File size: 9,723 Bytes
e39ff3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import argparse
import time
import mlx.core as mx
from transformers import AutoTokenizer
from model import load_model
from pathlib import Path
def generate_text(
prompt: str,
model_path: str,
max_tokens: int = 100,
temperature: float = 0.1,
top_p: float = 0.9,
system: str | None = None,
final_only: bool = False,
stop_at_boxed: bool = False,
extract_boxed: bool = False,
disable_chat_template: bool = False,
repetition_penalty: float = 1.0,
frequency_penalty: float = 0.0,
):
"""Generates text using the loaded MLX model with better sampling."""
print("Loading model and tokenizer...")
model = load_model(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Check if we have the chat template
chat_template_path = Path(model_path) / "chat_template.jinja"
use_chat_format = chat_template_path.exists() and not disable_chat_template
print(f"Chat template found: {use_chat_format}")
print("Starting generation...")
print(f"Prompt: {prompt}")
# Format the prompt if using chat template
if use_chat_format:
messages = []
if system is None and final_only:
system = (
"You are a helpful assistant. Do not reveal your reasoning. "
"Respond with only the final answer enclosed in \\boxed{...}."
)
if system is not None:
messages.append({"role": "system", "content": system})
messages.append({"role": "user", "content": prompt})
formatted_prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
print(f"Formatted prompt: {formatted_prompt}")
else:
# No chat template: prepend BOS if available in tokenizer
bos = tokenizer.bos_token or ""
formatted_prompt = f"{bos}{prompt}"
# Tokenize the prompt
prompt_tokens = tokenizer.encode(formatted_prompt, add_special_tokens=False)
prompt_tokens = mx.array([prompt_tokens])
print(f"Prompt tokens shape: {prompt_tokens.shape}")
print(
f"First few token IDs: {prompt_tokens[0, : min(10, prompt_tokens.shape[1])].tolist()}"
)
# Generation loop with better sampling
start_time = time.time()
generated_tokens = []
freq_counts = {}
running_text = ""
seen_box_start = False
for i in range(max_tokens):
# Get logits from model
logits = model(prompt_tokens)
# Focus on next-token logits
next_token_logits = logits[0, -1, :]
# Apply repetition and frequency penalties before sampling/argmax
if repetition_penalty and repetition_penalty != 1.0 and generated_tokens:
# Apply a simple repetition penalty to previously generated tokens
# Using HF-like rule: if logit > 0 divide by penalty else multiply by penalty
logits_list = next_token_logits.tolist()
seen = set(generated_tokens)
for tid in seen:
val = logits_list[tid]
if val > 0:
logits_list[tid] = val / repetition_penalty
else:
logits_list[tid] = val * repetition_penalty
next_token_logits = mx.array(logits_list)
if frequency_penalty and frequency_penalty > 0 and generated_tokens:
# Subtract a multiple of token frequency from logits
counts = {}
for t in generated_tokens:
counts[t] = counts.get(t, 0) + 1
# Build a dense penalty vector once per step
vocab_size = next_token_logits.shape[-1]
pen = [0.0] * vocab_size
for tid, c in counts.items():
pen[tid] = frequency_penalty * float(c)
next_token_logits = next_token_logits - mx.array(pen)
# Apply temperature (temperature==0 -> greedy)
if temperature == 0:
# Greedy decode
next_token = int(mx.argmax(next_token_logits).item())
else:
# Sampling path: scale logits, apply top-p mask in logits space
scaled_logits = next_token_logits / temperature
if 0.0 < top_p < 1.0:
probs = mx.softmax(scaled_logits, axis=-1)
sorted_probs = mx.sort(probs)[::-1]
cumulative_probs = mx.cumsum(sorted_probs, axis=-1)
cutoff_index = mx.sum(cumulative_probs < top_p)
cutoff_prob = sorted_probs[cutoff_index.item()]
mask = probs >= cutoff_prob
scaled_logits = mx.where(mask, scaled_logits, float("-inf"))
# Sample from logits (MLX categorical expects logits)
next_token = mx.random.categorical(scaled_logits, num_samples=1).item()
# Safer stop condition: support multiple EOS ids
eos_ids = tokenizer.eos_token_id
if isinstance(eos_ids, (list, tuple)):
stop_ids = set(int(i) for i in eos_ids)
else:
stop_ids = {int(eos_ids)}
if next_token in stop_ids:
print(f"Stopping generation at EOS token: {next_token}")
break
generated_tokens.append(next_token)
# Update frequency counts
freq_counts[next_token] = freq_counts.get(next_token, 0) + 1
# Append the new token for the next iteration
prompt_tokens = mx.concatenate(
[prompt_tokens, mx.array([[next_token]])], axis=1
)
# Print token as we generate for debugging
if i < 10: # Only print first 10 tokens to avoid spam
token_text = tokenizer.decode([next_token])
print(f"Token {i}: {next_token} -> '{token_text}'")
# Optional boxed stopping condition
if stop_at_boxed:
token_text_full = tokenizer.decode([next_token], skip_special_tokens=False)
running_text += token_text_full
if not seen_box_start and "\\boxed{" in running_text:
seen_box_start = True
if seen_box_start and "}" in running_text:
print("Stopping generation at boxed answer.")
break
end_time = time.time()
# Decode and print the result
if generated_tokens:
response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
print("\n--- Response ---")
print(response)
else:
print("\n--- No tokens generated ---")
print("------------------")
generation_speed = (
len(generated_tokens) / (end_time - start_time) if generated_tokens else 0
)
print(f"Generated {len(generated_tokens)} tokens")
print(f"Generation speed: {generation_speed:.2f} tokens/sec")
# Also print the full generated sequence including special tokens for debugging
if generated_tokens:
full_response = tokenizer.decode(generated_tokens, skip_special_tokens=False)
print(f"\nFull response (with special tokens): '{full_response}'")
if extract_boxed and generated_tokens:
import re
m = None
# Get the last occurrence of \\boxed{...}
for m in re.finditer(r"\\\\boxed\{([^}]*)\}", full_response):
pass
if m:
print(f"\nExtracted boxed answer: {m.group(1).strip()}")
else:
print("\nNo \\boxed{...} segment found to extract.")
def main():
parser = argparse.ArgumentParser(description="Run inference with the MLX model.")
parser.add_argument(
"--model-path", type=str, default=".", help="Path to the model directory."
)
parser.add_argument(
"--prompt",
type=str,
default="What is the capital of France?",
help="The prompt to start generation from.",
)
parser.add_argument(
"--max-tokens",
type=int,
default=100,
help="The maximum number of tokens to generate.",
)
parser.add_argument(
"--temperature", type=float, default=0.1, help="Sampling temperature."
)
parser.add_argument(
"--top-p", type=float, default=0.9, help="Top-p (nucleus) sampling parameter."
)
parser.add_argument(
"--system", type=str, default=None, help="Optional system message for chat template."
)
parser.add_argument(
"--final-only",
action="store_true",
help="Instruct the model to output only the final answer inside \\boxed{...}.",
)
parser.add_argument(
"--stop-at-boxed",
action="store_true",
help="Stop generation once a closing '}' appears after \\boxed{.",
)
parser.add_argument(
"--extract-boxed",
action="store_true",
help="Extract and print the content inside the last \\boxed{...} in the response.",
)
parser.add_argument(
"--disable-chat-template",
action="store_true",
help="Ignore chat_template.jinja and feed the raw prompt (prepended with BOS).",
)
parser.add_argument(
"--repetition-penalty",
type=float,
default=1.0,
help="Penalty (>1.0) to discourage previously generated tokens.",
)
parser.add_argument(
"--frequency-penalty",
type=float,
default=0.0,
help="Subtract alpha * count(token) from logits before sampling.",
)
args = parser.parse_args()
generate_text(
args.prompt,
args.model_path,
args.max_tokens,
args.temperature,
args.top_p,
args.system,
args.final_only,
args.stop_at_boxed,
args.extract_boxed,
args.disable_chat_template,
args.repetition_penalty,
args.frequency_penalty,
)
if __name__ == "__main__":
main()
|