File size: 35,522 Bytes
fbbd4c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
---
language:
- en
tags:
- sentence-transformers
- cross-encoder
- reranker
- generated_from_trainer
- dataset_size:9960000
- loss:BinaryCrossEntropyLoss
base_model: jhu-clsp/ettin-encoder-150m
datasets:
- sentence-transformers/msmarco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on jhu-clsp/ettin-encoder-150m
  results:
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoMSMARCO R100
      type: NanoMSMARCO_R100
    metrics:
    - type: map
      value: 0.6651
      name: Map
    - type: mrr@10
      value: 0.6587
      name: Mrr@10
    - type: ndcg@10
      value: 0.7166
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNFCorpus R100
      type: NanoNFCorpus_R100
    metrics:
    - type: map
      value: 0.3859
      name: Map
    - type: mrr@10
      value: 0.5643
      name: Mrr@10
    - type: ndcg@10
      value: 0.4197
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNQ R100
      type: NanoNQ_R100
    metrics:
    - type: map
      value: 0.691
      name: Map
    - type: mrr@10
      value: 0.7127
      name: Mrr@10
    - type: ndcg@10
      value: 0.743
      name: Ndcg@10
  - task:
      type: cross-encoder-nano-beir
      name: Cross Encoder Nano BEIR
    dataset:
      name: NanoBEIR R100 mean
      type: NanoBEIR_R100_mean
    metrics:
    - type: map
      value: 0.5807
      name: Map
    - type: mrr@10
      value: 0.6453
      name: Mrr@10
    - type: ndcg@10
      value: 0.6264
      name: Ndcg@10
---

# CrossEncoder based on jhu-clsp/ettin-encoder-150m

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [jhu-clsp/ettin-encoder-150m](https://huggingface.co/jhu-clsp/ettin-encoder-150m) on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [jhu-clsp/ettin-encoder-150m](https://huggingface.co/jhu-clsp/ettin-encoder-150m) <!-- at revision 45d08642849e5c5701b162671ac811b7654bfd9f -->
- **Maximum Sequence Length:** 7999 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
    - [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("rahulseetharaman/reranker-ettin-encoder-150m-msmarco-bce-10m")
# Get scores for pairs of texts
pairs = [
    ['select committees definition government', 'There are four types of congressional committees: 1  Standing committees, which continue from one Congress to the next, are probably the most important type because they consider and shape the vast majority of proposed laws. 2  Select committees are temporarily formed for specific purposes, often to study a particular issue.'],
    ['what is a perceptual map', 'Welcome to our New Castle, Pennsylvania street map page. The street map of New Castle PA that is located below is provided by Google Maps. You can grab the New Castle Pennsylvania street map and move it around to re-centre the map. You can change between standard map view, satellite map view and hybrid map view.'],
    ['what makes your skin feel cold and burn', 'When the wind blows in cold weather, you feel colder than the actual temperature because the air blows away heat from your skin faster. For instance, if the temperature is -17.8 Celsius (0 Fahrenheit) and the wind blows at 15 mph, it feels like -28.3 Celsius (-19 Fahrenheit) -- exposed skin can freeze in 30 minutes.'],
    ['average act score for university of georgia', 'A graph of UB, University at Buffalo GPA, SAT score, and ACT score admissions data for students who were accepted, rejected, and waitlisted. A graph of UB, University at Buffalo GPA, SAT score, and ACT score admissions data for students who were accepted, rejected, and waitlisted. University at Buffalo GPA, SAT and ACT Data Search the site GO'],
    ['when was the ontario, ca, post office established', 'In 1832 Jed Jackson had the contract for carrying mail from Brantford to London twice a week along the Old Stage Road. On October 6, 1835, a post office was established at Woodstock, Ontario, with Princeton following within two years. According to the Legislative Council Sessional Papers for 1846, a post office was established at Princeton on May 6, 1836 and Jeremiah Cowin was appointed postmaster on May 9, 1837. The sureties were George Beamer and Silas Martin to the amount of £200. The assistant was John Charles.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'select committees definition government',
    [
        'There are four types of congressional committees: 1  Standing committees, which continue from one Congress to the next, are probably the most important type because they consider and shape the vast majority of proposed laws. 2  Select committees are temporarily formed for specific purposes, often to study a particular issue.',
        'Welcome to our New Castle, Pennsylvania street map page. The street map of New Castle PA that is located below is provided by Google Maps. You can grab the New Castle Pennsylvania street map and move it around to re-centre the map. You can change between standard map view, satellite map view and hybrid map view.',
        'When the wind blows in cold weather, you feel colder than the actual temperature because the air blows away heat from your skin faster. For instance, if the temperature is -17.8 Celsius (0 Fahrenheit) and the wind blows at 15 mph, it feels like -28.3 Celsius (-19 Fahrenheit) -- exposed skin can freeze in 30 minutes.',
        'A graph of UB, University at Buffalo GPA, SAT score, and ACT score admissions data for students who were accepted, rejected, and waitlisted. A graph of UB, University at Buffalo GPA, SAT score, and ACT score admissions data for students who were accepted, rejected, and waitlisted. University at Buffalo GPA, SAT and ACT Data Search the site GO',
        'In 1832 Jed Jackson had the contract for carrying mail from Brantford to London twice a week along the Old Stage Road. On October 6, 1835, a post office was established at Woodstock, Ontario, with Princeton following within two years. According to the Legislative Council Sessional Papers for 1846, a post office was established at Princeton on May 6, 1836 and Jeremiah Cowin was appointed postmaster on May 9, 1837. The sureties were George Beamer and Silas Martin to the amount of £200. The assistant was John Charles.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
  ```json
  {
      "at_k": 10,
      "always_rerank_positives": true
  }
  ```

| Metric      | NanoMSMARCO_R100     | NanoNFCorpus_R100    | NanoNQ_R100          |
|:------------|:---------------------|:---------------------|:---------------------|
| map         | 0.6651 (+0.1755)     | 0.3859 (+0.1249)     | 0.6910 (+0.2714)     |
| mrr@10      | 0.6587 (+0.1812)     | 0.5643 (+0.0645)     | 0.7127 (+0.2861)     |
| **ndcg@10** | **0.7166 (+0.1762)** | **0.4197 (+0.0947)** | **0.7430 (+0.2423)** |

#### Cross Encoder Nano BEIR

* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ],
      "rerank_k": 100,
      "at_k": 10,
      "always_rerank_positives": true
  }
  ```

| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.5807 (+0.1906)     |
| mrr@10      | 0.6453 (+0.1773)     |
| **ndcg@10** | **0.6264 (+0.1711)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 9,960,000 training samples
* Columns: <code>query</code>, <code>passage</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                          | passage                                                                                          | score                                                          |
  |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                           | float                                                          |
  | details | <ul><li>min: 9 characters</li><li>mean: 33.93 characters</li><li>max: 110 characters</li></ul> | <ul><li>min: 80 characters</li><li>mean: 348.08 characters</li><li>max: 897 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
* Samples:
  | query                                                                                     | passage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | score            |
  |:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>nap in chinese</code>                                                               | <code>continued... Most children from about 21 to 36 months of age still need one nap a day, which may range from one to three and a half hours long.They typically go to bed between 7 and 9 p.m. and wake up between 6 and 8 a.m. 3-6 Years Old: 10 - 12 hours per day.ontinued... Most children from about 21 to 36 months of age still need one nap a day, which may range from one to three and a half hours long.</code>                                                                                                                                                | <code>0.0</code> |
  | <code>what abdominal organ is most frequently injured as a result of blunt trauma?</code> | <code>Bochdalek Hernia. Bochdalek hernia is a congenital posterolateral diaphragmatic defect that is a result of failed closure of the pleuroperitoneal ducts -- a primitive communications between the pleural and abdominal cavities -- at 8 weeks' gestation.ochdalek Hernia. Bochdalek hernia is a congenital posterolateral diaphragmatic defect that is a result of failed closure of the pleuroperitoneal ducts -- a primitive communications between the pleural and abdominal cavities -- at 8 weeks' gestation.</code>                                              | <code>0.0</code> |
  | <code>where is round rock tx</code>                                                       | <code>Driving distance from Dallas, TX to Fort Worth, TX The total driving distance from Dallas, TX to Fort Worth, TX is 33 miles or 53 kilometers. Your trip begins in Dallas, Texas. It ends in Fort Worth, Texas. If you are planning a road trip, you might also want to calculate the total driving time from Dallas, TX to Fort Worth, TX so you can see when you'll arrive at your destination. You can also calculate the cost of driving from Dallas, TX to Fort Worth, TX based on current local fuel prices and an estimate of your car's best gas mileage.</code> | <code>0.0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": null
  }
  ```

### Evaluation Dataset

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 40,000 evaluation samples
* Columns: <code>query</code>, <code>passage</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                         | passage                                                                                          | score                                                          |
  |:--------|:----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                                        | string                                                                                           | float                                                          |
  | details | <ul><li>min: 11 characters</li><li>mean: 34.1 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 75 characters</li><li>mean: 341.31 characters</li><li>max: 938 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
* Samples:
  | query                                                | passage                                                                                                                                                                                                                                                                                                                                             | score            |
  |:-----------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>select committees definition government</code> | <code>There are four types of congressional committees: 1  Standing committees, which continue from one Congress to the next, are probably the most important type because they consider and shape the vast majority of proposed laws. 2  Select committees are temporarily formed for specific purposes, often to study a particular issue.</code> | <code>1.0</code> |
  | <code>what is a perceptual map</code>                | <code>Welcome to our New Castle, Pennsylvania street map page. The street map of New Castle PA that is located below is provided by Google Maps. You can grab the New Castle Pennsylvania street map and move it around to re-centre the map. You can change between standard map view, satellite map view and hybrid map view.</code>              | <code>0.0</code> |
  | <code>what makes your skin feel cold and burn</code> | <code>When the wind blows in cold weather, you feel colder than the actual temperature because the air blows away heat from your skin faster. For instance, if the temperature is -17.8 Celsius (0 Fahrenheit) and the wind blows at 15 mph, it feels like -28.3 Celsius (-19 Fahrenheit) -- exposed skin can freeze in 30 minutes.</code>          | <code>0.0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": null
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch      | Step      | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10  | NanoBEIR_R100_mean_ndcg@10 |
|:----------:|:---------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
| -1         | -1        | -             | -               | 0.0509 (-0.4895)         | 0.2434 (-0.0816)          | 0.0190 (-0.4816)     | 0.1045 (-0.3509)           |
| 0.0000     | 1         | 0.702         | -               | -                        | -                         | -                    | -                          |
| 0.0643     | 10000     | 0.3212        | 0.1845          | 0.6628 (+0.1223)         | 0.3851 (+0.0600)          | 0.7245 (+0.2239)     | 0.5908 (+0.1354)           |
| 0.1285     | 20000     | 0.1637        | 0.1600          | 0.6902 (+0.1498)         | 0.4287 (+0.1037)          | 0.7385 (+0.2378)     | 0.6192 (+0.1638)           |
| **0.1928** | **30000** | **0.1448**    | **0.1348**      | **0.7166 (+0.1762)**     | **0.4197 (+0.0947)**      | **0.7430 (+0.2423)** | **0.6264 (+0.1711)**       |
| 0.2570     | 40000     | 0.1296        | 0.1235          | 0.7022 (+0.1618)         | 0.4111 (+0.0861)          | 0.7192 (+0.2185)     | 0.6108 (+0.1555)           |
| 0.3213     | 50000     | 0.1197        | 0.1145          | 0.6887 (+0.1483)         | 0.4032 (+0.0782)          | 0.7460 (+0.2454)     | 0.6126 (+0.1573)           |
| 0.3855     | 60000     | 0.11          | 0.1077          | 0.7246 (+0.1842)         | 0.4057 (+0.0807)          | 0.7140 (+0.2133)     | 0.6148 (+0.1594)           |
| 0.4498     | 70000     | 0.1034        | 0.1054          | 0.7054 (+0.1650)         | 0.4067 (+0.0817)          | 0.7279 (+0.2273)     | 0.6133 (+0.1580)           |
| 0.5141     | 80000     | 0.0948        | 0.0893          | 0.6948 (+0.1544)         | 0.4061 (+0.0810)          | 0.7326 (+0.2320)     | 0.6112 (+0.1558)           |
| 0.5783     | 90000     | 0.0876        | 0.0846          | 0.6980 (+0.1576)         | 0.4201 (+0.0951)          | 0.7382 (+0.2376)     | 0.6188 (+0.1634)           |
| 0.6426     | 100000    | 0.0813        | 0.0803          | 0.7071 (+0.1667)         | 0.4088 (+0.0838)          | 0.7418 (+0.2411)     | 0.6193 (+0.1639)           |
| 0.7068     | 110000    | 0.0765        | 0.0757          | 0.7119 (+0.1715)         | 0.3921 (+0.0671)          | 0.7374 (+0.2367)     | 0.6138 (+0.1584)           |
| 0.7711     | 120000    | 0.0718        | 0.0683          | 0.6998 (+0.1594)         | 0.3759 (+0.0508)          | 0.7008 (+0.2001)     | 0.5922 (+0.1368)           |
| 0.8353     | 130000    | 0.0679        | 0.0694          | 0.7266 (+0.1862)         | 0.3474 (+0.0224)          | 0.7023 (+0.2016)     | 0.5921 (+0.1367)           |
| 0.8996     | 140000    | 0.0643        | 0.0727          | 0.7264 (+0.1860)         | 0.3641 (+0.0391)          | 0.7433 (+0.2427)     | 0.6113 (+0.1559)           |
| 0.9639     | 150000    | 0.0615        | 0.0612          | 0.6773 (+0.1369)         | 0.3789 (+0.0539)          | 0.7462 (+0.2456)     | 0.6008 (+0.1455)           |
| 1.0281     | 160000    | 0.0512        | 0.0645          | 0.6967 (+0.1562)         | 0.3426 (+0.0175)          | 0.7353 (+0.2347)     | 0.5915 (+0.1361)           |
| 1.0924     | 170000    | 0.0432        | 0.0617          | 0.6741 (+0.1337)         | 0.3606 (+0.0356)          | 0.7372 (+0.2366)     | 0.5907 (+0.1353)           |
| 1.1566     | 180000    | 0.0423        | 0.0624          | 0.6597 (+0.1193)         | 0.3267 (+0.0016)          | 0.7163 (+0.2156)     | 0.5675 (+0.1122)           |
| 1.2209     | 190000    | 0.0407        | 0.0578          | 0.6855 (+0.1450)         | 0.3317 (+0.0066)          | 0.7011 (+0.2004)     | 0.5728 (+0.1174)           |
| 1.2851     | 200000    | 0.0406        | 0.0530          | 0.6773 (+0.1368)         | 0.3949 (+0.0699)          | 0.6882 (+0.1876)     | 0.5868 (+0.1314)           |
| 1.3494     | 210000    | 0.0388        | 0.0560          | 0.6659 (+0.1255)         | 0.3581 (+0.0331)          | 0.7270 (+0.2264)     | 0.5837 (+0.1283)           |
| 1.4137     | 220000    | 0.038         | 0.0505          | 0.6710 (+0.1306)         | 0.3679 (+0.0428)          | 0.7030 (+0.2024)     | 0.5806 (+0.1253)           |
| 1.4779     | 230000    | 0.0374        | 0.0523          | 0.6649 (+0.1245)         | 0.3602 (+0.0352)          | 0.6936 (+0.1930)     | 0.5729 (+0.1175)           |
| 1.5422     | 240000    | 0.0359        | 0.0488          | 0.6786 (+0.1382)         | 0.3716 (+0.0465)          | 0.7102 (+0.2095)     | 0.5868 (+0.1314)           |
| 1.6064     | 250000    | 0.0343        | 0.0476          | 0.6709 (+0.1304)         | 0.3907 (+0.0657)          | 0.7027 (+0.2021)     | 0.5881 (+0.1327)           |
| 1.6707     | 260000    | 0.034         | 0.0493          | 0.6488 (+0.1084)         | 0.3583 (+0.0333)          | 0.6981 (+0.1975)     | 0.5684 (+0.1131)           |
| 1.7349     | 270000    | 0.0329        | 0.0462          | 0.6873 (+0.1468)         | 0.3527 (+0.0276)          | 0.6974 (+0.1968)     | 0.5791 (+0.1237)           |
| 1.7992     | 280000    | 0.032         | 0.0443          | 0.6657 (+0.1252)         | 0.3646 (+0.0396)          | 0.7018 (+0.2012)     | 0.5774 (+0.1220)           |
| 1.8635     | 290000    | 0.0305        | 0.0448          | 0.6660 (+0.1256)         | 0.3594 (+0.0344)          | 0.7223 (+0.2216)     | 0.5826 (+0.1272)           |
| 1.9277     | 300000    | 0.0298        | 0.0432          | 0.6713 (+0.1309)         | 0.3815 (+0.0564)          | 0.6878 (+0.1871)     | 0.5802 (+0.1248)           |
| 1.9920     | 310000    | 0.0296        | 0.0410          | 0.6472 (+0.1067)         | 0.3907 (+0.0657)          | 0.7104 (+0.2098)     | 0.5828 (+0.1274)           |
| 2.0562     | 320000    | 0.0156        | 0.0572          | 0.5978 (+0.0573)         | 0.3246 (-0.0004)          | 0.7005 (+0.1999)     | 0.5410 (+0.0856)           |
| 2.1205     | 330000    | 0.0143        | 0.0569          | 0.6302 (+0.0898)         | 0.3318 (+0.0068)          | 0.6832 (+0.1825)     | 0.5484 (+0.0930)           |
| 2.1847     | 340000    | 0.0141        | 0.0556          | 0.5810 (+0.0406)         | 0.4088 (+0.0838)          | 0.7054 (+0.2047)     | 0.5651 (+0.1097)           |
| 2.2490     | 350000    | 0.0137        | 0.0473          | 0.6491 (+0.1087)         | 0.3994 (+0.0743)          | 0.7180 (+0.2174)     | 0.5888 (+0.1335)           |
| 2.3133     | 360000    | 0.0136        | 0.0524          | 0.6171 (+0.0767)         | 0.3925 (+0.0674)          | 0.7071 (+0.2065)     | 0.5722 (+0.1169)           |
| 2.3775     | 370000    | 0.0133        | 0.0446          | 0.6065 (+0.0661)         | 0.3800 (+0.0549)          | 0.7328 (+0.2321)     | 0.5731 (+0.1177)           |
| 2.4418     | 380000    | 0.0128        | 0.0448          | 0.6336 (+0.0932)         | 0.3846 (+0.0596)          | 0.7093 (+0.2087)     | 0.5759 (+0.1205)           |
| 2.5060     | 390000    | 0.013         | 0.0445          | 0.6135 (+0.0731)         | 0.3745 (+0.0495)          | 0.6582 (+0.1575)     | 0.5487 (+0.0934)           |
| 2.5703     | 400000    | 0.0122        | 0.0451          | 0.6492 (+0.1088)         | 0.3576 (+0.0326)          | 0.6963 (+0.1956)     | 0.5677 (+0.1123)           |
| 2.6345     | 410000    | 0.0122        | 0.0473          | 0.6129 (+0.0725)         | 0.3555 (+0.0305)          | 0.6928 (+0.1922)     | 0.5537 (+0.0984)           |
| 2.6988     | 420000    | 0.0119        | 0.0488          | 0.6048 (+0.0644)         | 0.3459 (+0.0209)          | 0.6712 (+0.1705)     | 0.5406 (+0.0852)           |
| 2.7631     | 430000    | 0.012         | 0.0452          | 0.6402 (+0.0997)         | 0.3499 (+0.0249)          | 0.6717 (+0.1711)     | 0.5539 (+0.0986)           |
| 2.8273     | 440000    | 0.0115        | 0.0409          | 0.6267 (+0.0863)         | 0.3349 (+0.0098)          | 0.6819 (+0.1812)     | 0.5478 (+0.0924)           |
| 2.8916     | 450000    | 0.0108        | 0.0381          | 0.6183 (+0.0779)         | 0.3546 (+0.0296)          | 0.6942 (+0.1935)     | 0.5557 (+0.1003)           |
| 2.9558     | 460000    | 0.0103        | 0.0357          | 0.6337 (+0.0933)         | 0.3595 (+0.0344)          | 0.7096 (+0.2090)     | 0.5676 (+0.1122)           |
| 3.0201     | 470000    | 0.008         | 0.0516          | 0.6187 (+0.0783)         | 0.3454 (+0.0204)          | 0.6997 (+0.1990)     | 0.5546 (+0.0992)           |
| 3.0843     | 480000    | 0.0033        | 0.0584          | 0.6074 (+0.0669)         | 0.3371 (+0.0120)          | 0.6449 (+0.1443)     | 0.5298 (+0.0744)           |
| 3.1486     | 490000    | 0.0032        | 0.0568          | 0.5956 (+0.0552)         | 0.3635 (+0.0384)          | 0.6796 (+0.1789)     | 0.5462 (+0.0909)           |
| 3.2129     | 500000    | 0.0034        | 0.0512          | 0.5984 (+0.0580)         | 0.3784 (+0.0534)          | 0.7056 (+0.2050)     | 0.5608 (+0.1055)           |
| 3.2771     | 510000    | 0.0031        | 0.0557          | 0.5911 (+0.0506)         | 0.3770 (+0.0520)          | 0.6941 (+0.1935)     | 0.5541 (+0.0987)           |
| 3.3414     | 520000    | 0.0028        | 0.0462          | 0.6256 (+0.0852)         | 0.3541 (+0.0291)          | 0.7188 (+0.2181)     | 0.5662 (+0.1108)           |
| 3.4056     | 530000    | 0.0026        | 0.0589          | 0.5909 (+0.0505)         | 0.3432 (+0.0182)          | 0.6992 (+0.1986)     | 0.5444 (+0.0891)           |
| 3.4699     | 540000    | 0.0025        | 0.0555          | 0.6072 (+0.0668)         | 0.3783 (+0.0532)          | 0.6961 (+0.1954)     | 0.5605 (+0.1052)           |
| 3.5341     | 550000    | 0.0023        | 0.0543          | 0.5978 (+0.0573)         | 0.3662 (+0.0411)          | 0.6817 (+0.1811)     | 0.5485 (+0.0932)           |
| 3.5984     | 560000    | 0.0025        | 0.0522          | 0.5990 (+0.0586)         | 0.3565 (+0.0314)          | 0.6988 (+0.1982)     | 0.5514 (+0.0961)           |
| 3.6627     | 570000    | 0.002         | 0.0463          | 0.6031 (+0.0627)         | 0.3535 (+0.0285)          | 0.6682 (+0.1675)     | 0.5416 (+0.0862)           |
| 3.7269     | 580000    | 0.0019        | 0.0485          | 0.6239 (+0.0834)         | 0.3625 (+0.0375)          | 0.6832 (+0.1826)     | 0.5565 (+0.1012)           |
| 3.7912     | 590000    | 0.002         | 0.0465          | 0.6046 (+0.0642)         | 0.3546 (+0.0296)          | 0.6680 (+0.1674)     | 0.5424 (+0.0871)           |
| 3.8554     | 600000    | 0.0019        | 0.0450          | 0.5990 (+0.0586)         | 0.3536 (+0.0286)          | 0.6716 (+0.1709)     | 0.5414 (+0.0860)           |
| 3.9197     | 610000    | 0.0017        | 0.0434          | 0.6078 (+0.0674)         | 0.3537 (+0.0286)          | 0.6781 (+0.1775)     | 0.5465 (+0.0912)           |
| 3.9839     | 620000    | 0.0012        | 0.0430          | 0.6100 (+0.0695)         | 0.3510 (+0.0260)          | 0.6721 (+0.1715)     | 0.5444 (+0.0890)           |
| -1         | -1        | -             | -               | 0.7166 (+0.1762)         | 0.4197 (+0.0947)          | 0.7430 (+0.2423)     | 0.6264 (+0.1711)           |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.0.0
- Transformers: 4.56.0.dev0
- PyTorch: 2.7.1+cu126
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->