Upload folder using huggingface_hub
Browse files
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
README.md
ADDED
|
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
tags:
|
| 5 |
+
- bert
|
| 6 |
+
- token-classification
|
| 7 |
+
- ner
|
| 8 |
+
- pii
|
| 9 |
+
- privacy
|
| 10 |
+
- onnx
|
| 11 |
+
- personal-information
|
| 12 |
+
datasets:
|
| 13 |
+
- custom
|
| 14 |
+
metrics:
|
| 15 |
+
- f1
|
| 16 |
+
- precision
|
| 17 |
+
- recall
|
| 18 |
+
model-index:
|
| 19 |
+
- name: bert-pii-onnx
|
| 20 |
+
results: []
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
# BERT PII Detection Model (ONNX)
|
| 24 |
+
|
| 25 |
+
This model is a BERT-based token classification model fine-tuned for detecting Personally Identifiable Information (PII) in text. The model is provided in ONNX format for efficient inference across different platforms.
|
| 26 |
+
|
| 27 |
+
## Model Description
|
| 28 |
+
|
| 29 |
+
- **Model Type:** Token Classification (Named Entity Recognition)
|
| 30 |
+
- **Base Model:** `bert-base-uncased` (Google BERT)
|
| 31 |
+
- **Format:** ONNX
|
| 32 |
+
- **Language:** English
|
| 33 |
+
- **License:** Apache 2.0
|
| 34 |
+
- **Training Dataset:** ai4privacy/pii-masking-300k
|
| 35 |
+
|
| 36 |
+
## Intended Use
|
| 37 |
+
|
| 38 |
+
This model is designed to identify and classify various types of personally identifiable information in text, including but not limited to:
|
| 39 |
+
|
| 40 |
+
### Supported PII Categories
|
| 41 |
+
|
| 42 |
+
The model can detect 27 different types of PII entities:
|
| 43 |
+
|
| 44 |
+
#### Personal Identifiers
|
| 45 |
+
- **GIVENNAME1, GIVENNAME2** - First/given names
|
| 46 |
+
- **LASTNAME1, LASTNAME2, LASTNAME3** - Last/family names
|
| 47 |
+
- **USERNAME** - Usernames
|
| 48 |
+
- **TITLE** - Personal titles
|
| 49 |
+
- **SEX** - Gender information
|
| 50 |
+
|
| 51 |
+
#### Contact Information
|
| 52 |
+
- **EMAIL** - Email addresses
|
| 53 |
+
- **TEL** - Telephone numbers
|
| 54 |
+
- **IP** - IP addresses
|
| 55 |
+
|
| 56 |
+
#### Location Information
|
| 57 |
+
- **STREET** - Street addresses
|
| 58 |
+
- **CITY** - City names
|
| 59 |
+
- **STATE** - State/province names
|
| 60 |
+
- **COUNTRY** - Country names
|
| 61 |
+
- **POSTCODE** - Postal/ZIP codes
|
| 62 |
+
- **BUILDING** - Building names/numbers
|
| 63 |
+
- **SECADDRESS** - Secondary addresses
|
| 64 |
+
- **GEOCOORD** - Geographic coordinates
|
| 65 |
+
|
| 66 |
+
#### Identification Documents
|
| 67 |
+
- **PASSPORT** - Passport numbers
|
| 68 |
+
- **IDCARD** - ID card numbers
|
| 69 |
+
- **DRIVERLICENSE** - Driver's license numbers
|
| 70 |
+
- **SOCIALNUMBER** - Social security numbers
|
| 71 |
+
- **PASS** - Password information
|
| 72 |
+
|
| 73 |
+
#### Temporal Information
|
| 74 |
+
- **DATE** - Date information
|
| 75 |
+
- **TIME** - Time information
|
| 76 |
+
- **BOD** - Birth date
|
| 77 |
+
|
| 78 |
+
The model uses BIO (Begin-Inside-Outside) tagging scheme, where:
|
| 79 |
+
- `B-[ENTITY]` marks the beginning of an entity
|
| 80 |
+
- `I-[ENTITY]` marks the continuation of an entity
|
| 81 |
+
- `O` marks tokens that are not PII
|
| 82 |
+
|
| 83 |
+
## Usage
|
| 84 |
+
|
| 85 |
+
### Requirements
|
| 86 |
+
|
| 87 |
+
```bash
|
| 88 |
+
pip install onnxruntime transformers tokenizers
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
### Python Example
|
| 92 |
+
|
| 93 |
+
```python
|
| 94 |
+
import onnxruntime as ort
|
| 95 |
+
from transformers import AutoTokenizer
|
| 96 |
+
import numpy as np
|
| 97 |
+
|
| 98 |
+
# Load tokenizer
|
| 99 |
+
tokenizer = AutoTokenizer.from_pretrained("path/to/model")
|
| 100 |
+
|
| 101 |
+
# Load ONNX model
|
| 102 |
+
session = ort.InferenceSession("onnx/model.onnx")
|
| 103 |
+
|
| 104 |
+
# Prepare input text
|
| 105 |
+
text = "My name is John Smith and my email is [email protected]"
|
| 106 |
+
inputs = tokenizer(text, return_tensors="np", padding=True, truncation=True)
|
| 107 |
+
|
| 108 |
+
# Run inference
|
| 109 |
+
outputs = session.run(
|
| 110 |
+
None,
|
| 111 |
+
{
|
| 112 |
+
"input_ids": inputs["input_ids"].astype(np.int64),
|
| 113 |
+
"attention_mask": inputs["attention_mask"].astype(np.int64),
|
| 114 |
+
"token_type_ids": inputs["token_type_ids"].astype(np.int64)
|
| 115 |
+
}
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Get predictions
|
| 119 |
+
logits = outputs[0]
|
| 120 |
+
predictions = np.argmax(logits, axis=-1)
|
| 121 |
+
|
| 122 |
+
# Map predictions to labels
|
| 123 |
+
id2label = {
|
| 124 |
+
0: "B-BOD", 1: "B-BUILDING", 2: "B-CITY", 3: "B-COUNTRY",
|
| 125 |
+
4: "B-DATE", 5: "B-DRIVERLICENSE", 6: "B-EMAIL", 7: "B-GEOCOORD",
|
| 126 |
+
8: "B-GIVENNAME1", 9: "B-GIVENNAME2", 10: "B-IDCARD", 11: "B-IP",
|
| 127 |
+
12: "B-LASTNAME1", 13: "B-LASTNAME2", 14: "B-LASTNAME3", 15: "B-PASS",
|
| 128 |
+
16: "B-PASSPORT", 17: "B-POSTCODE", 18: "B-SECADDRESS", 19: "B-SEX",
|
| 129 |
+
20: "B-SOCIALNUMBER", 21: "B-STATE", 22: "B-STREET", 23: "B-TEL",
|
| 130 |
+
24: "B-TIME", 25: "B-TITLE", 26: "B-USERNAME", 27: "I-BOD",
|
| 131 |
+
28: "I-BUILDING", 29: "I-CITY", 30: "I-COUNTRY", 31: "I-DATE",
|
| 132 |
+
32: "I-DRIVERLICENSE", 33: "I-EMAIL", 34: "I-GEOCOORD", 35: "I-GIVENNAME1",
|
| 133 |
+
36: "I-GIVENNAME2", 37: "I-IDCARD", 38: "I-IP", 39: "I-LASTNAME1",
|
| 134 |
+
40: "I-LASTNAME2", 41: "I-LASTNAME3", 42: "I-PASS", 43: "I-PASSPORT",
|
| 135 |
+
44: "I-POSTCODE", 45: "I-SECADDRESS", 46: "I-SEX", 47: "I-SOCIALNUMBER",
|
| 136 |
+
48: "I-STATE", 49: "I-STREET", 50: "I-TEL", 51: "I-TIME",
|
| 137 |
+
52: "I-TITLE", 53: "I-USERNAME", 54: "O"
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
# Decode predictions
|
| 141 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
| 142 |
+
labels = [id2label[pred] for pred in predictions[0]]
|
| 143 |
+
|
| 144 |
+
for token, label in zip(tokens, labels):
|
| 145 |
+
if token not in ["[CLS]", "[SEP]", "[PAD]"]:
|
| 146 |
+
print(f"{token}: {label}")
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
### JavaScript/Node.js Example
|
| 150 |
+
|
| 151 |
+
```javascript
|
| 152 |
+
const ort = require('onnxruntime-node');
|
| 153 |
+
const { AutoTokenizer } = require('@xenova/transformers');
|
| 154 |
+
|
| 155 |
+
async function detectPII(text) {
|
| 156 |
+
// Load tokenizer
|
| 157 |
+
const tokenizer = await AutoTokenizer.from_pretrained('path/to/model');
|
| 158 |
+
|
| 159 |
+
// Load ONNX model
|
| 160 |
+
const session = await ort.InferenceSession.create('onnx/model.onnx');
|
| 161 |
+
|
| 162 |
+
// Tokenize input
|
| 163 |
+
const inputs = await tokenizer(text, {
|
| 164 |
+
padding: true,
|
| 165 |
+
truncation: true,
|
| 166 |
+
return_tensors: 'ortvalue'
|
| 167 |
+
});
|
| 168 |
+
|
| 169 |
+
// Run inference
|
| 170 |
+
const outputs = await session.run(inputs);
|
| 171 |
+
|
| 172 |
+
// Process outputs
|
| 173 |
+
const logits = outputs.logits;
|
| 174 |
+
// ... process predictions
|
| 175 |
+
}
|
| 176 |
+
```
|
| 177 |
+
|
| 178 |
+
## Model Architecture
|
| 179 |
+
|
| 180 |
+
- **Architecture:** BertForTokenClassification
|
| 181 |
+
- **Hidden Size:** 768
|
| 182 |
+
- **Intermediate Size:** 3072
|
| 183 |
+
- **Attention Heads:** 12 (typical for BERT-base)
|
| 184 |
+
- **Hidden Layers:** 12 (typical for BERT-base)
|
| 185 |
+
- **Activation Function:** GELU
|
| 186 |
+
- **Max Sequence Length:** 512 tokens
|
| 187 |
+
- **Dropout:** 0.1
|
| 188 |
+
- **Number of Labels:** 55 (54 PII labels + Outside)
|
| 189 |
+
|
| 190 |
+
## Training Details
|
| 191 |
+
|
| 192 |
+
### Training Data
|
| 193 |
+
|
| 194 |
+
The model was fine-tuned on the **ai4privacy/pii-masking-300k** dataset:
|
| 195 |
+
- **Dataset:** [ai4privacy/pii-masking-300k](https://huggingface.co/datasets/ai4privacy/pii-masking-300k)
|
| 196 |
+
- **Size:** 300,000 examples
|
| 197 |
+
- **Format:** Pre-annotated text with BIO labels for PII entities
|
| 198 |
+
- **License:** Check dataset page for license details
|
| 199 |
+
|
| 200 |
+
### Training Procedure
|
| 201 |
+
|
| 202 |
+
- **Base Model:** `bert-base-uncased` (Google BERT)
|
| 203 |
+
- **Tokenization:** WordPiece tokenization with lowercase normalization
|
| 204 |
+
- **Max Sequence Length:** 128 tokens (optimized for efficiency)
|
| 205 |
+
- **Padding Token:** [PAD] (ID: 0)
|
| 206 |
+
- **Unknown Token:** [UNK] (ID: 100)
|
| 207 |
+
- **CLS Token:** [CLS] (ID: 101)
|
| 208 |
+
- **SEP Token:** [SEP] (ID: 102)
|
| 209 |
+
- **Mask Token:** [MASK] (ID: 103)
|
| 210 |
+
|
| 211 |
+
### Training Hyperparameters
|
| 212 |
+
|
| 213 |
+
- **Learning Rate:** 2e-5
|
| 214 |
+
- **Batch Size:** 16 (per device)
|
| 215 |
+
- **Number of Epochs:** 3
|
| 216 |
+
- **Weight Decay:** 0.01
|
| 217 |
+
- **Optimizer:** AdamW (default)
|
| 218 |
+
- **Training Platform:** Kaggle with GPU T4 x2
|
| 219 |
+
- **Training Time:** ~1-2 hours
|
| 220 |
+
|
| 221 |
+
### Evaluation Strategy
|
| 222 |
+
|
| 223 |
+
- **Evaluation Metric:** SeqEval (standard for NER tasks)
|
| 224 |
+
- **Evaluation Strategy:** Every epoch
|
| 225 |
+
- **Metrics Tracked:**
|
| 226 |
+
- Precision
|
| 227 |
+
- Recall
|
| 228 |
+
- F1 Score
|
| 229 |
+
- Accuracy
|
| 230 |
+
|
| 231 |
+
## Evaluation
|
| 232 |
+
|
| 233 |
+
The model should be evaluated on appropriate PII detection benchmarks using standard NER metrics (F1, Precision, Recall) for each entity type.
|
| 234 |
+
|
| 235 |
+
## Limitations and Bias
|
| 236 |
+
|
| 237 |
+
- The model's performance may vary across different text domains and writing styles
|
| 238 |
+
- May not generalize well to PII formats from countries/regions not well-represented in training data
|
| 239 |
+
- Context-dependent entities (e.g., names that are also common words) may be challenging
|
| 240 |
+
- The model may have biases present in the training data
|
| 241 |
+
- Should not be used as the sole method for PII detection in critical applications without human review
|
| 242 |
+
|
| 243 |
+
## Ethical Considerations
|
| 244 |
+
|
| 245 |
+
This model is designed to help protect privacy by detecting PII in text. However:
|
| 246 |
+
|
| 247 |
+
- The model is not perfect and may miss some PII (false negatives) or incorrectly flag non-PII (false positives)
|
| 248 |
+
- Should be used as part of a comprehensive privacy protection strategy
|
| 249 |
+
- Users should be aware of applicable privacy regulations (GDPR, CCPA, etc.)
|
| 250 |
+
- The model's use should comply with all relevant laws and regulations
|
| 251 |
+
- Consider the implications of automated PII detection in your specific use case
|
| 252 |
+
|
| 253 |
+
## ONNX Runtime Compatibility
|
| 254 |
+
|
| 255 |
+
This model is compatible with ONNX Runtime and can be deployed on:
|
| 256 |
+
- CPU (optimized for inference)
|
| 257 |
+
- GPU (CUDA)
|
| 258 |
+
- Edge devices
|
| 259 |
+
- Web browsers (via ONNX.js)
|
| 260 |
+
- Mobile devices (iOS/Android)
|
| 261 |
+
|
| 262 |
+
## File Structure
|
| 263 |
+
|
| 264 |
+
```
|
| 265 |
+
.
|
| 266 |
+
βββ README.md # This file
|
| 267 |
+
βββ config.json # Model configuration
|
| 268 |
+
βββ tokenizer_config.json # Tokenizer configuration
|
| 269 |
+
βββ tokenizer.json # Fast tokenizer
|
| 270 |
+
βββ vocab.txt # Vocabulary file
|
| 271 |
+
βββ special_tokens_map.json # Special tokens mapping
|
| 272 |
+
βββ onnx/
|
| 273 |
+
βββ model.onnx # ONNX model file
|
| 274 |
+
```
|
| 275 |
+
|
| 276 |
+
## Citation
|
| 277 |
+
|
| 278 |
+
If you use this model in your research or application, please cite:
|
| 279 |
+
|
| 280 |
+
```bibtex
|
| 281 |
+
@misc{bert-pii-onnx,
|
| 282 |
+
title={BERT PII Detection Model (ONNX)},
|
| 283 |
+
author={Your Name/Organization},
|
| 284 |
+
year={2025},
|
| 285 |
+
howpublished={\url{https://huggingface.co/your-username/bert-pii-onnx}}
|
| 286 |
+
}
|
| 287 |
+
```
|
| 288 |
+
|
| 289 |
+
### Base Model Citation
|
| 290 |
+
|
| 291 |
+
This model is based on BERT. Please also cite the original BERT paper:
|
| 292 |
+
|
| 293 |
+
```bibtex
|
| 294 |
+
@article{devlin2018bert,
|
| 295 |
+
title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding},
|
| 296 |
+
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
|
| 297 |
+
journal={arXiv preprint arXiv:1810.04805},
|
| 298 |
+
year={2018}
|
| 299 |
+
}
|
| 300 |
+
```
|
| 301 |
+
|
| 302 |
+
## Contact
|
| 303 |
+
|
| 304 |
+
For questions, issues, or feedback about this model, please open an issue in the model repository.
|
| 305 |
+
|
| 306 |
+
## Acknowledgments
|
| 307 |
+
|
| 308 |
+
### Base Model
|
| 309 |
+
This model is built upon **BERT (Bidirectional Encoder Representations from Transformers)** developed by Google Research:
|
| 310 |
+
- Original BERT paper: [Devlin et al., 2018](https://arxiv.org/abs/1810.04805)
|
| 311 |
+
- BERT is licensed under Apache 2.0
|
| 312 |
+
|
| 313 |
+
### Dataset
|
| 314 |
+
The model was trained on **ai4privacy/pii-masking-300k**:
|
| 315 |
+
- Dataset: [ai4privacy/pii-masking-300k](https://huggingface.co/datasets/ai4privacy/pii-masking-300k)
|
| 316 |
+
- Creator: ai4privacy team on Hugging Face
|
| 317 |
+
- Size: 300,000 examples with PII annotations
|
| 318 |
+
- Please cite the dataset creators if you use this model
|
| 319 |
+
|
| 320 |
+
```bibtex
|
| 321 |
+
@misc{ai4privacy-pii-dataset,
|
| 322 |
+
title={PII Masking 300K Dataset},
|
| 323 |
+
author={ai4privacy},
|
| 324 |
+
year={2024},
|
| 325 |
+
howpublished={\url{https://huggingface.co/datasets/ai4privacy/pii-masking-300k}}
|
| 326 |
+
}
|
| 327 |
+
```
|
| 328 |
+
|
| 329 |
+
### Technologies
|
| 330 |
+
- **Transformers Library**: [Hugging Face](https://github.com/huggingface/transformers)
|
| 331 |
+
- **ONNX**: [Open Neural Network Exchange](https://onnx.ai/) for cross-platform model deployment
|
| 332 |
+
- **ONNX Runtime**: [Microsoft ONNX Runtime](https://onnxruntime.ai/) for efficient inference
|
| 333 |
+
|
| 334 |
+
### Special Thanks
|
| 335 |
+
- Hugging Face team for the Transformers library and model hub infrastructure
|
| 336 |
+
- ONNX community for standardized model format and runtime
|
| 337 |
+
- Contributors to the training dataset (if applicable)
|