File size: 35,522 Bytes
fbbd4c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
---
language:
- en
tags:
- sentence-transformers
- cross-encoder
- reranker
- generated_from_trainer
- dataset_size:9960000
- loss:BinaryCrossEntropyLoss
base_model: jhu-clsp/ettin-encoder-150m
datasets:
- sentence-transformers/msmarco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on jhu-clsp/ettin-encoder-150m
results:
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoMSMARCO R100
type: NanoMSMARCO_R100
metrics:
- type: map
value: 0.6651
name: Map
- type: mrr@10
value: 0.6587
name: Mrr@10
- type: ndcg@10
value: 0.7166
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNFCorpus R100
type: NanoNFCorpus_R100
metrics:
- type: map
value: 0.3859
name: Map
- type: mrr@10
value: 0.5643
name: Mrr@10
- type: ndcg@10
value: 0.4197
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNQ R100
type: NanoNQ_R100
metrics:
- type: map
value: 0.691
name: Map
- type: mrr@10
value: 0.7127
name: Mrr@10
- type: ndcg@10
value: 0.743
name: Ndcg@10
- task:
type: cross-encoder-nano-beir
name: Cross Encoder Nano BEIR
dataset:
name: NanoBEIR R100 mean
type: NanoBEIR_R100_mean
metrics:
- type: map
value: 0.5807
name: Map
- type: mrr@10
value: 0.6453
name: Mrr@10
- type: ndcg@10
value: 0.6264
name: Ndcg@10
---
# CrossEncoder based on jhu-clsp/ettin-encoder-150m
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [jhu-clsp/ettin-encoder-150m](https://huggingface.co/jhu-clsp/ettin-encoder-150m) on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [jhu-clsp/ettin-encoder-150m](https://huggingface.co/jhu-clsp/ettin-encoder-150m) <!-- at revision 45d08642849e5c5701b162671ac811b7654bfd9f -->
- **Maximum Sequence Length:** 7999 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
- [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("rahulseetharaman/reranker-ettin-encoder-150m-msmarco-bce-10m")
# Get scores for pairs of texts
pairs = [
['select committees definition government', 'There are four types of congressional committees: 1 Standing committees, which continue from one Congress to the next, are probably the most important type because they consider and shape the vast majority of proposed laws. 2 Select committees are temporarily formed for specific purposes, often to study a particular issue.'],
['what is a perceptual map', 'Welcome to our New Castle, Pennsylvania street map page. The street map of New Castle PA that is located below is provided by Google Maps. You can grab the New Castle Pennsylvania street map and move it around to re-centre the map. You can change between standard map view, satellite map view and hybrid map view.'],
['what makes your skin feel cold and burn', 'When the wind blows in cold weather, you feel colder than the actual temperature because the air blows away heat from your skin faster. For instance, if the temperature is -17.8 Celsius (0 Fahrenheit) and the wind blows at 15 mph, it feels like -28.3 Celsius (-19 Fahrenheit) -- exposed skin can freeze in 30 minutes.'],
['average act score for university of georgia', 'A graph of UB, University at Buffalo GPA, SAT score, and ACT score admissions data for students who were accepted, rejected, and waitlisted. A graph of UB, University at Buffalo GPA, SAT score, and ACT score admissions data for students who were accepted, rejected, and waitlisted. University at Buffalo GPA, SAT and ACT Data Search the site GO'],
['when was the ontario, ca, post office established', 'In 1832 Jed Jackson had the contract for carrying mail from Brantford to London twice a week along the Old Stage Road. On October 6, 1835, a post office was established at Woodstock, Ontario, with Princeton following within two years. According to the Legislative Council Sessional Papers for 1846, a post office was established at Princeton on May 6, 1836 and Jeremiah Cowin was appointed postmaster on May 9, 1837. The sureties were George Beamer and Silas Martin to the amount of £200. The assistant was John Charles.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'select committees definition government',
[
'There are four types of congressional committees: 1 Standing committees, which continue from one Congress to the next, are probably the most important type because they consider and shape the vast majority of proposed laws. 2 Select committees are temporarily formed for specific purposes, often to study a particular issue.',
'Welcome to our New Castle, Pennsylvania street map page. The street map of New Castle PA that is located below is provided by Google Maps. You can grab the New Castle Pennsylvania street map and move it around to re-centre the map. You can change between standard map view, satellite map view and hybrid map view.',
'When the wind blows in cold weather, you feel colder than the actual temperature because the air blows away heat from your skin faster. For instance, if the temperature is -17.8 Celsius (0 Fahrenheit) and the wind blows at 15 mph, it feels like -28.3 Celsius (-19 Fahrenheit) -- exposed skin can freeze in 30 minutes.',
'A graph of UB, University at Buffalo GPA, SAT score, and ACT score admissions data for students who were accepted, rejected, and waitlisted. A graph of UB, University at Buffalo GPA, SAT score, and ACT score admissions data for students who were accepted, rejected, and waitlisted. University at Buffalo GPA, SAT and ACT Data Search the site GO',
'In 1832 Jed Jackson had the contract for carrying mail from Brantford to London twice a week along the Old Stage Road. On October 6, 1835, a post office was established at Woodstock, Ontario, with Princeton following within two years. According to the Legislative Council Sessional Papers for 1846, a post office was established at Princeton on May 6, 1836 and Jeremiah Cowin was appointed postmaster on May 9, 1837. The sureties were George Beamer and Silas Martin to the amount of £200. The assistant was John Charles.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Reranking
* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
```json
{
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
|:------------|:---------------------|:---------------------|:---------------------|
| map | 0.6651 (+0.1755) | 0.3859 (+0.1249) | 0.6910 (+0.2714) |
| mrr@10 | 0.6587 (+0.1812) | 0.5643 (+0.0645) | 0.7127 (+0.2861) |
| **ndcg@10** | **0.7166 (+0.1762)** | **0.4197 (+0.0947)** | **0.7430 (+0.2423)** |
#### Cross Encoder Nano BEIR
* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | Value |
|:------------|:---------------------|
| map | 0.5807 (+0.1906) |
| mrr@10 | 0.6453 (+0.1773) |
| **ndcg@10** | **0.6264 (+0.1711)** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### msmarco
* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 9,960,000 training samples
* Columns: <code>query</code>, <code>passage</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | query | passage | score |
|:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 9 characters</li><li>mean: 33.93 characters</li><li>max: 110 characters</li></ul> | <ul><li>min: 80 characters</li><li>mean: 348.08 characters</li><li>max: 897 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
* Samples:
| query | passage | score |
|:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>nap in chinese</code> | <code>continued... Most children from about 21 to 36 months of age still need one nap a day, which may range from one to three and a half hours long.They typically go to bed between 7 and 9 p.m. and wake up between 6 and 8 a.m. 3-6 Years Old: 10 - 12 hours per day.ontinued... Most children from about 21 to 36 months of age still need one nap a day, which may range from one to three and a half hours long.</code> | <code>0.0</code> |
| <code>what abdominal organ is most frequently injured as a result of blunt trauma?</code> | <code>Bochdalek Hernia. Bochdalek hernia is a congenital posterolateral diaphragmatic defect that is a result of failed closure of the pleuroperitoneal ducts -- a primitive communications between the pleural and abdominal cavities -- at 8 weeks' gestation.ochdalek Hernia. Bochdalek hernia is a congenital posterolateral diaphragmatic defect that is a result of failed closure of the pleuroperitoneal ducts -- a primitive communications between the pleural and abdominal cavities -- at 8 weeks' gestation.</code> | <code>0.0</code> |
| <code>where is round rock tx</code> | <code>Driving distance from Dallas, TX to Fort Worth, TX The total driving distance from Dallas, TX to Fort Worth, TX is 33 miles or 53 kilometers. Your trip begins in Dallas, Texas. It ends in Fort Worth, Texas. If you are planning a road trip, you might also want to calculate the total driving time from Dallas, TX to Fort Worth, TX so you can see when you'll arrive at your destination. You can also calculate the cost of driving from Dallas, TX to Fort Worth, TX based on current local fuel prices and an estimate of your car's best gas mileage.</code> | <code>0.0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
```json
{
"activation_fn": "torch.nn.modules.linear.Identity",
"pos_weight": null
}
```
### Evaluation Dataset
#### msmarco
* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 40,000 evaluation samples
* Columns: <code>query</code>, <code>passage</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | query | passage | score |
|:--------|:----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 11 characters</li><li>mean: 34.1 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 75 characters</li><li>mean: 341.31 characters</li><li>max: 938 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
* Samples:
| query | passage | score |
|:-----------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>select committees definition government</code> | <code>There are four types of congressional committees: 1 Standing committees, which continue from one Congress to the next, are probably the most important type because they consider and shape the vast majority of proposed laws. 2 Select committees are temporarily formed for specific purposes, often to study a particular issue.</code> | <code>1.0</code> |
| <code>what is a perceptual map</code> | <code>Welcome to our New Castle, Pennsylvania street map page. The street map of New Castle PA that is located below is provided by Google Maps. You can grab the New Castle Pennsylvania street map and move it around to re-centre the map. You can change between standard map view, satellite map view and hybrid map view.</code> | <code>0.0</code> |
| <code>what makes your skin feel cold and burn</code> | <code>When the wind blows in cold weather, you feel colder than the actual temperature because the air blows away heat from your skin faster. For instance, if the temperature is -17.8 Celsius (0 Fahrenheit) and the wind blows at 15 mph, it feels like -28.3 Celsius (-19 Fahrenheit) -- exposed skin can freeze in 30 minutes.</code> | <code>0.0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
```json
{
"activation_fn": "torch.nn.modules.linear.Identity",
"pos_weight": null
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
|:----------:|:---------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
| -1 | -1 | - | - | 0.0509 (-0.4895) | 0.2434 (-0.0816) | 0.0190 (-0.4816) | 0.1045 (-0.3509) |
| 0.0000 | 1 | 0.702 | - | - | - | - | - |
| 0.0643 | 10000 | 0.3212 | 0.1845 | 0.6628 (+0.1223) | 0.3851 (+0.0600) | 0.7245 (+0.2239) | 0.5908 (+0.1354) |
| 0.1285 | 20000 | 0.1637 | 0.1600 | 0.6902 (+0.1498) | 0.4287 (+0.1037) | 0.7385 (+0.2378) | 0.6192 (+0.1638) |
| **0.1928** | **30000** | **0.1448** | **0.1348** | **0.7166 (+0.1762)** | **0.4197 (+0.0947)** | **0.7430 (+0.2423)** | **0.6264 (+0.1711)** |
| 0.2570 | 40000 | 0.1296 | 0.1235 | 0.7022 (+0.1618) | 0.4111 (+0.0861) | 0.7192 (+0.2185) | 0.6108 (+0.1555) |
| 0.3213 | 50000 | 0.1197 | 0.1145 | 0.6887 (+0.1483) | 0.4032 (+0.0782) | 0.7460 (+0.2454) | 0.6126 (+0.1573) |
| 0.3855 | 60000 | 0.11 | 0.1077 | 0.7246 (+0.1842) | 0.4057 (+0.0807) | 0.7140 (+0.2133) | 0.6148 (+0.1594) |
| 0.4498 | 70000 | 0.1034 | 0.1054 | 0.7054 (+0.1650) | 0.4067 (+0.0817) | 0.7279 (+0.2273) | 0.6133 (+0.1580) |
| 0.5141 | 80000 | 0.0948 | 0.0893 | 0.6948 (+0.1544) | 0.4061 (+0.0810) | 0.7326 (+0.2320) | 0.6112 (+0.1558) |
| 0.5783 | 90000 | 0.0876 | 0.0846 | 0.6980 (+0.1576) | 0.4201 (+0.0951) | 0.7382 (+0.2376) | 0.6188 (+0.1634) |
| 0.6426 | 100000 | 0.0813 | 0.0803 | 0.7071 (+0.1667) | 0.4088 (+0.0838) | 0.7418 (+0.2411) | 0.6193 (+0.1639) |
| 0.7068 | 110000 | 0.0765 | 0.0757 | 0.7119 (+0.1715) | 0.3921 (+0.0671) | 0.7374 (+0.2367) | 0.6138 (+0.1584) |
| 0.7711 | 120000 | 0.0718 | 0.0683 | 0.6998 (+0.1594) | 0.3759 (+0.0508) | 0.7008 (+0.2001) | 0.5922 (+0.1368) |
| 0.8353 | 130000 | 0.0679 | 0.0694 | 0.7266 (+0.1862) | 0.3474 (+0.0224) | 0.7023 (+0.2016) | 0.5921 (+0.1367) |
| 0.8996 | 140000 | 0.0643 | 0.0727 | 0.7264 (+0.1860) | 0.3641 (+0.0391) | 0.7433 (+0.2427) | 0.6113 (+0.1559) |
| 0.9639 | 150000 | 0.0615 | 0.0612 | 0.6773 (+0.1369) | 0.3789 (+0.0539) | 0.7462 (+0.2456) | 0.6008 (+0.1455) |
| 1.0281 | 160000 | 0.0512 | 0.0645 | 0.6967 (+0.1562) | 0.3426 (+0.0175) | 0.7353 (+0.2347) | 0.5915 (+0.1361) |
| 1.0924 | 170000 | 0.0432 | 0.0617 | 0.6741 (+0.1337) | 0.3606 (+0.0356) | 0.7372 (+0.2366) | 0.5907 (+0.1353) |
| 1.1566 | 180000 | 0.0423 | 0.0624 | 0.6597 (+0.1193) | 0.3267 (+0.0016) | 0.7163 (+0.2156) | 0.5675 (+0.1122) |
| 1.2209 | 190000 | 0.0407 | 0.0578 | 0.6855 (+0.1450) | 0.3317 (+0.0066) | 0.7011 (+0.2004) | 0.5728 (+0.1174) |
| 1.2851 | 200000 | 0.0406 | 0.0530 | 0.6773 (+0.1368) | 0.3949 (+0.0699) | 0.6882 (+0.1876) | 0.5868 (+0.1314) |
| 1.3494 | 210000 | 0.0388 | 0.0560 | 0.6659 (+0.1255) | 0.3581 (+0.0331) | 0.7270 (+0.2264) | 0.5837 (+0.1283) |
| 1.4137 | 220000 | 0.038 | 0.0505 | 0.6710 (+0.1306) | 0.3679 (+0.0428) | 0.7030 (+0.2024) | 0.5806 (+0.1253) |
| 1.4779 | 230000 | 0.0374 | 0.0523 | 0.6649 (+0.1245) | 0.3602 (+0.0352) | 0.6936 (+0.1930) | 0.5729 (+0.1175) |
| 1.5422 | 240000 | 0.0359 | 0.0488 | 0.6786 (+0.1382) | 0.3716 (+0.0465) | 0.7102 (+0.2095) | 0.5868 (+0.1314) |
| 1.6064 | 250000 | 0.0343 | 0.0476 | 0.6709 (+0.1304) | 0.3907 (+0.0657) | 0.7027 (+0.2021) | 0.5881 (+0.1327) |
| 1.6707 | 260000 | 0.034 | 0.0493 | 0.6488 (+0.1084) | 0.3583 (+0.0333) | 0.6981 (+0.1975) | 0.5684 (+0.1131) |
| 1.7349 | 270000 | 0.0329 | 0.0462 | 0.6873 (+0.1468) | 0.3527 (+0.0276) | 0.6974 (+0.1968) | 0.5791 (+0.1237) |
| 1.7992 | 280000 | 0.032 | 0.0443 | 0.6657 (+0.1252) | 0.3646 (+0.0396) | 0.7018 (+0.2012) | 0.5774 (+0.1220) |
| 1.8635 | 290000 | 0.0305 | 0.0448 | 0.6660 (+0.1256) | 0.3594 (+0.0344) | 0.7223 (+0.2216) | 0.5826 (+0.1272) |
| 1.9277 | 300000 | 0.0298 | 0.0432 | 0.6713 (+0.1309) | 0.3815 (+0.0564) | 0.6878 (+0.1871) | 0.5802 (+0.1248) |
| 1.9920 | 310000 | 0.0296 | 0.0410 | 0.6472 (+0.1067) | 0.3907 (+0.0657) | 0.7104 (+0.2098) | 0.5828 (+0.1274) |
| 2.0562 | 320000 | 0.0156 | 0.0572 | 0.5978 (+0.0573) | 0.3246 (-0.0004) | 0.7005 (+0.1999) | 0.5410 (+0.0856) |
| 2.1205 | 330000 | 0.0143 | 0.0569 | 0.6302 (+0.0898) | 0.3318 (+0.0068) | 0.6832 (+0.1825) | 0.5484 (+0.0930) |
| 2.1847 | 340000 | 0.0141 | 0.0556 | 0.5810 (+0.0406) | 0.4088 (+0.0838) | 0.7054 (+0.2047) | 0.5651 (+0.1097) |
| 2.2490 | 350000 | 0.0137 | 0.0473 | 0.6491 (+0.1087) | 0.3994 (+0.0743) | 0.7180 (+0.2174) | 0.5888 (+0.1335) |
| 2.3133 | 360000 | 0.0136 | 0.0524 | 0.6171 (+0.0767) | 0.3925 (+0.0674) | 0.7071 (+0.2065) | 0.5722 (+0.1169) |
| 2.3775 | 370000 | 0.0133 | 0.0446 | 0.6065 (+0.0661) | 0.3800 (+0.0549) | 0.7328 (+0.2321) | 0.5731 (+0.1177) |
| 2.4418 | 380000 | 0.0128 | 0.0448 | 0.6336 (+0.0932) | 0.3846 (+0.0596) | 0.7093 (+0.2087) | 0.5759 (+0.1205) |
| 2.5060 | 390000 | 0.013 | 0.0445 | 0.6135 (+0.0731) | 0.3745 (+0.0495) | 0.6582 (+0.1575) | 0.5487 (+0.0934) |
| 2.5703 | 400000 | 0.0122 | 0.0451 | 0.6492 (+0.1088) | 0.3576 (+0.0326) | 0.6963 (+0.1956) | 0.5677 (+0.1123) |
| 2.6345 | 410000 | 0.0122 | 0.0473 | 0.6129 (+0.0725) | 0.3555 (+0.0305) | 0.6928 (+0.1922) | 0.5537 (+0.0984) |
| 2.6988 | 420000 | 0.0119 | 0.0488 | 0.6048 (+0.0644) | 0.3459 (+0.0209) | 0.6712 (+0.1705) | 0.5406 (+0.0852) |
| 2.7631 | 430000 | 0.012 | 0.0452 | 0.6402 (+0.0997) | 0.3499 (+0.0249) | 0.6717 (+0.1711) | 0.5539 (+0.0986) |
| 2.8273 | 440000 | 0.0115 | 0.0409 | 0.6267 (+0.0863) | 0.3349 (+0.0098) | 0.6819 (+0.1812) | 0.5478 (+0.0924) |
| 2.8916 | 450000 | 0.0108 | 0.0381 | 0.6183 (+0.0779) | 0.3546 (+0.0296) | 0.6942 (+0.1935) | 0.5557 (+0.1003) |
| 2.9558 | 460000 | 0.0103 | 0.0357 | 0.6337 (+0.0933) | 0.3595 (+0.0344) | 0.7096 (+0.2090) | 0.5676 (+0.1122) |
| 3.0201 | 470000 | 0.008 | 0.0516 | 0.6187 (+0.0783) | 0.3454 (+0.0204) | 0.6997 (+0.1990) | 0.5546 (+0.0992) |
| 3.0843 | 480000 | 0.0033 | 0.0584 | 0.6074 (+0.0669) | 0.3371 (+0.0120) | 0.6449 (+0.1443) | 0.5298 (+0.0744) |
| 3.1486 | 490000 | 0.0032 | 0.0568 | 0.5956 (+0.0552) | 0.3635 (+0.0384) | 0.6796 (+0.1789) | 0.5462 (+0.0909) |
| 3.2129 | 500000 | 0.0034 | 0.0512 | 0.5984 (+0.0580) | 0.3784 (+0.0534) | 0.7056 (+0.2050) | 0.5608 (+0.1055) |
| 3.2771 | 510000 | 0.0031 | 0.0557 | 0.5911 (+0.0506) | 0.3770 (+0.0520) | 0.6941 (+0.1935) | 0.5541 (+0.0987) |
| 3.3414 | 520000 | 0.0028 | 0.0462 | 0.6256 (+0.0852) | 0.3541 (+0.0291) | 0.7188 (+0.2181) | 0.5662 (+0.1108) |
| 3.4056 | 530000 | 0.0026 | 0.0589 | 0.5909 (+0.0505) | 0.3432 (+0.0182) | 0.6992 (+0.1986) | 0.5444 (+0.0891) |
| 3.4699 | 540000 | 0.0025 | 0.0555 | 0.6072 (+0.0668) | 0.3783 (+0.0532) | 0.6961 (+0.1954) | 0.5605 (+0.1052) |
| 3.5341 | 550000 | 0.0023 | 0.0543 | 0.5978 (+0.0573) | 0.3662 (+0.0411) | 0.6817 (+0.1811) | 0.5485 (+0.0932) |
| 3.5984 | 560000 | 0.0025 | 0.0522 | 0.5990 (+0.0586) | 0.3565 (+0.0314) | 0.6988 (+0.1982) | 0.5514 (+0.0961) |
| 3.6627 | 570000 | 0.002 | 0.0463 | 0.6031 (+0.0627) | 0.3535 (+0.0285) | 0.6682 (+0.1675) | 0.5416 (+0.0862) |
| 3.7269 | 580000 | 0.0019 | 0.0485 | 0.6239 (+0.0834) | 0.3625 (+0.0375) | 0.6832 (+0.1826) | 0.5565 (+0.1012) |
| 3.7912 | 590000 | 0.002 | 0.0465 | 0.6046 (+0.0642) | 0.3546 (+0.0296) | 0.6680 (+0.1674) | 0.5424 (+0.0871) |
| 3.8554 | 600000 | 0.0019 | 0.0450 | 0.5990 (+0.0586) | 0.3536 (+0.0286) | 0.6716 (+0.1709) | 0.5414 (+0.0860) |
| 3.9197 | 610000 | 0.0017 | 0.0434 | 0.6078 (+0.0674) | 0.3537 (+0.0286) | 0.6781 (+0.1775) | 0.5465 (+0.0912) |
| 3.9839 | 620000 | 0.0012 | 0.0430 | 0.6100 (+0.0695) | 0.3510 (+0.0260) | 0.6721 (+0.1715) | 0.5444 (+0.0890) |
| -1 | -1 | - | - | 0.7166 (+0.1762) | 0.4197 (+0.0947) | 0.7430 (+0.2423) | 0.6264 (+0.1711) |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.0.0
- Transformers: 4.56.0.dev0
- PyTorch: 2.7.1+cu126
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |