prithivMLmods commited on
Commit
2ede3f2
·
verified ·
1 Parent(s): f4b575a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -1
README.md CHANGED
@@ -10,4 +10,100 @@ tags:
10
  - text-generation-inference
11
  ---
12
 
13
- ![2.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/CPSV18EisjG36vLoxsavm.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  - text-generation-inference
11
  ---
12
 
13
+ ![2.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/CPSV18EisjG36vLoxsavm.png)
14
+
15
+ # **Face-Confidence-SigLIP2**
16
+
17
+ > **Face-Confidence-SigLIP2** is a vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for **binary image classification**. It is trained to distinguish between images of **confident faces** and **unconfident faces** using the **SiglipForImageClassification** architecture.
18
+
19
+ ```py
20
+ Classification report:
21
+
22
+ precision recall f1-score support
23
+
24
+ confident 0.8468 0.8179 0.8321 4872
25
+ unconfident 0.8691 0.8909 0.8799 6611
26
+
27
+ accuracy 0.8600 11483
28
+ macro avg 0.8580 0.8544 0.8560 11483
29
+ weighted avg 0.8596 0.8600 0.8596 11483
30
+ ```
31
+
32
+ ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/MotjWiRrjx_5sMpR5LGZK.png)
33
+
34
+ ## **Label Space: 2 Classes**
35
+
36
+ The model classifies each image into one of the following categories:
37
+
38
+ ```
39
+ Class 0: "confident"
40
+ Class 1: "unconfident"
41
+ ```
42
+
43
+ ---
44
+
45
+ ## **Install Dependencies**
46
+
47
+ ```bash
48
+ pip install -q transformers torch pillow gradio
49
+ ```
50
+
51
+ ---
52
+
53
+ ## **Inference Code**
54
+
55
+ ```python
56
+ import gradio as gr
57
+ from transformers import AutoImageProcessor, SiglipForImageClassification
58
+ from PIL import Image
59
+ import torch
60
+
61
+ # Load model and processor
62
+ model_name = "prithivMLmods/Face-Confidence-SigLIP2" # Replace with your model path if different
63
+ model = SiglipForImageClassification.from_pretrained(model_name)
64
+ processor = AutoImageProcessor.from_pretrained(model_name)
65
+
66
+ # Label mapping
67
+ id2label = {
68
+ "0": "confident",
69
+ "1": "unconfident"
70
+ }
71
+
72
+ def classify_face_confidence(image):
73
+ image = Image.fromarray(image).convert("RGB")
74
+ inputs = processor(images=image, return_tensors="pt")
75
+
76
+ with torch.no_grad():
77
+ outputs = model(**inputs)
78
+ logits = outputs.logits
79
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
80
+
81
+ prediction = {
82
+ id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
83
+ }
84
+
85
+ return prediction
86
+
87
+ # Gradio Interface
88
+ iface = gr.Interface(
89
+ fn=classify_face_confidence,
90
+ inputs=gr.Image(type="numpy"),
91
+ outputs=gr.Label(num_top_classes=2, label="Face Confidence Classification"),
92
+ title="Face-Confidence-SigLIP2",
93
+ description="Upload an image to detect if a face looks confident or unconfident."
94
+ )
95
+
96
+ if __name__ == "__main__":
97
+ iface.launch()
98
+ ```
99
+
100
+ ---
101
+
102
+ ## **Intended Use**
103
+
104
+ **Face-Confidence-SigLIP2** can be used for:
105
+
106
+ * **Behavioral Analysis** – Detect confidence levels in facial expressions.
107
+ * **Education & Training** – Assess learner engagement or self-confidence.
108
+ * **HR & Recruitment** – Analyze non-verbal cues during interviews.
109
+ * **Dataset Curation** – Separate confident vs unconfident facial images for training.