentions = () if output_attentions else None
|
| 1419 |
+
next_decoder_cache = () if use_cache else None
|
| 1420 |
+
|
| 1421 |
+
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
| 1422 |
+
for attn_mask, mask_name in zip(
|
| 1423 |
+
[head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]
|
| 1424 |
+
):
|
| 1425 |
+
if attn_mask is not None:
|
| 1426 |
+
if attn_mask.size()[0] != len(self.layers):
|
| 1427 |
+
raise ValueError(
|
| 1428 |
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
| 1429 |
+
f" {head_mask.size()[0]}."
|
| 1430 |
+
)
|
| 1431 |
+
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
| 1432 |
+
|
| 1433 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1434 |
+
if output_hidden_states:
|
| 1435 |
+
all_hidden_states += (hidden_states,)
|
| 1436 |
+
|
| 1437 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
| 1438 |
+
dropout_probability = torch.rand([])
|
| 1439 |
+
|
| 1440 |
+
skip_the_layer = (
|
| 1441 |
+
True
|
| 1442 |
+
if self.training and (dropout_probability < self.layerdrop)
|
| 1443 |
+
else False
|
| 1444 |
+
)
|
| 1445 |
+
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
| 1446 |
+
# under deepspeed zero3 all gpus must run in sync
|
| 1447 |
+
|
| 1448 |
+
past_key_value = (
|
| 1449 |
+
past_key_values[idx] if past_key_values is not None else None
|
| 1450 |
+
)
|
| 1451 |
+
|
| 1452 |
+
if self.gradient_checkpointing and self.training:
|
| 1453 |
+
|
| 1454 |
+
def create_custom_forward(module):
|
| 1455 |
+
def custom_forward(*inputs):
|
| 1456 |
+
# None for past_key_value
|
| 1457 |
+
return module(*inputs, output_attentions, use_cache)
|
| 1458 |
+
|
| 1459 |
+
return custom_forward
|
| 1460 |
+
|
| 1461 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 1462 |
+
create_custom_forward(decoder_layer),
|
| 1463 |
+
hidden_states,
|
| 1464 |
+
attention_mask,
|
| 1465 |
+
encoder_hidden_states,
|
| 1466 |
+
encoder_attention_mask,
|
| 1467 |
+
head_mask[idx] if head_mask is not None else None,
|
| 1468 |
+
(
|
| 1469 |
+
cross_attn_head_mask[idx]
|
| 1470 |
+
if cross_attn_head_mask is not None
|
| 1471 |
+
else None
|
| 1472 |
+
),
|
| 1473 |
+
None,
|
| 1474 |
+
)
|
| 1475 |
+
else:
|
| 1476 |
+
layer_outputs = decoder_layer(
|
| 1477 |
+
hidden_states,
|
| 1478 |
+
attention_mask=attention_mask,
|
| 1479 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1480 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1481 |
+
layer_head_mask=(
|
| 1482 |
+
head_mask[idx] if head_mask is not None else None
|
| 1483 |
+
),
|
| 1484 |
+
cross_attn_layer_head_mask=(
|
| 1485 |
+
cross_attn_head_mask[idx]
|
| 1486 |
+
if cross_attn_head_mask is not None
|
| 1487 |
+
else None
|
| 1488 |
+
),
|
| 1489 |
+
past_key_value=past_key_value,
|
| 1490 |
+
output_attentions=output_attentions,
|
| 1491 |
+
use_cache=use_cache,
|
| 1492 |
+
)
|
| 1493 |
+
|
| 1494 |
+
hidden_states = layer_outputs[0]
|
| 1495 |
+
|
| 1496 |
+
if skip_the_layer:
|
| 1497 |
+
continue
|
| 1498 |
+
|
| 1499 |
+
if use_cache:
|
| 1500 |
+
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
|
| 1501 |
+
|
| 1502 |
+
if output_attentions:
|
| 1503 |
+
all_self_attns += (layer_outputs[1],)
|
| 1504 |
+
all_cross_attentions += (layer_outputs[2],)
|
| 1505 |
+
|
| 1506 |
+
if self.layer_norm is not None:
|
| 1507 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 1508 |
+
|
| 1509 |
+
# add hidden states from the last decoder layer
|
| 1510 |
+
if output_hidden_states:
|
| 1511 |
+
all_hidden_states += (hidden_states,)
|
| 1512 |
+
|
| 1513 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 1514 |
+
if not return_dict:
|
| 1515 |
+
return tuple(
|
| 1516 |
+
v
|
| 1517 |
+
for v in [
|
| 1518 |
+
hidden_states,
|
| 1519 |
+
next_cache,
|
| 1520 |
+
all_hidden_states,
|
| 1521 |
+
all_self_attns,
|
| 1522 |
+
all_cross_attentions,
|
| 1523 |
+
]
|
| 1524 |
+
if v is not None
|
| 1525 |
+
)
|
| 1526 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 1527 |
+
last_hidden_state=hidden_states,
|
| 1528 |
+
past_key_values=next_cache,
|
| 1529 |
+
hidden_states=all_hidden_states,
|
| 1530 |
+
attentions=all_self_attns,
|
| 1531 |
+
cross_attentions=all_cross_attentions,
|
| 1532 |
+
)
|
| 1533 |
+
|
| 1534 |
+
|
| 1535 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100Model->RotaryIndicTrans
|
| 1536 |
+
class RotaryIndicTransModel(RotaryIndicTransPreTrainedModel):
|
| 1537 |
+
_tied_weights_keys = None
|
| 1538 |
+
|
| 1539 |
+
def __init__(self, config: RotaryIndicTransConfig):
|
| 1540 |
+
super().__init__(config)
|
| 1541 |
+
|
| 1542 |
+
self.encoder = RotaryIndicTransEncoder(config)
|
| 1543 |
+
self.decoder = RotaryIndicTransDecoder(config)
|
| 1544 |
+
|
| 1545 |
+
# Initialize weights and apply final processing
|
| 1546 |
+
self.post_init()
|
| 1547 |
+
|
| 1548 |
+
def get_encoder(self):
|
| 1549 |
+
return self.encoder
|
| 1550 |
+
|
| 1551 |
+
def get_decoder(self):
|
| 1552 |
+
return self.decoder
|
| 1553 |
+
|
| 1554 |
+
def forward(
|
| 1555 |
+
self,
|
| 1556 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1557 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1558 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
| 1559 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
| 1560 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1561 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
| 1562 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
| 1563 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 1564 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 1565 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1566 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1567 |
+
use_cache: Optional[bool] = None,
|
| 1568 |
+
output_attentions: Optional[bool] = None,
|
| 1569 |
+
output_hidden_states: Optional[bool] = None,
|
| 1570 |
+
return_dict: Optional[bool] = None,
|
| 1571 |
+
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
|
| 1572 |
+
output_attentions = (
|
| 1573 |
+
output_attentions
|
| 1574 |
+
if output_attentions is not None
|
| 1575 |
+
else self.config.output_attentions
|
| 1576 |
+
)
|
| 1577 |
+
output_hidden_states = (
|
| 1578 |
+
output_hidden_states
|
| 1579 |
+
if output_hidden_states is not None
|
| 1580 |
+
else self.config.output_hidden_states
|
| 1581 |
+
)
|
| 1582 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1583 |
+
return_dict = (
|
| 1584 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1585 |
+
)
|
| 1586 |
+
|
| 1587 |
+
if encoder_outputs is None:
|
| 1588 |
+
encoder_outputs = self.encoder(
|
| 1589 |
+
input_ids=input_ids,
|
| 1590 |
+
attention_mask=attention_mask,
|
| 1591 |
+
head_mask=head_mask,
|
| 1592 |
+
inputs_embeds=inputs_embeds,
|
| 1593 |
+
output_attentions=output_attentions,
|
| 1594 |
+
output_hidden_states=output_hidden_states,
|
| 1595 |
+
return_dict=return_dict,
|
| 1596 |
+
)
|
| 1597 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
| 1598 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
| 1599 |
+
encoder_outputs = BaseModelOutput(
|
| 1600 |
+
last_hidden_state=encoder_outputs[0],
|
| 1601 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
| 1602 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
| 1603 |
+
)
|
| 1604 |
+
|
| 1605 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
| 1606 |
+
decoder_outputs = self.decoder(
|
| 1607 |
+
input_ids=decoder_input_ids,
|
| 1608 |
+
attention_mask=decoder_attention_mask,
|
| 1609 |
+
encoder_hidden_states=encoder_outputs[0],
|
| 1610 |
+
encoder_attention_mask=attention_mask,
|
| 1611 |
+
head_mask=decoder_head_mask,
|
| 1612 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
| 1613 |
+
past_key_values=past_key_values,
|
| 1614 |
+
inputs_embeds=decoder_inputs_embeds,
|
| 1615 |
+
use_cache=use_cache,
|
| 1616 |
+
output_attentions=output_attentions,
|
| 1617 |
+
output_hidden_states=output_hidden_states,
|
| 1618 |
+
return_dict=return_dict,
|
| 1619 |
+
)
|
| 1620 |
+
|
| 1621 |
+
if not return_dict:
|
| 1622 |
+
return decoder_outputs + encoder_outputs
|
| 1623 |
+
|
| 1624 |
+
return Seq2SeqModelOutput(
|
| 1625 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
| 1626 |
+
past_key_values=decoder_outputs.past_key_values,
|
| 1627 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
| 1628 |
+
decoder_attentions=decoder_outputs.attentions,
|
| 1629 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
| 1630 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
| 1631 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
| 1632 |
+
encoder_attentions=encoder_outputs.attentions,
|
| 1633 |
+
)
|
| 1634 |
+
|
| 1635 |
+
|
| 1636 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100ForConditionalGeneration->RotaryIndicTrans
|
| 1637 |
+
class RotaryIndicTransForConditionalGeneration(RotaryIndicTransPreTrainedModel):
|
| 1638 |
+
base_model_prefix = "model"
|
| 1639 |
+
_tied_weights_keys = None
|
| 1640 |
+
_label_smoothing = 0.0
|
| 1641 |
+
|
| 1642 |
+
def __init__(self, config: RotaryIndicTransConfig):
|
| 1643 |
+
super().__init__(config)
|
| 1644 |
+
self.model = RotaryIndicTransModel(config)
|
| 1645 |
+
self.lm_head = nn.Linear(
|
| 1646 |
+
config.decoder_embed_dim, config.decoder_vocab_size, bias=False
|
| 1647 |
+
)
|
| 1648 |
+
|
| 1649 |
+
if config.share_decoder_input_output_embed:
|
| 1650 |
+
self.lm_head.weight = self.model.decoder.embed_tokens.weight
|
| 1651 |
+
|
| 1652 |
+
self.post_init()
|
| 1653 |
+
|
| 1654 |
+
def tie_weights(self):
|
| 1655 |
+
pass
|
| 1656 |
+
|
| 1657 |
+
def get_encoder(self):
|
| 1658 |
+
return self.model.get_encoder()
|
| 1659 |
+
|
| 1660 |
+
def get_decoder(self):
|
| 1661 |
+
return self.model.get_decoder()
|
| 1662 |
+
|
| 1663 |
+
def get_output_embeddings(self):
|
| 1664 |
+
return self.lm_head
|
| 1665 |
+
|
| 1666 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1667 |
+
self.lm_head = new_embeddings
|
| 1668 |
+
|
| 1669 |
+
def set_label_smoothing(self, label_smoothing):
|
| 1670 |
+
self._label_smoothing = label_smoothing
|
| 1671 |
+
|
| 1672 |
+
def forward(
|
| 1673 |
+
self,
|
| 1674 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1675 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1676 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
| 1677 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
| 1678 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1679 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
| 1680 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
| 1681 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 1682 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 1683 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1684 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1685 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1686 |
+
use_cache: Optional[bool] = None,
|
| 1687 |
+
output_attentions: Optional[bool] = None,
|
| 1688 |
+
output_hidden_states: Optional[bool] = None,
|
| 1689 |
+
return_dict: Optional[bool] = None,
|
| 1690 |
+
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
|
| 1691 |
+
r"""
|
| 1692 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1693 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1694 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1695 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1696 |
+
|
| 1697 |
+
Returns:
|
| 1698 |
+
"""
|
| 1699 |
+
return_dict = (
|
| 1700 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1701 |
+
)
|
| 1702 |
+
|
| 1703 |
+
if labels is not None:
|
| 1704 |
+
if decoder_input_ids is None:
|
| 1705 |
+
decoder_input_ids = shift_tokens_right(
|
| 1706 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
| 1707 |
+
)
|
| 1708 |
+
|
| 1709 |
+
outputs = self.model(
|
| 1710 |
+
input_ids,
|
| 1711 |
+
attention_mask=attention_mask,
|
| 1712 |
+
decoder_input_ids=decoder_input_ids,
|
| 1713 |
+
encoder_outputs=encoder_outputs,
|
| 1714 |
+
decoder_attention_mask=decoder_attention_mask,
|
| 1715 |
+
head_mask=head_mask,
|
| 1716 |
+
decoder_head_mask=decoder_head_mask,
|
| 1717 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
| 1718 |
+
past_key_values=past_key_values,
|
| 1719 |
+
inputs_embeds=inputs_embeds,
|
| 1720 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
| 1721 |
+
use_cache=use_cache,
|
| 1722 |
+
output_attentions=output_attentions,
|
| 1723 |
+
output_hidden_states=output_hidden_states,
|
| 1724 |
+
return_dict=return_dict,
|
| 1725 |
+
)
|
| 1726 |
+
lm_logits = self.lm_head(outputs[0])
|
| 1727 |
+
|
| 1728 |
+
masked_lm_loss = None
|
| 1729 |
+
if labels is not None:
|
| 1730 |
+
# move labels to the correct device to enable PP
|
| 1731 |
+
labels = labels.to(lm_logits.device)
|
| 1732 |
+
masked_lm_loss = F.cross_entropy(
|
| 1733 |
+
input=lm_logits.view(-1, self.config.decoder_vocab_size),
|
| 1734 |
+
target=labels.view(-1),
|
| 1735 |
+
ignore_index=-100,
|
| 1736 |
+
label_smoothing=self._label_smoothing,
|
| 1737 |
+
)
|
| 1738 |
+
|
| 1739 |
+
if not return_dict:
|
| 1740 |
+
output = (lm_logits,) + outputs[1:]
|
| 1741 |
+
return (
|
| 1742 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 1743 |
+
)
|
| 1744 |
+
|
| 1745 |
+
return Seq2SeqLMOutput(
|
| 1746 |
+
loss=masked_lm_loss,
|
| 1747 |
+
logits=lm_logits,
|
| 1748 |
+
past_key_values=outputs.past_key_values,
|
| 1749 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
| 1750 |
+
decoder_attentions=outputs.decoder_attentions,
|
| 1751 |
+
cross_attentions=outputs.cross_attentions,
|
| 1752 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
| 1753 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
| 1754 |
+
encoder_attentions=outputs.encoder_attentions,
|
| 1755 |
+
)
|
| 1756 |
+
|
| 1757 |
+
def prepare_inputs_for_generation(
|
| 1758 |
+
self,
|
| 1759 |
+
decoder_input_ids,
|
| 1760 |
+
past_key_values=None,
|
| 1761 |
+
attention_mask=None,
|
| 1762 |
+
head_mask=None,
|
| 1763 |
+
decoder_head_mask=None,
|
| 1764 |
+
cross_attn_head_mask=None,
|
| 1765 |
+
use_cache=None,
|
| 1766 |
+
encoder_outputs=None,
|
| 1767 |
+
**kwargs,
|
| 1768 |
+
):
|
| 1769 |
+
# cut decoder_input_ids if past is used
|
| 1770 |
+
if past_key_values is not None:
|
| 1771 |
+
decoder_input_ids = decoder_input_ids[:, -1:]
|
| 1772 |
+
|
| 1773 |
+
return {
|
| 1774 |
+
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
| 1775 |
+
"encoder_outputs": encoder_outputs,
|
| 1776 |
+
"past_key_values": past_key_values,
|
| 1777 |
+
"decoder_input_ids": decoder_input_ids,
|
| 1778 |
+
"attention_mask": attention_mask,
|
| 1779 |
+
"head_mask": head_mask,
|
| 1780 |
+
"decoder_head_mask": decoder_head_mask,
|
| 1781 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
| 1782 |
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
| 1783 |
+
}
|
| 1784 |
+
|
| 1785 |
+
@staticmethod
|
| 1786 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1787 |
+
reordered_past = ()
|
| 1788 |
+
for layer_past in past_key_values:
|
| 1789 |
+
reordered_past += (
|
| 1790 |
+
tuple(
|
| 1791 |
+
past_state.index_select(0, beam_idx) for past_state in layer_past
|
| 1792 |
+
),
|
| 1793 |
+
)
|
| 1794 |
+
return reordered_past
|