Upload a.py
Browse files
a.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import io
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import streamlit as st
|
| 7 |
+
import tensorflow as tf
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
from tensorflow import keras
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
st.title('Brain \U0001F9E0 Tumor Detector ')
|
| 13 |
+
|
| 14 |
+
st.subheader('Find out whether there is a tumor \U0001F534 (Glioma Meningioma Pituarie) in the brain (or) \
|
| 15 |
+
not \U0001F7E2')
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
inp_t = st.file_uploader(label='Upload MRI here', accept_multiple_files=True)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def load_img(path):
|
| 25 |
+
# reading file object and making it to pil image and to np array
|
| 26 |
+
img_l = []
|
| 27 |
+
for i in path:
|
| 28 |
+
img_byte = i.read()
|
| 29 |
+
img = Image.open(io.BytesIO(img_byte))
|
| 30 |
+
img = img.resize((64, 64), Image.ANTIALIAS)
|
| 31 |
+
if img.mode != 'L':
|
| 32 |
+
img = img.convert('L')
|
| 33 |
+
img_arr = np.array(img, dtype='float32')/255
|
| 34 |
+
img_arr = np.expand_dims(img_arr, axis=-1)
|
| 35 |
+
img_l.append(img_arr)
|
| 36 |
+
img = np.stack(img_l)
|
| 37 |
+
return img
|
| 38 |
+
|
| 39 |
+
# prediction
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def pred(img):
|
| 43 |
+
# Load TFLite model and allocate tensors.
|
| 44 |
+
model = keras.models.load_model('model2_weights.h5')
|
| 45 |
+
result = model.predict(img)
|
| 46 |
+
|
| 47 |
+
return result
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# if file is uploaded
|
| 52 |
+
if inp_t:
|
| 53 |
+
img = load_img(inp_t)
|
| 54 |
+
result = ['Glioma', 'Meningioma', 'no tumor', 'Pituarie']
|
| 55 |
+
|
| 56 |
+
st.warning(
|
| 57 |
+
'** Uploaded {} images [View images in side Panel]'.format(img.shape[0]))
|
| 58 |
+
|
| 59 |
+
res = pred(img)
|
| 60 |
+
max_value = res[0][np.argmax(res)]*100
|
| 61 |
+
if (result[np.argmax(res)] == 'no tumor'):
|
| 62 |
+
st.subheader("\U0001F7E2 Model predicts there is {} tumor with {:.2f} % confidence].\U0001F7E2".format(result[np.argmax(res)], max_value))
|
| 63 |
+
else:
|
| 64 |
+
st.subheader("\U0001F534 Model predicts there is {} tumor with {:.2f} % confidence.\U0001F534 ".format(result[np.argmax(res)], max_value))
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
st.write('\n')
|
| 68 |
+
|
| 69 |
+
st.image(inp_t, width = 400)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
st.markdown('---')
|
| 73 |
+
st.error(
|
| 74 |
+
'Dont conclude by looking at predictions, just take them as a reference!!')
|
| 75 |
+
|