Update README.md
Browse files
README.md
CHANGED
|
@@ -4,4 +4,269 @@ language:
|
|
| 4 |
- en
|
| 5 |
base_model:
|
| 6 |
- distilbert/distilbert-base-uncased
|
| 7 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
- en
|
| 5 |
base_model:
|
| 6 |
- distilbert/distilbert-base-uncased
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# SoT_DistilBERT: Paradigm Selection Model for Sketch-of-Thought
|
| 10 |
+
|
| 11 |
+
[](LICENSE)
|
| 12 |
+
[](https://www.python.org/downloads/)
|
| 13 |
+
[](https://pytorch.org/)
|
| 14 |
+
[](https://github.com/yourusername/sketch-of-thought)
|
| 15 |
+
|
| 16 |
+
## Loading the Model
|
| 17 |
+
|
| 18 |
+
This repository contains the DistilBERT paradigm selection model for the Sketch-of-Thought (SoT) framework. You can load and use it directly with Hugging Face Transformers:
|
| 19 |
+
|
| 20 |
+
```python
|
| 21 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
| 22 |
+
import torch
|
| 23 |
+
import json
|
| 24 |
+
|
| 25 |
+
# Load the model directly from Hugging Face
|
| 26 |
+
model = DistilBertForSequenceClassification.from_pretrained("saytes/SoT_DistilBERT")
|
| 27 |
+
tokenizer = DistilBertTokenizer.from_pretrained("saytes/SoT_DistilBERT")
|
| 28 |
+
|
| 29 |
+
# Define label mapping
|
| 30 |
+
label_mapping = {
|
| 31 |
+
"chunked_symbolism": 0,
|
| 32 |
+
"conceptual_chaining": 1,
|
| 33 |
+
"expert_lexicons": 2
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
# Function to classify questions
|
| 37 |
+
def classify_question(question):
|
| 38 |
+
inputs = tokenizer(question, return_tensors="pt", truncation=True, padding=True)
|
| 39 |
+
outputs = model(**inputs)
|
| 40 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
| 41 |
+
|
| 42 |
+
# Reverse mapping to get the paradigm name
|
| 43 |
+
label_mapping_reverse = {v: k for k, v in label_mapping.items()}
|
| 44 |
+
return label_mapping_reverse[predicted_class]
|
| 45 |
+
|
| 46 |
+
# Example usage
|
| 47 |
+
question = "Alice has 5 apples. She gives 3 apples to Bob. How many apples does Alice have?"
|
| 48 |
+
paradigm = classify_question(question)
|
| 49 |
+
print(f"Recommended paradigm: {paradigm}") # Output: "chunked_symbolism"
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
For easier integration, we also provide a complete Python package implementation. See the [GitHub repository](https://github.com/yourusername/sketch-of-thought) or the "Complete Package" section below for details.
|
| 53 |
+
|
| 54 |
+
## Model Description
|
| 55 |
+
|
| 56 |
+
The SoT_DistilBERT model is a fine-tuned DistilBERT classifier trained to select the optimal reasoning paradigm for a given query based on the Sketch-of-Thought framework.
|
| 57 |
+
|
| 58 |
+
### Training Data
|
| 59 |
+
The model was trained on approximately 14,200 samples across various reasoning tasks, with each sample labeled using one of the three SoT paradigms. Labels were assigned using GPT-4o with a classification-specific prompt based on predefined heuristics.
|
| 60 |
+
|
| 61 |
+
### Model Architecture
|
| 62 |
+
- **Base model**: DistilBERT
|
| 63 |
+
- **Training**: 5 epochs, batch size 64, learning rate 2e-5
|
| 64 |
+
- **Loss**: Cross-entropy
|
| 65 |
+
|
| 66 |
+
## What is Sketch-of-Thought?
|
| 67 |
+
|
| 68 |
+
Sketch-of-Thought (SoT) is a novel prompting framework for efficient reasoning in language models that combines cognitive-inspired reasoning paradigms with linguistic constraints to minimize output token usage while preserving reasoning accuracy.
|
| 69 |
+
|
| 70 |
+
Unlike conventional Chain of Thought (CoT) approaches that produce verbose reasoning chains, SoT implements three distinct reasoning paradigms:
|
| 71 |
+
|
| 72 |
+
- **Conceptual Chaining**: Connects essential ideas in logical sequences through structured step links. Effective for commonsense reasoning, multi-hop inference, and fact-based recall tasks.
|
| 73 |
+
|
| 74 |
+
- **Chunked Symbolism**: Organizes numerical and symbolic reasoning into structured steps with equations, variables, and arithmetic operations. Excels in mathematical problems and technical calculations.
|
| 75 |
+
|
| 76 |
+
- **Expert Lexicons**: Leverages domain-specific shorthand, technical symbols, and jargon for precise and efficient communication. Suited for technical disciplines requiring maximum information density.
|
| 77 |
+
|
| 78 |
+
## Complete Package
|
| 79 |
+
|
| 80 |
+
For a more streamlined experience, we've developed the SoT Python package that handles paradigm selection, prompt management, and exemplar formatting:
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
from sketch_of_thought import SoT
|
| 84 |
+
|
| 85 |
+
# Initialize SoT
|
| 86 |
+
sot = SoT()
|
| 87 |
+
|
| 88 |
+
# Classify a question and get appropriate paradigm
|
| 89 |
+
question = "Alice has 5 apples. She gives 3 apples to Bob. How many apples does Alice have?"
|
| 90 |
+
paradigm = sot.classify_question(question) # Returns: 'chunked_symbolism'
|
| 91 |
+
|
| 92 |
+
# Get initialized context with exemplars for the selected paradigm
|
| 93 |
+
context = sot.get_initialized_context(
|
| 94 |
+
paradigm=paradigm,
|
| 95 |
+
question=question,
|
| 96 |
+
format="llm",
|
| 97 |
+
include_system_prompt=True
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Use with your LLM of choice
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
## Example with Qwen2.5-7B
|
| 104 |
+
|
| 105 |
+
Here's a complete example using Qwen2.5-7B-Instruct:
|
| 106 |
+
|
| 107 |
+
```python
|
| 108 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 109 |
+
from sketch_of_thought import SoT
|
| 110 |
+
|
| 111 |
+
# Initialize SoT
|
| 112 |
+
sot = SoT()
|
| 113 |
+
|
| 114 |
+
# Load Qwen model
|
| 115 |
+
model_name = "Qwen/Qwen2.5-7B-Instruct"
|
| 116 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 117 |
+
model_name,
|
| 118 |
+
torch_dtype="auto",
|
| 119 |
+
device_map="auto"
|
| 120 |
+
)
|
| 121 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 122 |
+
|
| 123 |
+
# Prepare the question
|
| 124 |
+
prompt = "Alice has 5 apples. She gives 3 apples to Bob. How many apples does Alice have?"
|
| 125 |
+
|
| 126 |
+
# Classify and get appropriate context
|
| 127 |
+
paradigm = sot.classify_question(prompt)
|
| 128 |
+
messages = sot.get_initialized_context(
|
| 129 |
+
paradigm,
|
| 130 |
+
prompt,
|
| 131 |
+
format="llm",
|
| 132 |
+
include_system_prompt=True
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Format for the model
|
| 136 |
+
text = tokenizer.apply_chat_template(
|
| 137 |
+
messages,
|
| 138 |
+
tokenize=False,
|
| 139 |
+
add_generation_prompt=True
|
| 140 |
+
)
|
| 141 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 142 |
+
|
| 143 |
+
# Generate response
|
| 144 |
+
generated_ids = model.generate(
|
| 145 |
+
**model_inputs,
|
| 146 |
+
max_new_tokens=512
|
| 147 |
+
)
|
| 148 |
+
generated_ids = [
|
| 149 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 150 |
+
]
|
| 151 |
+
|
| 152 |
+
# Decode response
|
| 153 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 154 |
+
print(response)
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
**Output:**
|
| 158 |
+
|
| 159 |
+
```
|
| 160 |
+
<think>
|
| 161 |
+
A = 5
|
| 162 |
+
A -= 3
|
| 163 |
+
A = 2
|
| 164 |
+
</think>
|
| 165 |
+
|
| 166 |
+
\boxed{2}
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
## Supported Formats
|
| 170 |
+
|
| 171 |
+
The SoT package supports multiple output formats:
|
| 172 |
+
|
| 173 |
+
- `"llm"`: Standard chat format for text-only LLMs
|
| 174 |
+
- `"vlm"`: Multimodal format for vision-language models
|
| 175 |
+
- `"raw"`: Raw exemplars without formatting
|
| 176 |
+
|
| 177 |
+
<details>
|
| 178 |
+
<summary>What's the difference?</summary>
|
| 179 |
+
|
| 180 |
+
### LLM Format
|
| 181 |
+
|
| 182 |
+
Standard `messages` format for Large Language Models.
|
| 183 |
+
|
| 184 |
+
```python
|
| 185 |
+
[
|
| 186 |
+
{
|
| 187 |
+
"role": "system",
|
| 188 |
+
"content": "SYSTEM_PROMPT_HERE"
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"role": "user",
|
| 192 |
+
"content": "EXAMPLE_QUESTION_HERE"
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"role": "assistant",
|
| 196 |
+
"content": "EXAMPLE_ANSWER_HERE"
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"role": "user",
|
| 200 |
+
"content": "USER_QUESTION_HERE"
|
| 201 |
+
}
|
| 202 |
+
]
|
| 203 |
+
```
|
| 204 |
+
|
| 205 |
+
### VLM Format
|
| 206 |
+
|
| 207 |
+
Standard `messages` format for Large Vision-Language Models.
|
| 208 |
+
|
| 209 |
+
```python
|
| 210 |
+
[
|
| 211 |
+
{
|
| 212 |
+
"role": "system",
|
| 213 |
+
"content": "SYSTEM_PROMPT_HERE"
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"role": "user",
|
| 217 |
+
"content": [{"type": "text", "text": "EXAMPLE_QUESTION_HERE"}]
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"role": "assistant",
|
| 221 |
+
"content": [{"type": "text", "text": "EXAMPLE_ANSWER_HERE"}]
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"role": "user",
|
| 225 |
+
"content": [{"type": "text", "text": "USER_QUESTION_HERE"}]
|
| 226 |
+
}
|
| 227 |
+
]
|
| 228 |
+
```
|
| 229 |
+
|
| 230 |
+
### Raw Format
|
| 231 |
+
|
| 232 |
+
Raw exemplar data. Apply your own format!
|
| 233 |
+
|
| 234 |
+
```python
|
| 235 |
+
[
|
| 236 |
+
{
|
| 237 |
+
"question": "EXAMPLE_QUESTION_HERE",
|
| 238 |
+
"answer": "EXAMPLE_ANSWER_HERE"
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"question": "EXAMPLE_QUESTION_HERE",
|
| 242 |
+
"answer": "EXAMPLE_ANSWER_HERE"
|
| 243 |
+
}
|
| 244 |
+
]
|
| 245 |
+
```
|
| 246 |
+
</details>
|
| 247 |
+
|
| 248 |
+
## Multilingual Support
|
| 249 |
+
|
| 250 |
+
SoT supports multiple languages. System prompts and exemplars are automatically loaded in the requested language.
|
| 251 |
+
|
| 252 |
+
## Limitations
|
| 253 |
+
|
| 254 |
+
- The model is trained to classify questions into one of three predefined paradigms and may not generalize to tasks outside the training distribution.
|
| 255 |
+
- Performance may vary depending on the complexity and domain of the question.
|
| 256 |
+
|
| 257 |
+
## Citation
|
| 258 |
+
|
| 259 |
+
If you find our work helpful, please cite:
|
| 260 |
+
|
| 261 |
+
```
|
| 262 |
+
@article{sot2025,
|
| 263 |
+
title={TITLE-HERE},
|
| 264 |
+
author={NAMES-HERE},
|
| 265 |
+
journal={arXiv preprint},
|
| 266 |
+
year={2025}
|
| 267 |
+
}
|
| 268 |
+
```
|
| 269 |
+
|
| 270 |
+
## License
|
| 271 |
+
|
| 272 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|