Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,58 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
pipeline_tag: sentence-similarity
|
| 3 |
+
tags:
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- sentence-similarity
|
| 7 |
+
- transformers
|
| 8 |
+
language: pl
|
| 9 |
license: apache-2.0
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: "zapytanie: Jak dożyć 100 lat?"
|
| 12 |
+
sentences:
|
| 13 |
+
- "Trzeba zdrowo się odżywiać i uprawiać sport."
|
| 14 |
+
- "Trzeba pić alkohol, imprezować i jeździć szybkimi autami."
|
| 15 |
+
- "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
|
| 16 |
+
|
| 17 |
---
|
| 18 |
+
|
| 19 |
+
<h1 align="center">MMLW-roberta-base</h1>
|
| 20 |
+
|
| 21 |
+
MMLW (muszę mieć lepszą wiadomość) are neural text encoders for Polish.
|
| 22 |
+
This is a distilled model that can be used to generate embeddings applicable to many tasks such as semantic similarity, clustering, information retrieval. The model can also serve as a base for further fine-tuning.
|
| 23 |
+
It transforms texts to 768 dimensional vectors.
|
| 24 |
+
The model was initialized with Polish RoBERTa checkpoint, and then trained with [multilingual knowledge distillation method](https://aclanthology.org/2020.emnlp-main.365/) on a diverse corpus of 60 million Polish-English text pairs. We utilised [English FlagEmbeddings (BGE)](https://huggingface.co/BAAI/bge-base-en) as teacher models for distillation.
|
| 25 |
+
|
| 26 |
+
## Usage (Sentence-Transformers)
|
| 27 |
+
|
| 28 |
+
⚠️ Our embedding models require the use of specific prefixes and suffixes when encoding texts. For this model, each query should be preceded by the prefix **"zapytanie: "** ⚠️
|
| 29 |
+
|
| 30 |
+
You can use the model like this with [sentence-transformers](https://www.SBERT.net):
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from sentence_transformers import SentenceTransformer
|
| 34 |
+
from sentence_transformers.util import cos_sim
|
| 35 |
+
|
| 36 |
+
query_prefix = "zapytanie: "
|
| 37 |
+
answer_prefix = ""
|
| 38 |
+
queries = [query_prefix + "Jak dożyć 100 lat?"]
|
| 39 |
+
answers = [
|
| 40 |
+
answer_prefix + "Trzeba zdrowo się odżywiać i uprawiać sport.",
|
| 41 |
+
answer_prefix + "Trzeba pić alkohol, imprezować i jeździć szybkimi autami.",
|
| 42 |
+
answer_prefix + "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
|
| 43 |
+
]
|
| 44 |
+
model = SentenceTransformer("sdadas/mmlw-roberta-base")
|
| 45 |
+
queries_emb = model.encode(queries, convert_to_tensor=True, show_progress_bar=False)
|
| 46 |
+
answers_emb = model.encode(answers, convert_to_tensor=True, show_progress_bar=False)
|
| 47 |
+
|
| 48 |
+
best_answer = cos_sim(queries_emb, answers_emb).argmax().item()
|
| 49 |
+
print(answers[best_answer])
|
| 50 |
+
# Trzeba zdrowo się odżywiać i uprawiać sport.
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
## Evaluation Results
|
| 54 |
+
|
| 55 |
+
The model achieves **NDCG@10** of **53.60** on the Polish Information Retrieval Benchmark. See [PIRB Leaderboard](https://huggingface.co/spaces/sdadas/pirb) for detailed results.
|
| 56 |
+
|
| 57 |
+
## Acknowledgements
|
| 58 |
+
This model was trained with the A100 GPU cluster support delivered by the Gdansk University of Technology within the TASK center initiative.
|