---
license: mit
datasets:
- lucasmccabe/logiqa
language:
- en
base_model:
- microsoft/Phi-3-mini-4k-instruct
tags:
- code
- logic
- efficiency
---
Circuit
Fine-tuned Phi-3 for Logical Reasoning
# Model performance
## Benchmark
Trained on the [lucasmccabe/logiqa](https://huggingface.co/datasets/lucasmccabe/logiqa) dataset, Circuit enhances the model’s ability to reason through complex problems, answer multi-step logic questions, and provide consistent explanations.
# Model Details
| Property | Value |
|-----------|--------|
| **Base model** | `microsoft/Phi-3-mini-4k-instruct` |
| **Fine-tuned for** | Logical Reasoning |
| **Dataset** | [`lucasmccabe/logiqa`](https://huggingface.co/datasets/lucasmccabe/logiqa) |
| **Technique** | LoRA fine-tuning, merged for direct use |
| **Formats available** | Full (HF Transformers) + Quantized (`.gguf` for llama.cpp / Ollama) |
| **Project** | **Circuit** |
| **Fine-tuned by** | Rudransh |
# Model Variants
| Variant | Description | File |
|----------|--------------|------|
| **Full model** | Merged LoRA with base, compatible with `transformers` | `pytorch_model.bin` |
| **Quantized model (GGUF)** | Optimized for CPU/GPU inference via `llama.cpp`, `text-generation-webui`, or `Ollama` | `circuit_phi3_q4.gguf` |
# Example Usage (Transformers)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
"rudranshjoshi/circuit",
torch_dtype=torch.float16,
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"rudranshjoshi/circuit",
trust_remote_code=True
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=150)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
# Training Summary
Base model: Phi-3 Mini 4K Instruct
Dataset: LogiQA (lucasmccabe/logiqa)
Training method: LoRA fine-tuning, later merged
Hardware: NVIDIA RTX 1080
Epochs: ~3
Objective: Improve reasoning consistency and structured explanations
# Acknowledgements
Microsoft
for Phi-3
Lucas McCabe
for LogiQA dataset
Fine-tuned and quantized by Rudransh under Project Circuit