Update temporal_attention.py
Browse files- temporal_attention.py +64 -1
temporal_attention.py
CHANGED
|
@@ -1 +1,64 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
class TemporalSelfAttention(nn.Module):
|
| 6 |
+
def __init__(self, embed_dim, num_heads, bias_type="linear", gamma=1.0, causal=False):
|
| 7 |
+
super().__init__()
|
| 8 |
+
assert embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
|
| 9 |
+
assert bias_type in ["linear", "gaussian"]
|
| 10 |
+
|
| 11 |
+
self.embed_dim = embed_dim
|
| 12 |
+
self.num_heads = num_heads
|
| 13 |
+
self.head_dim = embed_dim // num_heads
|
| 14 |
+
self.bias_type = bias_type
|
| 15 |
+
self.gamma = gamma
|
| 16 |
+
self.causal = causal
|
| 17 |
+
|
| 18 |
+
self.qkv = nn.Linear(embed_dim, 3 * embed_dim)
|
| 19 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim)
|
| 20 |
+
|
| 21 |
+
def forward(self, x, timestamps):
|
| 22 |
+
"""
|
| 23 |
+
x: [B, T, D]
|
| 24 |
+
timestamps: [B, T] — real-valued time signals per token
|
| 25 |
+
"""
|
| 26 |
+
B, T, D = x.size()
|
| 27 |
+
|
| 28 |
+
# Project input to Q, K, V
|
| 29 |
+
qkv = self.qkv(x).reshape(B, T, 3, self.num_heads, self.head_dim)
|
| 30 |
+
q, k, v = qkv.unbind(dim=2) # each: [B, T, num_heads, head_dim]
|
| 31 |
+
|
| 32 |
+
q = q.transpose(1, 2) # [B, num_heads, T, head_dim]
|
| 33 |
+
k = k.transpose(1, 2)
|
| 34 |
+
v = v.transpose(1, 2)
|
| 35 |
+
|
| 36 |
+
# Scaled dot-product attention
|
| 37 |
+
attn_logits = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5) # [B, H, T, T]
|
| 38 |
+
|
| 39 |
+
# Compute temporal bias
|
| 40 |
+
t_i = timestamps.unsqueeze(2) # [B, T, 1]
|
| 41 |
+
t_j = timestamps.unsqueeze(1) # [B, 1, T]
|
| 42 |
+
delta_t = t_j - t_i # [B, T, T]
|
| 43 |
+
|
| 44 |
+
if self.bias_type == "linear":
|
| 45 |
+
temporal_bias = -self.gamma * torch.abs(delta_t) # [B, T, T]
|
| 46 |
+
elif self.bias_type == "gaussian":
|
| 47 |
+
temporal_bias = -self.gamma * (delta_t ** 2)
|
| 48 |
+
|
| 49 |
+
# Expand for broadcasting: [B, 1, T, T]
|
| 50 |
+
attn_logits = attn_logits + temporal_bias.unsqueeze(1)
|
| 51 |
+
|
| 52 |
+
# Causal masking (prevent attending to future)
|
| 53 |
+
if self.causal:
|
| 54 |
+
causal_mask = torch.tril(torch.ones(T, T, device=x.device)).unsqueeze(0).unsqueeze(0) # [1,1,T,T]
|
| 55 |
+
attn_logits = attn_logits.masked_fill(causal_mask == 0, float("-inf"))
|
| 56 |
+
|
| 57 |
+
attn_weights = F.softmax(attn_logits, dim=-1) # [B, H, T, T]
|
| 58 |
+
attn_output = torch.matmul(attn_weights, v) # [B, H, T, head_dim]
|
| 59 |
+
|
| 60 |
+
# Merge heads
|
| 61 |
+
attn_output = attn_output.transpose(1, 2).reshape(B, T, D)
|
| 62 |
+
output = self.out_proj(attn_output)
|
| 63 |
+
|
| 64 |
+
return output, attn_weights
|