Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,95 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model:
|
| 6 |
+
- google/siglip2-base-patch16-224
|
| 7 |
+
pipeline_tag: image-classification
|
| 8 |
+
library_name: transformers
|
| 9 |
+
tags:
|
| 10 |
+
- Deepfake
|
| 11 |
+
- Quality
|
| 12 |
+
- Classifier
|
| 13 |
+
- SigLIP2
|
| 14 |
+
---
|
| 15 |
+

|
| 16 |
+
|
| 17 |
+
# **Deepfake-Quality-Classifier2-SigLIP2**
|
| 18 |
+
> **Deepfake-Quality-Classifier2-SigLIP2** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to assess the quality of deepfake images using the **SiglipForImageClassification** architecture.
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
```python
|
| 22 |
+
Classification Report:
|
| 23 |
+
precision recall f1-score support
|
| 24 |
+
|
| 25 |
+
Issue In Deepfake 0.8352 0.7800 0.8067 5000
|
| 26 |
+
High Quality Deepfake 0.7951 0.8500 0.8217 5000
|
| 27 |
+
|
| 28 |
+
accuracy 0.8245 10000
|
| 29 |
+
macro avg 0.8152 0.8245 0.8142 10000
|
| 30 |
+
weighted avg 0.8152 0.8245 0.8142 10000
|
| 31 |
+
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
The model categorizes images into two classes:
|
| 35 |
+
- **Class 0:** "Issue In Deepfake" – indicating that the deepfake image has noticeable flaws or inconsistencies.
|
| 36 |
+
- **Class 1:** "High Quality Deepfake" – indicating that the deepfake image is of high quality and appears more realistic.
|
| 37 |
+
|
| 38 |
+
# **Run with Transformers🤗**
|
| 39 |
+
|
| 40 |
+
```python
|
| 41 |
+
!pip install -q transformers torch pillow gradio
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
```python
|
| 45 |
+
import gradio as gr
|
| 46 |
+
from transformers import AutoImageProcessor
|
| 47 |
+
from transformers import SiglipForImageClassification
|
| 48 |
+
from transformers.image_utils import load_image
|
| 49 |
+
from PIL import Image
|
| 50 |
+
import torch
|
| 51 |
+
|
| 52 |
+
# Load model and processor
|
| 53 |
+
model_name = "prithivMLmods/Deepfake-Quality-Classifier2-SigLIP2"
|
| 54 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 55 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 56 |
+
|
| 57 |
+
def deepfake_detection(image):
|
| 58 |
+
"""Predicts deepfake probability scores for an image."""
|
| 59 |
+
image = Image.fromarray(image).convert("RGB")
|
| 60 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 61 |
+
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
outputs = model(**inputs)
|
| 64 |
+
logits = outputs.logits
|
| 65 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 66 |
+
|
| 67 |
+
labels = {"0": "Issue In Deepfake", "1": "High Quality Deepfake"}
|
| 68 |
+
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
| 69 |
+
|
| 70 |
+
return predictions
|
| 71 |
+
|
| 72 |
+
# Create Gradio interface
|
| 73 |
+
iface = gr.Interface(
|
| 74 |
+
fn=deepfake_detection,
|
| 75 |
+
inputs=gr.Image(type="numpy"),
|
| 76 |
+
outputs=gr.Label(label="Prediction Scores"),
|
| 77 |
+
title="Deepfake Quality Detection",
|
| 78 |
+
description="Upload an image to check its deepfake probability scores."
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Launch the app
|
| 82 |
+
if __name__ == "__main__":
|
| 83 |
+
iface.launch()
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
# **Intended Use:**
|
| 87 |
+
|
| 88 |
+
The **Deepfake-Quality-Classifier2-SigLIP2** model is designed to evaluate the quality of deepfake images. It helps distinguish between high-quality deepfakes and those with noticeable issues. Potential use cases include:
|
| 89 |
+
|
| 90 |
+
- **Deepfake Quality Assessment:** Identifying whether a generated deepfake meets high-quality standards or contains artifacts and inconsistencies.
|
| 91 |
+
- **Content Moderation:** Assisting in filtering low-quality deepfake images in digital media platforms.
|
| 92 |
+
- **Forensic Analysis:** Supporting researchers and analysts in assessing the credibility of synthetic images.
|
| 93 |
+
- **Deepfake Model Benchmarking:** Helping developers compare and improve deepfake generation models.
|
| 94 |
+
|
| 95 |
+
|