Upload lm_ngram_decoder_training.ipynb
Browse files- lm_ngram_decoder_training.ipynb +648 -0
lm_ngram_decoder_training.ipynb
ADDED
|
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 41,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"from datasets import load_dataset, concatenate_datasets\n"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": 70,
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [
|
| 17 |
+
{
|
| 18 |
+
"name": "stderr",
|
| 19 |
+
"output_type": "stream",
|
| 20 |
+
"text": [
|
| 21 |
+
"Reusing dataset common_voice (/home/ubuntu/.cache/huggingface/datasets/mozilla-foundation___common_voice/mr/8.0.0/b8bc4d453193c06a43269b46cd87f075c70f152ac963b7f28f7a2760c45ec3e8)\n"
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"name": "stdout",
|
| 26 |
+
"output_type": "stream",
|
| 27 |
+
"text": [
|
| 28 |
+
"Dataset({\n",
|
| 29 |
+
" features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
|
| 30 |
+
" num_rows: 698\n",
|
| 31 |
+
"})\n"
|
| 32 |
+
]
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"name": "stderr",
|
| 36 |
+
"output_type": "stream",
|
| 37 |
+
"text": [
|
| 38 |
+
"Reusing dataset open_slr (/home/ubuntu/.cache/huggingface/datasets/open_slr/SLR64/0.0.0/e0fb9e36094eff565efe812d1aba158f6a46ce834cb9705c91d1e2d6ba78ed31)\n"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"name": "stdout",
|
| 43 |
+
"output_type": "stream",
|
| 44 |
+
"text": [
|
| 45 |
+
"Dataset({\n",
|
| 46 |
+
" features: ['path', 'audio', 'sentence'],\n",
|
| 47 |
+
" num_rows: 1569\n",
|
| 48 |
+
"})\n"
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"name": "stderr",
|
| 53 |
+
"output_type": "stream",
|
| 54 |
+
"text": [
|
| 55 |
+
"Using custom data configuration shivam--marathi_samanantar_processed-538aa7995793bd87\n",
|
| 56 |
+
"Reusing dataset parquet (/home/ubuntu/.cache/huggingface/datasets/parquet/shivam--marathi_samanantar_processed-538aa7995793bd87/0.0.0/0b6d5799bb726b24ad7fc7be720c170d8e497f575d02d47537de9a5bac074901)\n"
|
| 57 |
+
]
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"name": "stdout",
|
| 61 |
+
"output_type": "stream",
|
| 62 |
+
"text": [
|
| 63 |
+
"Dataset({\n",
|
| 64 |
+
" features: ['text'],\n",
|
| 65 |
+
" num_rows: 3047226\n",
|
| 66 |
+
"})\n"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"name": "stderr",
|
| 71 |
+
"output_type": "stream",
|
| 72 |
+
"text": [
|
| 73 |
+
"Using custom data configuration shivam--marathi_pib_processed-2348554e5319bdfe\n",
|
| 74 |
+
"Reusing dataset parquet (/home/ubuntu/.cache/huggingface/datasets/parquet/shivam--marathi_pib_processed-2348554e5319bdfe/0.0.0/0b6d5799bb726b24ad7fc7be720c170d8e497f575d02d47537de9a5bac074901)\n"
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"name": "stdout",
|
| 79 |
+
"output_type": "stream",
|
| 80 |
+
"text": [
|
| 81 |
+
"Dataset({\n",
|
| 82 |
+
" features: ['text'],\n",
|
| 83 |
+
" num_rows: 117199\n",
|
| 84 |
+
"})\n"
|
| 85 |
+
]
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"name": "stderr",
|
| 89 |
+
"output_type": "stream",
|
| 90 |
+
"text": [
|
| 91 |
+
"Reusing dataset opus100 (/home/ubuntu/.cache/huggingface/datasets/opus100/en-mr/0.0.0/256f3196b69901fb0c79810ef468e2c4ed84fbd563719920b1ff1fdc750f7704)\n",
|
| 92 |
+
"Loading cached processed dataset at /home/ubuntu/.cache/huggingface/datasets/opus100/en-mr/0.0.0/256f3196b69901fb0c79810ef468e2c4ed84fbd563719920b1ff1fdc750f7704/cache-201d21d7acc2864f.arrow\n"
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"name": "stdout",
|
| 97 |
+
"output_type": "stream",
|
| 98 |
+
"text": [
|
| 99 |
+
"Dataset({\n",
|
| 100 |
+
" features: ['translation', 'sentence'],\n",
|
| 101 |
+
" num_rows: 27007\n",
|
| 102 |
+
"})\n"
|
| 103 |
+
]
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"name": "stderr",
|
| 107 |
+
"output_type": "stream",
|
| 108 |
+
"text": [
|
| 109 |
+
"Reusing dataset tatoeba (/home/ubuntu/.cache/huggingface/datasets/tatoeba/en-mr/2021.7.22/b3ea9c6bb2af47699c5fc0a155643f5a0da287c7095ea14824ee0a8afd74daf6)\n"
|
| 110 |
+
]
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"data": {
|
| 114 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 115 |
+
"model_id": "c0dba507cea344768aa20cd7c5593a0c",
|
| 116 |
+
"version_major": 2,
|
| 117 |
+
"version_minor": 0
|
| 118 |
+
},
|
| 119 |
+
"text/plain": [
|
| 120 |
+
" 0%| | 0/53462 [00:00<?, ?ex/s]"
|
| 121 |
+
]
|
| 122 |
+
},
|
| 123 |
+
"metadata": {},
|
| 124 |
+
"output_type": "display_data"
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"name": "stdout",
|
| 128 |
+
"output_type": "stream",
|
| 129 |
+
"text": [
|
| 130 |
+
"Dataset({\n",
|
| 131 |
+
" features: ['id', 'translation', 'sentence'],\n",
|
| 132 |
+
" num_rows: 53462\n",
|
| 133 |
+
"})\n"
|
| 134 |
+
]
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"name": "stderr",
|
| 138 |
+
"output_type": "stream",
|
| 139 |
+
"text": [
|
| 140 |
+
"Reusing dataset tapaco (/home/ubuntu/.cache/huggingface/datasets/tapaco/mr/1.0.0/71d200534b520a174927a8f0479c06220a0a6fb5201a84ebfce19006c6354698)\n"
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"name": "stdout",
|
| 145 |
+
"output_type": "stream",
|
| 146 |
+
"text": [
|
| 147 |
+
"Dataset({\n",
|
| 148 |
+
" features: ['paraphrase_set_id', 'sentence_id', 'paraphrase', 'lists', 'tags', 'language'],\n",
|
| 149 |
+
" num_rows: 16413\n",
|
| 150 |
+
"})\n"
|
| 151 |
+
]
|
| 152 |
+
}
|
| 153 |
+
],
|
| 154 |
+
"source": [
|
| 155 |
+
"cv = load_dataset(\"mozilla-foundation/common_voice_8_0\", \"mr\", split=\"train+validation\", use_auth_token=True)\n",
|
| 156 |
+
"print(cv)\n",
|
| 157 |
+
"openslr = load_dataset(\"openslr\", \"SLR64\", split=\"train\")\n",
|
| 158 |
+
"print(openslr)\n",
|
| 159 |
+
"samanantar = load_dataset(\"shivam/marathi_samanantar_processed\", split=\"train\")\n",
|
| 160 |
+
"print(samanantar)\n",
|
| 161 |
+
"pib = load_dataset(\"shivam/marathi_pib_processed\", split=\"train\")\n",
|
| 162 |
+
"print(pib)\n",
|
| 163 |
+
"opus = load_dataset(\"opus100\", \"en-mr\", split=\"train\").map(lambda example: {\"sentence\": example[\"translation\"][\"mr\"]})\n",
|
| 164 |
+
"print(opus)\n",
|
| 165 |
+
"tatoeba = load_dataset(\"tatoeba\", \"en-mr\", split=\"train\").map(lambda example: {\"sentence\": example[\"translation\"][\"mr\"]})\n",
|
| 166 |
+
"print(tatoeba)\n",
|
| 167 |
+
"tapaco = load_dataset(\"tapaco\", \"mr\", split=\"train\")\n",
|
| 168 |
+
"print(tapaco)\n",
|
| 169 |
+
"\n"
|
| 170 |
+
]
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"cell_type": "code",
|
| 174 |
+
"execution_count": 71,
|
| 175 |
+
"metadata": {},
|
| 176 |
+
"outputs": [
|
| 177 |
+
{
|
| 178 |
+
"data": {
|
| 179 |
+
"text/plain": [
|
| 180 |
+
"Dataset({\n",
|
| 181 |
+
" features: ['sentence'],\n",
|
| 182 |
+
" num_rows: 3263574\n",
|
| 183 |
+
"})"
|
| 184 |
+
]
|
| 185 |
+
},
|
| 186 |
+
"execution_count": 71,
|
| 187 |
+
"metadata": {},
|
| 188 |
+
"output_type": "execute_result"
|
| 189 |
+
}
|
| 190 |
+
],
|
| 191 |
+
"source": [
|
| 192 |
+
"cv = cv.remove_columns([\"accent\", \"age\", \"client_id\", \"down_votes\", \"gender\", \"locale\", \"segment\", \"up_votes\", 'path', 'audio'])\n",
|
| 193 |
+
"openslr = openslr.remove_columns(['path', 'audio'])\n",
|
| 194 |
+
"samanantar = samanantar.rename_column(\"text\",\"sentence\")\n",
|
| 195 |
+
"pib = pib.rename_column(\"text\",\"sentence\")\n",
|
| 196 |
+
"opus = opus.remove_columns([\"translation\"])\n",
|
| 197 |
+
"tatoeba = tatoeba.remove_columns(['id','translation'])\n",
|
| 198 |
+
"tapaco = tapaco.remove_columns(['paraphrase_set_id', 'sentence_id', 'lists', 'tags', 'language']).rename_column(\"paraphrase\",\"sentence\")\n",
|
| 199 |
+
"\n",
|
| 200 |
+
"text_dataset = concatenate_datasets([cv, openslr, samanantar, pib, opus, tatoeba, tapaco])\n",
|
| 201 |
+
"text_dataset\n"
|
| 202 |
+
]
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"cell_type": "code",
|
| 206 |
+
"execution_count": 73,
|
| 207 |
+
"metadata": {},
|
| 208 |
+
"outputs": [],
|
| 209 |
+
"source": [
|
| 210 |
+
"chars_to_ignore_regex = '[,?.!\\-\\;\\:\"“%‘”�—’…–\\।\\!\\\"\\,\\-\\.\\?\\:\\|\\“\\”\\–\\;\\'\\’\\‘\\॔]' # change to the ignored characters of your fine-tuned model"
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "code",
|
| 215 |
+
"execution_count": 74,
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"import re\n",
|
| 220 |
+
"\n",
|
| 221 |
+
"def extract_text(batch):\n",
|
| 222 |
+
" text = batch[\"sentence\"]\n",
|
| 223 |
+
" batch[\"text\"] = re.sub(chars_to_ignore_regex, \"\", text.lower())\n",
|
| 224 |
+
" return batch"
|
| 225 |
+
]
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"cell_type": "code",
|
| 229 |
+
"execution_count": 76,
|
| 230 |
+
"metadata": {},
|
| 231 |
+
"outputs": [
|
| 232 |
+
{
|
| 233 |
+
"data": {
|
| 234 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 235 |
+
"model_id": "4334d72e02f140bf9078cb97c5353d70",
|
| 236 |
+
"version_major": 2,
|
| 237 |
+
"version_minor": 0
|
| 238 |
+
},
|
| 239 |
+
"text/plain": [
|
| 240 |
+
" 0%| | 0/3263574 [00:00<?, ?ex/s]"
|
| 241 |
+
]
|
| 242 |
+
},
|
| 243 |
+
"metadata": {},
|
| 244 |
+
"output_type": "display_data"
|
| 245 |
+
},
|
| 246 |
+
{
|
| 247 |
+
"data": {
|
| 248 |
+
"text/plain": [
|
| 249 |
+
"Dataset({\n",
|
| 250 |
+
" features: ['text'],\n",
|
| 251 |
+
" num_rows: 3263574\n",
|
| 252 |
+
"})"
|
| 253 |
+
]
|
| 254 |
+
},
|
| 255 |
+
"execution_count": 76,
|
| 256 |
+
"metadata": {},
|
| 257 |
+
"output_type": "execute_result"
|
| 258 |
+
}
|
| 259 |
+
],
|
| 260 |
+
"source": [
|
| 261 |
+
"dataset = text_dataset.map(extract_text, remove_columns=text_dataset.column_names)\n",
|
| 262 |
+
"dataset"
|
| 263 |
+
]
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"cell_type": "code",
|
| 267 |
+
"execution_count": 77,
|
| 268 |
+
"metadata": {},
|
| 269 |
+
"outputs": [
|
| 270 |
+
{
|
| 271 |
+
"data": {
|
| 272 |
+
"text/plain": [
|
| 273 |
+
"{'text': 'शिवाय त्यांना कवितेचा आणि चित्रकलेचा छंद होता'}"
|
| 274 |
+
]
|
| 275 |
+
},
|
| 276 |
+
"execution_count": 77,
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"output_type": "execute_result"
|
| 279 |
+
}
|
| 280 |
+
],
|
| 281 |
+
"source": [
|
| 282 |
+
"dataset[0]"
|
| 283 |
+
]
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"cell_type": "code",
|
| 287 |
+
"execution_count": 78,
|
| 288 |
+
"metadata": {},
|
| 289 |
+
"outputs": [],
|
| 290 |
+
"source": [
|
| 291 |
+
"with open(\"text.txt\", \"w\") as file:\n",
|
| 292 |
+
" file.write(\" \".join(dataset[\"text\"]))"
|
| 293 |
+
]
|
| 294 |
+
},
|
| 295 |
+
{
|
| 296 |
+
"cell_type": "code",
|
| 297 |
+
"execution_count": 82,
|
| 298 |
+
"metadata": {},
|
| 299 |
+
"outputs": [
|
| 300 |
+
{
|
| 301 |
+
"name": "stdout",
|
| 302 |
+
"output_type": "stream",
|
| 303 |
+
"text": [
|
| 304 |
+
"=== 1/5 Counting and sorting n-grams ===\n",
|
| 305 |
+
"Reading /ebs/learn/ASR/text.txt\n",
|
| 306 |
+
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
| 307 |
+
"****************************************************************************************************\n",
|
| 308 |
+
"Unigram tokens 29706056 types 776336\n",
|
| 309 |
+
"=== 2/5 Calculating and sorting adjusted counts ===\n",
|
| 310 |
+
"Chain sizes: 1:9316032 2:20102516736 3:37692219392 4:60307550208 5:87948517376\n",
|
| 311 |
+
"Statistics:\n",
|
| 312 |
+
"1 776335 D1=0.705463 D2=1.0456 D3+=1.33671\n",
|
| 313 |
+
"2 8433103 D1=0.790673 D2=1.11187 D3+=1.35296\n",
|
| 314 |
+
"3 18421039 D1=0.878727 D2=1.22916 D3+=1.39519\n",
|
| 315 |
+
"4 24029132 D1=0.935948 D2=1.36969 D3+=1.49375\n",
|
| 316 |
+
"5 26433229 D1=0.885046 D2=1.58244 D3+=2.0281\n",
|
| 317 |
+
"Memory estimate for binary LM:\n",
|
| 318 |
+
"type MB\n",
|
| 319 |
+
"probing 1637 assuming -p 1.5\n",
|
| 320 |
+
"probing 1931 assuming -r models -p 1.5\n",
|
| 321 |
+
"trie 833 without quantization\n",
|
| 322 |
+
"trie 476 assuming -q 8 -b 8 quantization \n",
|
| 323 |
+
"trie 726 assuming -a 22 array pointer compression\n",
|
| 324 |
+
"trie 368 assuming -a 22 -q 8 -b 8 array pointer compression and quantization\n",
|
| 325 |
+
"=== 3/5 Calculating and sorting initial probabilities ===\n",
|
| 326 |
+
"Chain sizes: 1:9316020 2:134929648 3:368420780 4:576699168 5:740130412\n",
|
| 327 |
+
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
| 328 |
+
"####################################################################################################\n",
|
| 329 |
+
"=== 4/5 Calculating and writing order-interpolated probabilities ===\n",
|
| 330 |
+
"Chain sizes: 1:9316020 2:134929648 3:368420780 4:576699168 5:740130412\n",
|
| 331 |
+
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
| 332 |
+
"####################################################################################################\n",
|
| 333 |
+
"=== 5/5 Writing ARPA model ===\n",
|
| 334 |
+
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
| 335 |
+
"****************************************************************************************************\n",
|
| 336 |
+
"Name:lmplz\tVmPeak:201429316 kB\tVmRSS:29888 kB\tRSSMax:36259508 kB\tuser:86.1274\tsys:40.4955\tCPU:126.623\treal:99.6214\n"
|
| 337 |
+
]
|
| 338 |
+
}
|
| 339 |
+
],
|
| 340 |
+
"source": [
|
| 341 |
+
"!kenlm/build/bin/lmplz -o 5 <\"text.txt\" > \"5gram.arpa\""
|
| 342 |
+
]
|
| 343 |
+
},
|
| 344 |
+
{
|
| 345 |
+
"cell_type": "code",
|
| 346 |
+
"execution_count": 83,
|
| 347 |
+
"metadata": {},
|
| 348 |
+
"outputs": [
|
| 349 |
+
{
|
| 350 |
+
"name": "stdout",
|
| 351 |
+
"output_type": "stream",
|
| 352 |
+
"text": [
|
| 353 |
+
"\\data\\\r\n",
|
| 354 |
+
"ngram 1=776335\r\n",
|
| 355 |
+
"ngram 2=8433103\r\n",
|
| 356 |
+
"ngram 3=18421039\r\n",
|
| 357 |
+
"ngram 4=24029132\r\n",
|
| 358 |
+
"ngram 5=26433229\r\n",
|
| 359 |
+
"\r\n",
|
| 360 |
+
"\\1-grams:\r\n",
|
| 361 |
+
"-6.9649706\t<unk>\t0\r\n",
|
| 362 |
+
"0\t<s>\t-0.10200334\r\n",
|
| 363 |
+
"-3.8677218\tशिवाय\t-0.29601222\r\n",
|
| 364 |
+
"-3.0139472\tत्यांना\t-0.54708624\r\n",
|
| 365 |
+
"-5.7931695\tकवितेचा\t-0.10200334\r\n",
|
| 366 |
+
"-2.2375891\tआणि\t-0.5685015\r\n",
|
| 367 |
+
"-6.046465\tचित्रकलेचा\t-0.16192785\r\n",
|
| 368 |
+
"-4.874536\tछंद\t-0.3758324\r\n",
|
| 369 |
+
"-3.150044\tहोता\t-0.53179973\r\n",
|
| 370 |
+
"-6.514799\tपारंपरिकदृष्ट्या\t-0.10200334\r\n",
|
| 371 |
+
"-4.837577\tज्वारी\t-0.3880814\r\n",
|
| 372 |
+
"-4.9689674\tबाजरी\t-0.32780117\r\n"
|
| 373 |
+
]
|
| 374 |
+
}
|
| 375 |
+
],
|
| 376 |
+
"source": [
|
| 377 |
+
"!head -20 5gram.arpa"
|
| 378 |
+
]
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"cell_type": "code",
|
| 382 |
+
"execution_count": 85,
|
| 383 |
+
"metadata": {},
|
| 384 |
+
"outputs": [],
|
| 385 |
+
"source": [
|
| 386 |
+
"with open(\"5gram.arpa\", \"r\") as read_file, open(\"5gram_correct.arpa\", \"w\") as write_file:\n",
|
| 387 |
+
" has_added_eos = False\n",
|
| 388 |
+
" for line in read_file:\n",
|
| 389 |
+
" if not has_added_eos and \"ngram 1=\" in line:\n",
|
| 390 |
+
" count=line.strip().split(\"=\")[-1]\n",
|
| 391 |
+
" write_file.write(line.replace(f\"{count}\", f\"{int(count)+1}\"))\n",
|
| 392 |
+
" elif not has_added_eos and \"<s>\" in line:\n",
|
| 393 |
+
" write_file.write(line)\n",
|
| 394 |
+
" write_file.write(line.replace(\"<s>\", \"</s>\"))\n",
|
| 395 |
+
" has_added_eos = True\n",
|
| 396 |
+
" else:\n",
|
| 397 |
+
" write_file.write(line)"
|
| 398 |
+
]
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"cell_type": "code",
|
| 402 |
+
"execution_count": 86,
|
| 403 |
+
"metadata": {},
|
| 404 |
+
"outputs": [
|
| 405 |
+
{
|
| 406 |
+
"name": "stdout",
|
| 407 |
+
"output_type": "stream",
|
| 408 |
+
"text": [
|
| 409 |
+
"\\data\\\r\n",
|
| 410 |
+
"ngram 1=776336\r\n",
|
| 411 |
+
"ngram 2=8433103\r\n",
|
| 412 |
+
"ngram 3=18421039\r\n",
|
| 413 |
+
"ngram 4=24029132\r\n",
|
| 414 |
+
"ngram 5=26433229\r\n",
|
| 415 |
+
"\r\n",
|
| 416 |
+
"\\1-grams:\r\n",
|
| 417 |
+
"-6.9649706\t<unk>\t0\r\n",
|
| 418 |
+
"0\t<s>\t-0.10200334\r\n",
|
| 419 |
+
"0\t</s>\t-0.10200334\r\n",
|
| 420 |
+
"-3.8677218\tशिवाय\t-0.29601222\r\n",
|
| 421 |
+
"-3.0139472\tत्यांना\t-0.54708624\r\n",
|
| 422 |
+
"-5.7931695\tकवितेचा\t-0.10200334\r\n",
|
| 423 |
+
"-2.2375891\tआणि\t-0.5685015\r\n",
|
| 424 |
+
"-6.046465\tचित्रकलेचा\t-0.16192785\r\n",
|
| 425 |
+
"-4.874536\tछंद\t-0.3758324\r\n",
|
| 426 |
+
"-3.150044\tहोता\t-0.53179973\r\n",
|
| 427 |
+
"-6.514799\tपारंपरिकदृष्ट्या\t-0.10200334\r\n",
|
| 428 |
+
"-4.837577\tज्वारी\t-0.3880814\r\n"
|
| 429 |
+
]
|
| 430 |
+
}
|
| 431 |
+
],
|
| 432 |
+
"source": [
|
| 433 |
+
"!head -20 5gram_correct.arpa"
|
| 434 |
+
]
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"cell_type": "code",
|
| 438 |
+
"execution_count": 87,
|
| 439 |
+
"metadata": {},
|
| 440 |
+
"outputs": [],
|
| 441 |
+
"source": [
|
| 442 |
+
"from transformers import AutoProcessor\n",
|
| 443 |
+
"\n",
|
| 444 |
+
"processor = AutoProcessor.from_pretrained(\"smangrul/xls-r-300m-mr\")"
|
| 445 |
+
]
|
| 446 |
+
},
|
| 447 |
+
{
|
| 448 |
+
"cell_type": "code",
|
| 449 |
+
"execution_count": 88,
|
| 450 |
+
"metadata": {},
|
| 451 |
+
"outputs": [
|
| 452 |
+
{
|
| 453 |
+
"data": {
|
| 454 |
+
"text/plain": [
|
| 455 |
+
"{'|': 0,\n",
|
| 456 |
+
" 'ँ': 1,\n",
|
| 457 |
+
" 'ं': 2,\n",
|
| 458 |
+
" 'ः': 3,\n",
|
| 459 |
+
" 'अ': 4,\n",
|
| 460 |
+
" 'आ': 5,\n",
|
| 461 |
+
" 'इ': 6,\n",
|
| 462 |
+
" 'ई': 7,\n",
|
| 463 |
+
" 'उ': 8,\n",
|
| 464 |
+
" 'ऊ': 9,\n",
|
| 465 |
+
" 'ऋ': 10,\n",
|
| 466 |
+
" 'ए': 11,\n",
|
| 467 |
+
" 'ऐ': 12,\n",
|
| 468 |
+
" 'ऑ': 13,\n",
|
| 469 |
+
" 'ओ': 14,\n",
|
| 470 |
+
" 'औ': 15,\n",
|
| 471 |
+
" 'क': 16,\n",
|
| 472 |
+
" 'ख': 17,\n",
|
| 473 |
+
" 'ग': 18,\n",
|
| 474 |
+
" 'घ': 19,\n",
|
| 475 |
+
" 'च': 20,\n",
|
| 476 |
+
" 'छ': 21,\n",
|
| 477 |
+
" 'ज': 22,\n",
|
| 478 |
+
" 'झ': 23,\n",
|
| 479 |
+
" 'ञ': 24,\n",
|
| 480 |
+
" 'ट': 25,\n",
|
| 481 |
+
" 'ठ': 26,\n",
|
| 482 |
+
" 'ड': 27,\n",
|
| 483 |
+
" 'ढ': 28,\n",
|
| 484 |
+
" 'ण': 29,\n",
|
| 485 |
+
" 'त': 30,\n",
|
| 486 |
+
" 'थ': 31,\n",
|
| 487 |
+
" 'द': 32,\n",
|
| 488 |
+
" 'ध': 33,\n",
|
| 489 |
+
" 'न': 34,\n",
|
| 490 |
+
" 'प': 35,\n",
|
| 491 |
+
" 'फ': 36,\n",
|
| 492 |
+
" 'ब': 37,\n",
|
| 493 |
+
" 'भ': 38,\n",
|
| 494 |
+
" 'म': 39,\n",
|
| 495 |
+
" 'य': 40,\n",
|
| 496 |
+
" 'र': 41,\n",
|
| 497 |
+
" 'ऱ': 42,\n",
|
| 498 |
+
" 'ल': 43,\n",
|
| 499 |
+
" 'ळ': 44,\n",
|
| 500 |
+
" 'व': 45,\n",
|
| 501 |
+
" 'श': 46,\n",
|
| 502 |
+
" 'ष': 47,\n",
|
| 503 |
+
" 'स': 48,\n",
|
| 504 |
+
" 'ह': 49,\n",
|
| 505 |
+
" '़': 50,\n",
|
| 506 |
+
" 'ा': 51,\n",
|
| 507 |
+
" 'ि': 52,\n",
|
| 508 |
+
" 'ी': 53,\n",
|
| 509 |
+
" 'ु': 54,\n",
|
| 510 |
+
" 'ू': 55,\n",
|
| 511 |
+
" 'ृ': 56,\n",
|
| 512 |
+
" 'ॄ': 57,\n",
|
| 513 |
+
" 'ॅ': 58,\n",
|
| 514 |
+
" 'े': 59,\n",
|
| 515 |
+
" 'ै': 60,\n",
|
| 516 |
+
" 'ॉ': 61,\n",
|
| 517 |
+
" 'ॊ': 62,\n",
|
| 518 |
+
" 'ो': 63,\n",
|
| 519 |
+
" 'ौ': 64,\n",
|
| 520 |
+
" '्': 65,\n",
|
| 521 |
+
" 'ॲ': 66,\n",
|
| 522 |
+
" '[unk]': 67,\n",
|
| 523 |
+
" '[pad]': 68,\n",
|
| 524 |
+
" '<s>': 69,\n",
|
| 525 |
+
" '</s>': 70}"
|
| 526 |
+
]
|
| 527 |
+
},
|
| 528 |
+
"execution_count": 88,
|
| 529 |
+
"metadata": {},
|
| 530 |
+
"output_type": "execute_result"
|
| 531 |
+
}
|
| 532 |
+
],
|
| 533 |
+
"source": [
|
| 534 |
+
"vocab_dict = processor.tokenizer.get_vocab()\n",
|
| 535 |
+
"sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}\n",
|
| 536 |
+
"sorted_vocab_dict\n"
|
| 537 |
+
]
|
| 538 |
+
},
|
| 539 |
+
{
|
| 540 |
+
"cell_type": "code",
|
| 541 |
+
"execution_count": 89,
|
| 542 |
+
"metadata": {},
|
| 543 |
+
"outputs": [
|
| 544 |
+
{
|
| 545 |
+
"name": "stderr",
|
| 546 |
+
"output_type": "stream",
|
| 547 |
+
"text": [
|
| 548 |
+
"Loading the LM will be faster if you build a binary file.\n",
|
| 549 |
+
"Reading /ebs/learn/ASR/5gram_correct.arpa\n",
|
| 550 |
+
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
| 551 |
+
"****************************************************************************************************\n",
|
| 552 |
+
"Found entries of length > 1 in alphabet. This is unusual unless style is BPE, but the alphabet was not recognized as BPE type. Is this correct?\n",
|
| 553 |
+
"Unigrams and labels don't seem to agree.\n"
|
| 554 |
+
]
|
| 555 |
+
}
|
| 556 |
+
],
|
| 557 |
+
"source": [
|
| 558 |
+
"from pyctcdecode import build_ctcdecoder\n",
|
| 559 |
+
"\n",
|
| 560 |
+
"decoder = build_ctcdecoder(\n",
|
| 561 |
+
" labels=list(sorted_vocab_dict.keys()),\n",
|
| 562 |
+
" kenlm_model_path=\"5gram_correct.arpa\",\n",
|
| 563 |
+
")"
|
| 564 |
+
]
|
| 565 |
+
},
|
| 566 |
+
{
|
| 567 |
+
"cell_type": "code",
|
| 568 |
+
"execution_count": 90,
|
| 569 |
+
"metadata": {},
|
| 570 |
+
"outputs": [
|
| 571 |
+
{
|
| 572 |
+
"data": {
|
| 573 |
+
"text/plain": [
|
| 574 |
+
"<pyctcdecode.decoder.BeamSearchDecoderCTC at 0x7fe8a63c65d0>"
|
| 575 |
+
]
|
| 576 |
+
},
|
| 577 |
+
"execution_count": 90,
|
| 578 |
+
"metadata": {},
|
| 579 |
+
"output_type": "execute_result"
|
| 580 |
+
}
|
| 581 |
+
],
|
| 582 |
+
"source": [
|
| 583 |
+
"decoder"
|
| 584 |
+
]
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"cell_type": "code",
|
| 588 |
+
"execution_count": 91,
|
| 589 |
+
"metadata": {},
|
| 590 |
+
"outputs": [],
|
| 591 |
+
"source": [
|
| 592 |
+
"from transformers import Wav2Vec2ProcessorWithLM\n",
|
| 593 |
+
"\n",
|
| 594 |
+
"processor_with_lm = Wav2Vec2ProcessorWithLM(\n",
|
| 595 |
+
" feature_extractor=processor.feature_extractor,\n",
|
| 596 |
+
" tokenizer=processor.tokenizer,\n",
|
| 597 |
+
" decoder=decoder\n",
|
| 598 |
+
")"
|
| 599 |
+
]
|
| 600 |
+
},
|
| 601 |
+
{
|
| 602 |
+
"cell_type": "code",
|
| 603 |
+
"execution_count": 92,
|
| 604 |
+
"metadata": {},
|
| 605 |
+
"outputs": [],
|
| 606 |
+
"source": [
|
| 607 |
+
"processor_with_lm.save_pretrained(\"./smangrul/xls-r-300m-mr/\")"
|
| 608 |
+
]
|
| 609 |
+
},
|
| 610 |
+
{
|
| 611 |
+
"cell_type": "code",
|
| 612 |
+
"execution_count": 95,
|
| 613 |
+
"metadata": {},
|
| 614 |
+
"outputs": [],
|
| 615 |
+
"source": [
|
| 616 |
+
"processor_with_lm.save_pretrained(\"./../xls-r-300m-mr-model/\")"
|
| 617 |
+
]
|
| 618 |
+
},
|
| 619 |
+
{
|
| 620 |
+
"cell_type": "code",
|
| 621 |
+
"execution_count": null,
|
| 622 |
+
"metadata": {},
|
| 623 |
+
"outputs": [],
|
| 624 |
+
"source": []
|
| 625 |
+
}
|
| 626 |
+
],
|
| 627 |
+
"metadata": {
|
| 628 |
+
"kernelspec": {
|
| 629 |
+
"display_name": "hf",
|
| 630 |
+
"language": "python",
|
| 631 |
+
"name": "hf"
|
| 632 |
+
},
|
| 633 |
+
"language_info": {
|
| 634 |
+
"codemirror_mode": {
|
| 635 |
+
"name": "ipython",
|
| 636 |
+
"version": 3
|
| 637 |
+
},
|
| 638 |
+
"file_extension": ".py",
|
| 639 |
+
"mimetype": "text/x-python",
|
| 640 |
+
"name": "python",
|
| 641 |
+
"nbconvert_exporter": "python",
|
| 642 |
+
"pygments_lexer": "ipython3",
|
| 643 |
+
"version": "3.7.6"
|
| 644 |
+
}
|
| 645 |
+
},
|
| 646 |
+
"nbformat": 4,
|
| 647 |
+
"nbformat_minor": 4
|
| 648 |
+
}
|