Update README.md
Browse files
README.md
CHANGED
|
@@ -74,6 +74,7 @@ This setup preserved general reasoning ability while improving spatial accuracy.
|
|
| 74 |
|
| 75 |
```python
|
| 76 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 77 |
|
| 78 |
model = AutoModelForCausalLM.from_pretrained("sareena/spatial_lora_mistral")
|
| 79 |
tokenizer = AutoTokenizer.from_pretrained("sareena/spatial_lora_mistral")
|
|
@@ -84,10 +85,19 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
| 84 |
|
| 85 |
```
|
| 86 |
|
| 87 |
-
|
| 88 |
# Prompt Format
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
# Expected Output Format
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# Limitations
|
| 93 |
|
|
|
|
| 74 |
|
| 75 |
```python
|
| 76 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 77 |
+
import torch
|
| 78 |
|
| 79 |
model = AutoModelForCausalLM.from_pretrained("sareena/spatial_lora_mistral")
|
| 80 |
tokenizer = AutoTokenizer.from_pretrained("sareena/spatial_lora_mistral")
|
|
|
|
| 85 |
|
| 86 |
```
|
| 87 |
|
|
|
|
| 88 |
# Prompt Format
|
| 89 |
+
The model is trained on instruction-style input with a spatial reasoning question:
|
| 90 |
+
|
| 91 |
+
```text
|
| 92 |
+
Q: The couch is to the left of the table. The lamp is on the couch. Where is the lamp in relation to the table?
|
| 93 |
+
```
|
| 94 |
|
| 95 |
# Expected Output Format
|
| 96 |
+
The output is a short, natural language spatial answer:
|
| 97 |
+
|
| 98 |
+
```text
|
| 99 |
+
A: left
|
| 100 |
+
```
|
| 101 |
|
| 102 |
# Limitations
|
| 103 |
|