File size: 4,060 Bytes
839b37f
 
 
 
 
 
 
9d037f5
839b37f
 
 
 
579ddca
 
 
 
 
839b37f
 
 
 
 
 
 
5f2f392
839b37f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
license: mit
---


# nGPT-enwiki8

small [nGPT](https://arxiv.org/abs/2410.01131) model trained on enwiki8 for testing purposes with [nGPT-pytorch](https://github.com/lucidrains/nGPT-pytorch)

## inference

1. download a weights file from this repo

```sh
wget -O ./nGPT_best.pt "https://huggingface.co/pszemraj/nGPT-enwiki8/resolve/main/nGPT_best.pt"
```

2. install dependencies

```sh
# assuming you already have torch
pip install fire nGPT-pytorch
```

3. run inference with below with `python inference.py ./nGPT_best.pt "Once upon a time"`


```py
# inference.py
import json
import sys
from pathlib import Path

import fire
import torch
from nGPT_pytorch import nGPT


def exists(v):
    return v is not None


def decode_token(token):
    return str(chr(max(32, token)))


def decode_tokens(tokens):
    return "".join(list(map(decode_token, tokens)))


def log(t, eps=1e-20):
    return torch.log(t.clamp(min=eps))


def gumbel_noise(t):
    noise = torch.zeros_like(t).uniform_(0, 1)
    return -log(-log(noise))


def gumbel_sample(t, temperature=1.0, dim=-1, keepdim=True):
    return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(
        dim=dim, keepdim=keepdim
    )


def min_p_filter(logits, min_p=0.1):
    probs = logits.softmax(dim=-1)
    max_probs = probs.amax(dim=-1, keepdim=True)
    limit = min_p * max_probs
    return torch.where(probs < limit, float("-inf"), logits)


def base_decoding(
    net,
    prompt: torch.Tensor,
    seq_len: int,
    temperature=1.5,
    min_p=1e-1,
    filter_thres=0.9,
):
    prompt_seq_len, out = prompt.shape[-1], prompt.clone()
    sample_num_times = max(0, seq_len - prompt_seq_len)

    for _ in range(sample_num_times):
        logits = net(out)
        logits = logits[:, -1]

        logits = min_p_filter(logits, min_p=min_p)
        sample = gumbel_sample(logits, temperature=temperature, dim=-1)

        out = torch.cat((out, sample), dim=-1)

    return out[..., prompt_seq_len:]


def main(
    checkpoint_path: str,
    prompt: str,
    max_new_tokens: int = 100,
    temperature: float = 1.0,
    min_p: float = 0.1,
    device: str = "cuda" if torch.cuda.is_available() else "cpu",
):
    """Generate text using a trained nGPT model."""

    # Load checkpoint
    checkpoint_path = Path(checkpoint_path)
    if not checkpoint_path.exists():
        print(f"Error: Checkpoint not found at {checkpoint_path}")
        sys.exit(1)

    print(f"Loading checkpoint from {checkpoint_path}...")
    checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=True)

    # Get config from checkpoint or file
    config = checkpoint.get("config", {})
    if not config and checkpoint_path.parent.joinpath("config.json").exists():
        with open(checkpoint_path.parent.joinpath("config.json")) as f:
            config = json.load(f)

    use_parametrize = config.get("use_parametrize", True)

    # Initialize model
    model = nGPT(
        num_tokens=256,
        dim=512,
        depth=8,
        tied_embedding=True,
        add_value_residual=True,
        attn_norm_qk=False,
        manual_norm_weights=not use_parametrize,
    ).to(device)

    # Load weights
    model.load_state_dict(checkpoint["model_state_dict"])
    model.eval()

    print("\nModel loaded successfully. Generating with:")
    print(f"  Temperature: {temperature}")
    print(f"  Min-p: {min_p}")
    print(f"  Max new tokens: {max_new_tokens}")

    # Convert prompt to tensor
    prompt_tensor = torch.tensor(
        [ord(c) for c in prompt], dtype=torch.long, device=device
    )
    prompt_tensor = prompt_tensor.unsqueeze(0)

    # Generate
    with torch.no_grad():
        sampled = base_decoding(
            model,
            prompt_tensor,
            seq_len=max_new_tokens,
            temperature=temperature,
            min_p=min_p,
        )

    generated = decode_tokens(sampled[0])

    print("\nGenerated text:")
    print("-" * 80)
    print(prompt + generated)
    print("-" * 80)

    return generated


if __name__ == "__main__":
    fire.Fire(main)
```