Upload bert-traditional-chinese-classifier with accuracy 87.71%
Browse files- README.md +107 -0
- config.json +31 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- training_config.json +15 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- zh
|
| 4 |
+
tags:
|
| 5 |
+
- text-classification
|
| 6 |
+
- chinese
|
| 7 |
+
- traditional-chinese
|
| 8 |
+
- bert
|
| 9 |
+
- pytorch
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
datasets:
|
| 12 |
+
- custom
|
| 13 |
+
metrics:
|
| 14 |
+
- accuracy
|
| 15 |
+
- f1
|
| 16 |
+
model-index:
|
| 17 |
+
- name: bert-traditional-chinese-classifier
|
| 18 |
+
results:
|
| 19 |
+
- task:
|
| 20 |
+
type: text-classification
|
| 21 |
+
name: Traditional Chinese Classification
|
| 22 |
+
metrics:
|
| 23 |
+
- type: accuracy
|
| 24 |
+
value: 0.8771
|
| 25 |
+
name: Accuracy
|
| 26 |
+
- type: f1
|
| 27 |
+
value: 0.8771
|
| 28 |
+
name: F1 Score
|
| 29 |
+
---
|
| 30 |
+
|
| 31 |
+
# BERT Traditional Chinese Classifier v7
|
| 32 |
+
|
| 33 |
+
這是一個用於區分大陸繁體和台灣繁體的 BERT 分類模型。
|
| 34 |
+
|
| 35 |
+
## 模型描述
|
| 36 |
+
|
| 37 |
+
- **基礎模型**: ckiplab/bert-base-chinese
|
| 38 |
+
- **任務**: 繁體中文文本分類(大陸繁體 vs 台灣繁體)
|
| 39 |
+
- **準確率**: 87.71%
|
| 40 |
+
- **訓練數據量**: 156824 樣本
|
| 41 |
+
|
| 42 |
+
## 特點
|
| 43 |
+
|
| 44 |
+
- ✅ 支持長文本處理(最大長度 384 tokens)
|
| 45 |
+
- ✅ 使用 Focal Loss 處理類別不平衡
|
| 46 |
+
- ✅ Multi-Sample Dropout 提高泛化能力
|
| 47 |
+
- ✅ 分層學習率優化
|
| 48 |
+
- ✅ 漸進解凍訓練策略
|
| 49 |
+
|
| 50 |
+
## 使用方法
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
from transformers import AutoTokenizer, AutoModel
|
| 54 |
+
import torch
|
| 55 |
+
|
| 56 |
+
# 載入模型和 tokenizer
|
| 57 |
+
tokenizer = AutoTokenizer.from_pretrained("renhehuang/bert-traditional-chinese-classifier")
|
| 58 |
+
model = torch.load("pytorch_model.bin") # 需要自定義模型類
|
| 59 |
+
|
| 60 |
+
# 預測
|
| 61 |
+
text = "您的繁體中文文本"
|
| 62 |
+
inputs = tokenizer(text, return_tensors="pt", max_length=384, truncation=True)
|
| 63 |
+
outputs = model(**inputs)
|
| 64 |
+
prediction = outputs.logits.argmax(-1).item()
|
| 65 |
+
|
| 66 |
+
# 0: 大陸繁體, 1: 台灣繁體
|
| 67 |
+
label = "大陸繁體" if prediction == 0 else "台灣繁體"
|
| 68 |
+
print(f"預測: {label}")
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
## 訓練配置
|
| 72 |
+
|
| 73 |
+
- **Batch Size**: 16
|
| 74 |
+
- **Learning Rate**: 2e-05 (base), 4e-05 (head)
|
| 75 |
+
- **Epochs**: 4
|
| 76 |
+
- **Max Length**: 384
|
| 77 |
+
- **Loss Function**: Focal Loss (gamma=2.0)
|
| 78 |
+
|
| 79 |
+
## 性能指標
|
| 80 |
+
|
| 81 |
+
### 整體性能
|
| 82 |
+
- 準確率: 87.71%
|
| 83 |
+
|
| 84 |
+
### 分層性能(按文本長度)
|
| 85 |
+
詳見評估報告
|
| 86 |
+
|
| 87 |
+
## 引用
|
| 88 |
+
|
| 89 |
+
如果您使用此模型,請引用:
|
| 90 |
+
|
| 91 |
+
```
|
| 92 |
+
@misc{bert-traditional-chinese-classifier,
|
| 93 |
+
author = {renhehuang},
|
| 94 |
+
title = {BERT Traditional Chinese Classifier},
|
| 95 |
+
year = {2025},
|
| 96 |
+
publisher = {Hugging Face},
|
| 97 |
+
howpublished = {\url{https://huggingface.co/renhehuang/bert-traditional-chinese-classifier}}
|
| 98 |
+
}
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
## 授權
|
| 102 |
+
|
| 103 |
+
Apache 2.0
|
| 104 |
+
|
| 105 |
+
## 聯繫方式
|
| 106 |
+
|
| 107 |
+
如有問題,請在 Hugging Face 模型頁面或 GitHub 上提出 issue。
|
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertForMaskedLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"directionality": "bidi",
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 3072,
|
| 14 |
+
"layer_norm_eps": 1e-12,
|
| 15 |
+
"max_position_embeddings": 512,
|
| 16 |
+
"model_type": "bert",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 12,
|
| 19 |
+
"pad_token_id": 0,
|
| 20 |
+
"pooler_fc_size": 768,
|
| 21 |
+
"pooler_num_attention_heads": 12,
|
| 22 |
+
"pooler_num_fc_layers": 3,
|
| 23 |
+
"pooler_size_per_head": 128,
|
| 24 |
+
"pooler_type": "first_token_transform",
|
| 25 |
+
"position_embedding_type": "absolute",
|
| 26 |
+
"tokenizer_class": "BertTokenizerFast",
|
| 27 |
+
"transformers_version": "4.57.0",
|
| 28 |
+
"type_vocab_size": 2,
|
| 29 |
+
"use_cache": true,
|
| 30 |
+
"vocab_size": 21128
|
| 31 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d572859e01ace15886178219e2e460a45169cb651e6fc72c11cc6b0a483e6ca7
|
| 3 |
+
size 409201943
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
training_config.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_name": "ckiplab/bert-base-chinese",
|
| 3 |
+
"max_length": 384,
|
| 4 |
+
"batch_size": 16,
|
| 5 |
+
"learning_rate_base": 2e-05,
|
| 6 |
+
"learning_rate_head": 4e-05,
|
| 7 |
+
"epochs": 4,
|
| 8 |
+
"use_focal_loss": true,
|
| 9 |
+
"focal_gamma": 2.0,
|
| 10 |
+
"focal_alpha": 0.4,
|
| 11 |
+
"label_smoothing": 0.05,
|
| 12 |
+
"num_train_samples": 156824,
|
| 13 |
+
"num_eval_samples": 39207,
|
| 14 |
+
"accuracy": 0.877139286351927
|
| 15 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|