File size: 1,567 Bytes
dfdc6d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
language:
- en
tags:
- attention
- temporal-reasoning
- time-series
- inductive-bias
- plug-and-play
---
# TemporalSelfAttention - A Time-Biased Attention Module

> Give Transformers a sense of time - not by scaling, but by structure.

---

##  Why?

Standard attention treats all tokens equally in time.  
This works for syntax, but breaks for:

-  Temporal event ordering  
-  Causal reasoning  
-  Timeline consistency  
-  Long-range narrative coherence  

💡 Insight: These models *simulate* time via token position. We inject it *structurally*  with a tiny inductive bias.

---

##  Core Equation


The time-aware attention score is computed as:

$$
\text{score}_{ij} = \frac{Q_i \cdot K_j^\top}{\sqrt{d_k}} + \gamma \cdot f(t_j - t_i)
$$

### Notation

| Symbol          | Description |
|-----------------|-------------|
| \\( \text{score}_{ij} \\) | Attention score between query at position \\( i \\) and key at position \\( j \\) |
| \\( Q_i \\)     | Query vector for position \\( i \\) |
| \\( K_j \\)     | Key vector for position \\( j \\) |
| \\( d_k \\)     | Dimension of key vectors |
| \\( \gamma \\)  | Learnable time bias strength |
| \\( f(\cdot) \\) | Time difference function |
| \\( t_j - t_i \\) | Relative time difference |


##  How To Use

```python
from temporal_attention import TemporalSelfAttention

model = TemporalSelfAttention(
    embed_dim=64,
    num_heads=1,
    bias_type="linear",  # or 'gaussian'
    gamma=1.0,
    causal=False
)

# x: (B, T, D), timestamps: (B, T)
output, weights = model(x, timestamps)