File size: 10,330 Bytes
7771996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import copy
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
from .utils import  ctx_noparamgrad_and_eval
from .base import Attack, LabelMixin
from typing import Dict
from .utils import batch_multiply
from .utils import clamp
from .utils import is_float_or_torch_tensor
from utils.distributed import DistributedMetric
from tqdm import tqdm
from torchpack import distributed as dist
from utils import accuracy

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


def perturb_deepfool(xvar, yvar, predict, nb_iter=50, overshoot=0.02, ord=np.inf, clip_min=0.0, clip_max=1.0, 
                     search_iter=0, device=None):
    """
    Compute DeepFool perturbations (Moosavi-Dezfooli et al, 2016).
    Arguments:
        xvar (torch.Tensor): input images.
        yvar (torch.Tensor): predictions.
        predict (nn.Module): forward pass function.
        nb_iter (int): number of iterations.
        overshoot (float): how much to overshoot the boundary.
        ord (int): (optional) the order of maximum distortion (inf or 2).
        clip_min (float): mininum value per input dimension.
        clip_max (float): maximum value per input dimension.
        search_iter (int): no of search iterations.
        device (torch.device): device to work on.
    Returns: 
        torch.Tensor containing the perturbed input, 
        torch.Tensor containing the perturbation
    """

    x_orig = xvar
    x = torch.empty_like(xvar).copy_(xvar)
    x.requires_grad_(True)
    
    batch_i = torch.arange(x.shape[0])
    r_tot = torch.zeros_like(x.data)
    for i in range(nb_iter):
        if x.grad is not None:
            x.grad.zero_()

        logits = predict(x)
        df_inds = np.argsort(logits.detach().cpu().numpy(), axis=-1)
        df_inds_other, df_inds_orig = df_inds[:, :-1], df_inds[:, -1]
        df_inds_orig = torch.from_numpy(df_inds_orig)
        df_inds_orig = df_inds_orig.to(device)
        not_done_inds = df_inds_orig == yvar
        if not_done_inds.sum() == 0:
            break

        logits[batch_i, df_inds_orig].sum().backward(retain_graph=True)
        grad_orig = x.grad.data.clone().detach()
        pert = x.data.new_ones(x.shape[0]) * np.inf
        w = torch.zeros_like(x.data)

        for inds in df_inds_other.T:
            x.grad.zero_()
            logits[batch_i, inds].sum().backward(retain_graph=True)
            grad_cur = x.grad.data.clone().detach()
            with torch.no_grad():
                w_k = grad_cur - grad_orig
                f_k = logits[batch_i, inds] - logits[batch_i, df_inds_orig]
                if ord == 2:
                    pert_k = torch.abs(f_k) / torch.norm(w_k.flatten(1), 2, -1)
                elif ord == np.inf:
                    pert_k = torch.abs(f_k) / torch.norm(w_k.flatten(1), 1, -1)
                else:
                    raise NotImplementedError("Only ord=inf and ord=2 have been implemented")
                swi = pert_k < pert
                if swi.sum() > 0:
                    pert[swi] = pert_k[swi]
                    w[swi] = w_k[swi]
        
        if ord == 2:
            r_i = (pert + 1e-6)[:, None, None, None] * w / torch.norm(w.flatten(1), 2, -1)[:, None, None, None]
        elif ord == np.inf:
            r_i = (pert + 1e-6)[:, None, None, None] * w.sign()
        
        r_tot += r_i * not_done_inds[:, None, None, None].float()
        x.data = x_orig + (1. + overshoot) * r_tot
        x.data = torch.clamp(x.data, clip_min, clip_max)
    
    x = x.detach()
    if search_iter > 0:
        dx = x - x_orig
        dx_l_low, dx_l_high = torch.zeros_like(dx), torch.ones_like(dx)
        for i in range(search_iter):
            dx_l = (dx_l_low + dx_l_high) / 2.
            dx_x = x_orig + dx_l * dx
            dx_y = predict(dx_x).argmax(-1)
            label_stay = dx_y == yvar
            label_change = dx_y != yvar
            dx_l_low[label_stay] = dx_l[label_stay]
            dx_l_high[label_change] = dx_l[label_change]
        x = dx_x
    
    # x.data = torch.clamp(x.data, clip_min, clip_max)
    r_tot = x.data - x_orig
    return x, r_tot



class DeepFoolAttack(Attack, LabelMixin):
    """
    DeepFool attack.
    [Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard, 
    "DeepFool: a simple and accurate method to fool deep neural networks"]
    Arguments:
        predict (nn.Module): forward pass function.
        overshoot (float): how much to overshoot the boundary.
        nb_iter (int): number of iterations.
        search_iter (int): no of search iterations.
        clip_min (float): mininum value per input dimension.
        clip_max (float): maximum value per input dimension.
        ord (int): (optional) the order of maximum distortion (inf or 2).
    """
       
    def __init__(
            self, predict, overshoot=0.02, nb_iter=50, search_iter=50, clip_min=0., clip_max=1., ord=np.inf):
        super(DeepFoolAttack, self).__init__(predict, None, clip_min, clip_max)
        self.overshoot = overshoot
        self.nb_iter = nb_iter
        self.search_iter = search_iter
        self.targeted = False
        
        self.ord = ord
        assert is_float_or_torch_tensor(self.overshoot)

    def perturb(self, x, y=None):
        """
        Given examples x, returns their adversarial counterparts.
        Arguments:
            x (torch.Tensor): input tensor.
            y (torch.Tensor): label tensor.
                - if None and self.targeted=False, compute y as predicted labels.
        Returns: 
            torch.Tensor containing perturbed inputs,
            torch.Tensor containing the perturbation    
        """
        
        x, y = self._verify_and_process_inputs(x, None)
        x_adv, r_adv = perturb_deepfool(x, y, self.predict, self.nb_iter, self.overshoot, ord=self.ord, 
                                        clip_min=self.clip_min, clip_max=self.clip_max, search_iter=self.search_iter, 
                                        device=device)
        return x_adv, r_adv
    def eval_deepfool(self,data_loader_dict: Dict)-> Dict:

        test_criterion = nn.CrossEntropyLoss().cuda()
        val_loss = DistributedMetric()
        val_top1 = DistributedMetric()
        val_top5 = DistributedMetric()
        val_advloss = DistributedMetric()
        val_advtop1 = DistributedMetric()
        val_advtop5 = DistributedMetric()
        self.predict.eval()
        with tqdm(
                total=len(data_loader_dict["val"]),
                desc="Eval",
                disable=not dist.is_master(),
            ) as t:
                for images, labels in data_loader_dict["val"]:
                    images, labels = images.cuda(), labels.cuda()
                    # compute output
                    output = self.predict(images)
                    loss = test_criterion(output, labels)
                    val_loss.update(loss, images.shape[0])
                    acc1, acc5 = accuracy(output, labels, topk=(1, 5))
                    val_top5.update(acc5[0], images.shape[0])
                    val_top1.update(acc1[0], images.shape[0])
                    with ctx_noparamgrad_and_eval(self.predict):
                        images_adv,_ = self.perturb(images, labels)
                    output_adv = self.predict(images_adv)   
                    loss_adv = test_criterion(output_adv,labels) 
                    val_advloss.update(loss_adv, images.shape[0])   
                    acc1_adv, acc5_adv = accuracy(output_adv, labels, topk=(1, 5))   
                    val_advtop1.update(acc1_adv[0], images.shape[0])
                    val_advtop5.update(acc5_adv[0], images.shape[0])                  
                    t.set_postfix(
                        {
                            "loss": val_loss.avg.item(),
                            "top1": val_top1.avg.item(),
                            "top5": val_top5.avg.item(),
                            "adv_loss": val_advloss.avg.item(),
                            "adv_top1": val_advtop1.avg.item(),
                            "adv_top5": val_advtop5.avg.item(),
                            "#samples": val_top1.count.item(),
                            "batch_size": images.shape[0],
                            "img_size": images.shape[2],
                        }
                    )
                    t.update()

        val_results = {
            "val_top1": val_top1.avg.item(),
            "val_top5": val_top5.avg.item(),
            "val_loss": val_loss.avg.item(),
            "val_advtop1": val_advtop1.avg.item(),
            "val_advtop5": val_advtop5.avg.item(),
            "val_advloss": val_advloss.avg.item(),
        }
        return val_results


class LinfDeepFoolAttack(DeepFoolAttack):
    """
    DeepFool Attack with order=Linf.
    Arguments:
    Arguments:
        predict (nn.Module): forward pass function.
        overshoot (float): how much to overshoot the boundary.
        nb_iter (int): number of iterations.
        search_iter (int): no of search iterations.
        clip_min (float): mininum value per input dimension.
        clip_max (float): maximum value per input dimension.
    """

    def __init__(
            self, predict, overshoot=0.02, nb_iter=50, search_iter=50, clip_min=0., clip_max=1.):
        
        ord = np.inf
        super(LinfDeepFoolAttack, self).__init__(
            predict=predict, overshoot=overshoot, nb_iter=nb_iter, search_iter=search_iter, clip_min=clip_min, 
            clip_max=clip_max, ord=ord)



class L2DeepFoolAttack(DeepFoolAttack):
    """
    DeepFool Attack with order=L2.
    Arguments:
        predict (nn.Module): forward pass function.
        overshoot (float): how much to overshoot the boundary.
        nb_iter (int): number of iterations.
        search_iter (int): no of search iterations.
        clip_min (float): mininum value per input dimension.
        clip_max (float): maximum value per input dimension.
    """

    def __init__(
            self, predict, overshoot=0.02, nb_iter=50, search_iter=50, clip_min=0., clip_max=1.):
        
        ord = 2
        super(L2DeepFoolAttack, self).__init__(
            predict=predict, overshoot=overshoot, nb_iter=nb_iter, search_iter=search_iter, clip_min=clip_min, 
            clip_max=clip_max, ord=ord)