Update tokenization_indictrans.py (#7)
Browse files- Update tokenization_indictrans.py (d20f3d3d9d300348e1d74f6d6857bf124cac7219)
Co-authored-by: Varun Gumma <[email protected]>
- tokenization_indictrans.py +133 -140
tokenization_indictrans.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
|
|
|
| 3 |
|
|
|
|
| 4 |
from typing import Dict, List, Optional, Union, Tuple
|
| 5 |
|
| 6 |
-
from transformers.utils import logging
|
| 7 |
from sentencepiece import SentencePieceProcessor
|
| 8 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 9 |
|
|
@@ -12,44 +13,45 @@ logger = logging.get_logger(__name__)
|
|
| 12 |
|
| 13 |
SPIECE_UNDERLINE = "▁"
|
| 14 |
|
| 15 |
-
SPECIAL_TAGS
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
}
|
|
|
|
| 53 |
|
| 54 |
VOCAB_FILES_NAMES = {
|
| 55 |
"src_vocab_fp": "dict.SRC.json",
|
|
@@ -60,9 +62,8 @@ VOCAB_FILES_NAMES = {
|
|
| 60 |
|
| 61 |
|
| 62 |
class IndicTransTokenizer(PreTrainedTokenizer):
|
| 63 |
-
_added_tokens_encoder = {}
|
| 64 |
-
_added_tokens_decoder = {}
|
| 65 |
-
|
| 66 |
vocab_files_names = VOCAB_FILES_NAMES
|
| 67 |
model_input_names = ["input_ids", "attention_mask"]
|
| 68 |
|
|
@@ -79,43 +80,51 @@ class IndicTransTokenizer(PreTrainedTokenizer):
|
|
| 79 |
do_lower_case=False,
|
| 80 |
**kwargs,
|
| 81 |
):
|
| 82 |
-
|
| 83 |
-
self.src = True
|
| 84 |
-
|
| 85 |
self.src_vocab_fp = src_vocab_fp
|
| 86 |
self.tgt_vocab_fp = tgt_vocab_fp
|
| 87 |
self.src_spm_fp = src_spm_fp
|
| 88 |
self.tgt_spm_fp = tgt_spm_fp
|
| 89 |
|
| 90 |
-
|
| 91 |
-
self.
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
-
if self.unk_token not in self.
|
| 97 |
raise KeyError("<unk> token must be in vocab")
|
| 98 |
-
|
| 99 |
-
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
assert self.pad_token in self.encoder
|
| 105 |
-
self.decoder_rev = {v: k for k, v in self.decoder.items()}
|
| 106 |
|
| 107 |
-
#
|
| 108 |
self.src_spm = self._load_spm(self.src_spm_fp)
|
| 109 |
self.tgt_spm = self._load_spm(self.tgt_spm_fp)
|
| 110 |
|
| 111 |
-
|
| 112 |
-
self.
|
| 113 |
-
self.current_encoder_rev = self.encoder_rev
|
| 114 |
|
| 115 |
-
|
| 116 |
-
self.
|
| 117 |
-
self.
|
| 118 |
-
self.
|
|
|
|
| 119 |
|
| 120 |
super().__init__(
|
| 121 |
src_vocab_file=self.src_vocab_fp,
|
|
@@ -128,134 +137,118 @@ class IndicTransTokenizer(PreTrainedTokenizer):
|
|
| 128 |
**kwargs,
|
| 129 |
)
|
| 130 |
|
| 131 |
-
def add_new_special_tags(self, new_tags: List[str]):
|
| 132 |
-
SPECIAL_TAGS
|
|
|
|
| 133 |
|
| 134 |
-
def _switch_to_input_mode(self):
|
| 135 |
-
self.
|
| 136 |
self.padding_side = "left"
|
| 137 |
-
self.
|
| 138 |
-
self.
|
| 139 |
-
self.
|
| 140 |
|
| 141 |
-
def _switch_to_target_mode(self):
|
| 142 |
-
self.
|
| 143 |
self.padding_side = "right"
|
| 144 |
-
self.
|
| 145 |
-
self.
|
| 146 |
-
self.
|
| 147 |
|
| 148 |
-
|
|
|
|
| 149 |
return SentencePieceProcessor(model_file=path)
|
| 150 |
|
| 151 |
-
|
|
|
|
| 152 |
with open(path, "w", encoding="utf-8") as f:
|
| 153 |
json.dump(data, f, indent=2)
|
| 154 |
|
| 155 |
-
|
|
|
|
| 156 |
with open(path, "r", encoding="utf-8") as f:
|
| 157 |
return json.load(f)
|
| 158 |
|
| 159 |
-
def _split_tags(self, tokens: List[str]) -> Tuple[List[str], List[str]]:
|
| 160 |
-
tags = [token for token in tokens if token in SPECIAL_TAGS]
|
| 161 |
-
tokens = [token for token in tokens if token not in SPECIAL_TAGS]
|
| 162 |
-
return tags, tokens
|
| 163 |
-
|
| 164 |
-
def _split_pads(self, tokens: List[str]) -> Tuple[List[str], List[str]]:
|
| 165 |
-
pads = [token for token in tokens if token == self.pad_token]
|
| 166 |
-
tokens = [token for token in tokens if token != self.pad_token]
|
| 167 |
-
return pads, tokens
|
| 168 |
-
|
| 169 |
@property
|
| 170 |
def src_vocab_size(self) -> int:
|
| 171 |
-
return len(self.
|
| 172 |
|
| 173 |
@property
|
| 174 |
def tgt_vocab_size(self) -> int:
|
| 175 |
-
return len(self.
|
| 176 |
|
| 177 |
def get_src_vocab(self) -> Dict[str, int]:
|
| 178 |
-
return dict(self.
|
| 179 |
|
| 180 |
def get_tgt_vocab(self) -> Dict[str, int]:
|
| 181 |
-
return dict(self.
|
| 182 |
|
| 183 |
-
# hack override
|
| 184 |
def get_vocab(self) -> Dict[str, int]:
|
| 185 |
return self.get_src_vocab()
|
| 186 |
|
| 187 |
-
# hack override
|
| 188 |
@property
|
| 189 |
def vocab_size(self) -> int:
|
| 190 |
return self.src_vocab_size
|
| 191 |
|
|
|
|
| 192 |
def _convert_token_to_id(self, token: str) -> int:
|
| 193 |
-
|
| 194 |
-
return self.current_encoder.get(token, self.current_encoder[self.unk_token])
|
| 195 |
|
|
|
|
| 196 |
def _convert_id_to_token(self, index: int) -> str:
|
| 197 |
-
|
| 198 |
-
return self.current_encoder_rev.get(index, self.unk_token)
|
| 199 |
|
| 200 |
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 201 |
-
"""
|
| 202 |
-
pads, tokens = self._split_pads(tokens)
|
| 203 |
-
|
| 204 |
-
if self.src:
|
| 205 |
|
| 206 |
-
|
|
|
|
|
|
|
| 207 |
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
+ " "
|
| 211 |
-
+ " ".join(tags)
|
| 212 |
-
+ " "
|
| 213 |
-
+ "".join(non_tags).replace(SPIECE_UNDERLINE, " ").strip()
|
| 214 |
-
)
|
| 215 |
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
)
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
if self.src:
|
| 224 |
-
tokens = text.split(" ")
|
| 225 |
-
tags, non_tags = self._split_tags(tokens)
|
| 226 |
-
text = " ".join(non_tags)
|
| 227 |
-
tokens = self.current_spm.EncodeAsPieces(text)
|
| 228 |
-
return tags + tokens
|
| 229 |
-
else:
|
| 230 |
-
return self.current_spm.EncodeAsPieces(text)
|
| 231 |
|
| 232 |
def build_inputs_with_special_tokens(
|
| 233 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 234 |
) -> List[int]:
|
| 235 |
-
|
| 236 |
-
return token_ids_0 + [self.eos_token_id]
|
| 237 |
-
# We don't expect to process pairs, but leave the pair logic for API consistency
|
| 238 |
-
return token_ids_0 + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
|
| 239 |
|
| 240 |
def save_vocabulary(
|
| 241 |
self, save_directory: str, filename_prefix: Optional[str] = None
|
| 242 |
-
) -> Tuple[str]:
|
| 243 |
if not os.path.isdir(save_directory):
|
| 244 |
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 245 |
-
return
|
| 246 |
|
| 247 |
src_spm_fp = os.path.join(save_directory, "model.SRC")
|
| 248 |
tgt_spm_fp = os.path.join(save_directory, "model.TGT")
|
| 249 |
src_vocab_fp = os.path.join(save_directory, "dict.SRC.json")
|
| 250 |
tgt_vocab_fp = os.path.join(save_directory, "dict.TGT.json")
|
| 251 |
|
| 252 |
-
self._save_json(self.
|
| 253 |
-
self._save_json(self.
|
| 254 |
-
|
| 255 |
-
with open(src_spm_fp, "wb") as f:
|
| 256 |
-
f.write(self.src_spm.serialized_model_proto())
|
| 257 |
|
| 258 |
-
|
| 259 |
-
|
|
|
|
| 260 |
|
| 261 |
return src_vocab_fp, tgt_vocab_fp, src_spm_fp, tgt_spm_fp
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
+
from functools import lru_cache
|
| 4 |
|
| 5 |
+
from transformers.utils import logging
|
| 6 |
from typing import Dict, List, Optional, Union, Tuple
|
| 7 |
|
|
|
|
| 8 |
from sentencepiece import SentencePieceProcessor
|
| 9 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 10 |
|
|
|
|
| 13 |
|
| 14 |
SPIECE_UNDERLINE = "▁"
|
| 15 |
|
| 16 |
+
# Convert SPECIAL_TAGS to a frozen set for faster lookups
|
| 17 |
+
SPECIAL_TAGS = frozenset(
|
| 18 |
+
{
|
| 19 |
+
"asm_Beng",
|
| 20 |
+
"awa_Deva",
|
| 21 |
+
"ben_Beng",
|
| 22 |
+
"bho_Deva",
|
| 23 |
+
"brx_Deva",
|
| 24 |
+
"doi_Deva",
|
| 25 |
+
"eng_Latn",
|
| 26 |
+
"gom_Deva",
|
| 27 |
+
"gon_Deva",
|
| 28 |
+
"guj_Gujr",
|
| 29 |
+
"hin_Deva",
|
| 30 |
+
"hne_Deva",
|
| 31 |
+
"kan_Knda",
|
| 32 |
+
"kas_Arab",
|
| 33 |
+
"kas_Deva",
|
| 34 |
+
"kha_Latn",
|
| 35 |
+
"lus_Latn",
|
| 36 |
+
"mag_Deva",
|
| 37 |
+
"mai_Deva",
|
| 38 |
+
"mal_Mlym",
|
| 39 |
+
"mar_Deva",
|
| 40 |
+
"mni_Beng",
|
| 41 |
+
"mni_Mtei",
|
| 42 |
+
"npi_Deva",
|
| 43 |
+
"ory_Orya",
|
| 44 |
+
"pan_Guru",
|
| 45 |
+
"san_Deva",
|
| 46 |
+
"sat_Olck",
|
| 47 |
+
"snd_Arab",
|
| 48 |
+
"snd_Deva",
|
| 49 |
+
"tam_Taml",
|
| 50 |
+
"tel_Telu",
|
| 51 |
+
"urd_Arab",
|
| 52 |
+
"unr_Deva",
|
| 53 |
+
}
|
| 54 |
+
)
|
| 55 |
|
| 56 |
VOCAB_FILES_NAMES = {
|
| 57 |
"src_vocab_fp": "dict.SRC.json",
|
|
|
|
| 62 |
|
| 63 |
|
| 64 |
class IndicTransTokenizer(PreTrainedTokenizer):
|
| 65 |
+
_added_tokens_encoder: Dict[str, int] = {}
|
| 66 |
+
_added_tokens_decoder: Dict[str, int] = {}
|
|
|
|
| 67 |
vocab_files_names = VOCAB_FILES_NAMES
|
| 68 |
model_input_names = ["input_ids", "attention_mask"]
|
| 69 |
|
|
|
|
| 80 |
do_lower_case=False,
|
| 81 |
**kwargs,
|
| 82 |
):
|
|
|
|
|
|
|
|
|
|
| 83 |
self.src_vocab_fp = src_vocab_fp
|
| 84 |
self.tgt_vocab_fp = tgt_vocab_fp
|
| 85 |
self.src_spm_fp = src_spm_fp
|
| 86 |
self.tgt_spm_fp = tgt_spm_fp
|
| 87 |
|
| 88 |
+
# Store token content directly instead of accessing .content
|
| 89 |
+
self.unk_token = (
|
| 90 |
+
hasattr(unk_token, "content") and unk_token.content or unk_token
|
| 91 |
+
)
|
| 92 |
+
self.pad_token = (
|
| 93 |
+
hasattr(pad_token, "content") and pad_token.content or pad_token
|
| 94 |
+
)
|
| 95 |
+
self.eos_token = (
|
| 96 |
+
hasattr(eos_token, "content") and eos_token.content or eos_token
|
| 97 |
+
)
|
| 98 |
+
self.bos_token = (
|
| 99 |
+
hasattr(bos_token, "content") and bos_token.content or bos_token
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Load vocabularies
|
| 103 |
+
self.src_encoder = self._load_json(self.src_vocab_fp)
|
| 104 |
+
self.tgt_encoder = self._load_json(self.tgt_vocab_fp)
|
| 105 |
|
| 106 |
+
# Validate tokens
|
| 107 |
+
if self.unk_token not in self.src_encoder:
|
| 108 |
raise KeyError("<unk> token must be in vocab")
|
| 109 |
+
if self.pad_token not in self.src_encoder:
|
| 110 |
+
raise KeyError("<pad> token must be in vocab")
|
| 111 |
|
| 112 |
+
# Pre-compute reverse mappings
|
| 113 |
+
self.src_decoder = {v: k for k, v in self.src_encoder.items()}
|
| 114 |
+
self.tgt_decoder = {v: k for k, v in self.tgt_encoder.items()}
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
# Load SPM models
|
| 117 |
self.src_spm = self._load_spm(self.src_spm_fp)
|
| 118 |
self.tgt_spm = self._load_spm(self.tgt_spm_fp)
|
| 119 |
|
| 120 |
+
# Initialize current settings
|
| 121 |
+
self._switch_to_input_mode()
|
|
|
|
| 122 |
|
| 123 |
+
# Cache token IDs
|
| 124 |
+
self.unk_token_id = self.src_encoder[self.unk_token]
|
| 125 |
+
self.pad_token_id = self.src_encoder[self.pad_token]
|
| 126 |
+
self.eos_token_id = self.src_encoder[self.eos_token]
|
| 127 |
+
self.bos_token_id = self.src_encoder[self.bos_token]
|
| 128 |
|
| 129 |
super().__init__(
|
| 130 |
src_vocab_file=self.src_vocab_fp,
|
|
|
|
| 137 |
**kwargs,
|
| 138 |
)
|
| 139 |
|
| 140 |
+
def add_new_special_tags(self, new_tags: List[str]) -> None:
|
| 141 |
+
global SPECIAL_TAGS
|
| 142 |
+
SPECIAL_TAGS = frozenset(SPECIAL_TAGS | set(new_tags))
|
| 143 |
|
| 144 |
+
def _switch_to_input_mode(self) -> None:
|
| 145 |
+
self.spm = self.src_spm
|
| 146 |
self.padding_side = "left"
|
| 147 |
+
self.encoder = self.src_encoder
|
| 148 |
+
self.decoder = self.src_decoder
|
| 149 |
+
self._tokenize = self._src_tokenize
|
| 150 |
|
| 151 |
+
def _switch_to_target_mode(self) -> None:
|
| 152 |
+
self.spm = self.tgt_spm
|
| 153 |
self.padding_side = "right"
|
| 154 |
+
self.encoder = self.tgt_encoder
|
| 155 |
+
self.decoder = self.tgt_decoder
|
| 156 |
+
self._tokenize = self._tgt_tokenize
|
| 157 |
|
| 158 |
+
@staticmethod
|
| 159 |
+
def _load_spm(path: str) -> SentencePieceProcessor:
|
| 160 |
return SentencePieceProcessor(model_file=path)
|
| 161 |
|
| 162 |
+
@staticmethod
|
| 163 |
+
def _save_json(data: Union[Dict, List], path: str) -> None:
|
| 164 |
with open(path, "w", encoding="utf-8") as f:
|
| 165 |
json.dump(data, f, indent=2)
|
| 166 |
|
| 167 |
+
@staticmethod
|
| 168 |
+
def _load_json(path: str) -> Union[Dict, List]:
|
| 169 |
with open(path, "r", encoding="utf-8") as f:
|
| 170 |
return json.load(f)
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
@property
|
| 173 |
def src_vocab_size(self) -> int:
|
| 174 |
+
return len(self.src_encoder)
|
| 175 |
|
| 176 |
@property
|
| 177 |
def tgt_vocab_size(self) -> int:
|
| 178 |
+
return len(self.tgt_encoder)
|
| 179 |
|
| 180 |
def get_src_vocab(self) -> Dict[str, int]:
|
| 181 |
+
return dict(self.src_encoder, **self.added_tokens_encoder)
|
| 182 |
|
| 183 |
def get_tgt_vocab(self) -> Dict[str, int]:
|
| 184 |
+
return dict(self.tgt_encoder, **self.added_tokens_decoder)
|
| 185 |
|
|
|
|
| 186 |
def get_vocab(self) -> Dict[str, int]:
|
| 187 |
return self.get_src_vocab()
|
| 188 |
|
|
|
|
| 189 |
@property
|
| 190 |
def vocab_size(self) -> int:
|
| 191 |
return self.src_vocab_size
|
| 192 |
|
| 193 |
+
@lru_cache(maxsize=10240)
|
| 194 |
def _convert_token_to_id(self, token: str) -> int:
|
| 195 |
+
return self.encoder.get(token, self.unk_token_id)
|
|
|
|
| 196 |
|
| 197 |
+
@lru_cache(maxsize=10240)
|
| 198 |
def _convert_id_to_token(self, index: int) -> str:
|
| 199 |
+
return self.decoder.get(index, self.unk_token)
|
|
|
|
| 200 |
|
| 201 |
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 202 |
+
return "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
def _src_tokenize(self, text: str) -> List[str]:
|
| 205 |
+
src_lang, tgt_lang, text = text.split(" ", 2)
|
| 206 |
+
return [src_lang, tgt_lang] + self.spm.EncodeAsPieces(text)
|
| 207 |
|
| 208 |
+
def _tgt_tokenize(self, text: str) -> List[str]:
|
| 209 |
+
return self.spm.EncodeAsPieces(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
+
def _decode(
|
| 212 |
+
self,
|
| 213 |
+
token_ids: Union[int, List[int]],
|
| 214 |
+
skip_special_tokens: bool = False,
|
| 215 |
+
clean_up_tokenization_spaces: bool = None,
|
| 216 |
+
spaces_between_special_tokens: bool = True,
|
| 217 |
+
**kwargs,
|
| 218 |
+
) -> str:
|
| 219 |
+
self._switch_to_target_mode()
|
| 220 |
+
decoded_token_ids = super()._decode(
|
| 221 |
+
token_ids=token_ids,
|
| 222 |
+
skip_special_tokens=skip_special_tokens,
|
| 223 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 224 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
| 225 |
+
**kwargs,
|
| 226 |
)
|
| 227 |
+
self._switch_to_input_mode()
|
| 228 |
+
return decoded_token_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
def build_inputs_with_special_tokens(
|
| 231 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 232 |
) -> List[int]:
|
| 233 |
+
return token_ids_0 + [self.eos_token_id]
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
def save_vocabulary(
|
| 236 |
self, save_directory: str, filename_prefix: Optional[str] = None
|
| 237 |
+
) -> Tuple[str, ...]:
|
| 238 |
if not os.path.isdir(save_directory):
|
| 239 |
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 240 |
+
return ()
|
| 241 |
|
| 242 |
src_spm_fp = os.path.join(save_directory, "model.SRC")
|
| 243 |
tgt_spm_fp = os.path.join(save_directory, "model.TGT")
|
| 244 |
src_vocab_fp = os.path.join(save_directory, "dict.SRC.json")
|
| 245 |
tgt_vocab_fp = os.path.join(save_directory, "dict.TGT.json")
|
| 246 |
|
| 247 |
+
self._save_json(self.src_encoder, src_vocab_fp)
|
| 248 |
+
self._save_json(self.tgt_encoder, tgt_vocab_fp)
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
+
for fp, spm in [(src_spm_fp, self.src_spm), (tgt_spm_fp, self.tgt_spm)]:
|
| 251 |
+
with open(fp, "wb") as f:
|
| 252 |
+
f.write(spm.serialized_model_proto())
|
| 253 |
|
| 254 |
return src_vocab_fp, tgt_vocab_fp, src_spm_fp, tgt_spm_fp
|