Update app.py
Browse files
app.py
CHANGED
|
@@ -1,660 +1,660 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import sys
|
| 3 |
-
import torch
|
| 4 |
-
import pickle
|
| 5 |
-
import logging
|
| 6 |
-
import tempfile
|
| 7 |
-
import requests
|
| 8 |
-
import re
|
| 9 |
-
import asyncio
|
| 10 |
-
import aiohttp
|
| 11 |
-
from urllib.parse import quote_plus
|
| 12 |
-
from pytube import Search
|
| 13 |
-
from PIL import Image
|
| 14 |
-
from torchvision import transforms
|
| 15 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, AutoModelForCausalLM
|
| 16 |
-
import gradio as gr
|
| 17 |
-
import pandas as pd
|
| 18 |
-
import plotly.express as px
|
| 19 |
-
from reportlab.lib.pagesizes import letter
|
| 20 |
-
from reportlab.lib import colors
|
| 21 |
-
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as ReportLabImage
|
| 22 |
-
from reportlab.lib.styles import getSampleStyleSheet
|
| 23 |
-
from io import BytesIO
|
| 24 |
-
from langchain_huggingface import HuggingFacePipeline
|
| 25 |
-
from langchain_core.runnables.history import RunnableWithMessageHistory
|
| 26 |
-
from langchain_core.chat_history import InMemoryChatMessageHistory
|
| 27 |
-
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 28 |
-
from pydub import AudioSegment
|
| 29 |
-
from pydub.utils import which
|
| 30 |
-
|
| 31 |
-
# Local imports (assumed to be available)
|
| 32 |
-
from args import get_parser
|
| 33 |
-
from model import get_model
|
| 34 |
-
from output_utils import prepare_output
|
| 35 |
-
|
| 36 |
-
# ============== DEVICE CONFIG ==============
|
| 37 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 38 |
-
map_loc = None if torch.cuda.is_available() else "cpu"
|
| 39 |
-
logging.getLogger("pytube").setLevel(logging.ERROR)
|
| 40 |
-
|
| 41 |
-
# ============== LOAD TRANSLATION MODELS ==============
|
| 42 |
-
model_envit5_name = "VietAI/envit5-translation"
|
| 43 |
-
try:
|
| 44 |
-
tokenizer_envit5 = AutoTokenizer.from_pretrained(model_envit5_name)
|
| 45 |
-
model_envit5 = AutoModelForSeq2SeqLM.from_pretrained(
|
| 46 |
-
model_envit5_name,
|
| 47 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 48 |
-
).to(device)
|
| 49 |
-
pipe_envit5 = pipeline(
|
| 50 |
-
"text2text-generation",
|
| 51 |
-
model=model_envit5,
|
| 52 |
-
tokenizer=tokenizer_envit5,
|
| 53 |
-
device=0 if torch.cuda.is_available() else -1,
|
| 54 |
-
max_new_tokens=512,
|
| 55 |
-
do_sample=False
|
| 56 |
-
)
|
| 57 |
-
except Exception as e:
|
| 58 |
-
print(f"Error loading Vietnamese model: {e}")
|
| 59 |
-
pipe_envit5 = None
|
| 60 |
-
|
| 61 |
-
models = {
|
| 62 |
-
"Japanese": {"model_name": "Helsinki-NLP/opus-mt-en-jap"},
|
| 63 |
-
"Chinese": {"model_name": "Helsinki-NLP/opus-mt-en-zh"}
|
| 64 |
-
}
|
| 65 |
-
|
| 66 |
-
for lang in models:
|
| 67 |
-
try:
|
| 68 |
-
tokenizer = AutoTokenizer.from_pretrained(models[lang]["model_name"])
|
| 69 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 70 |
-
models[lang]["model_name"],
|
| 71 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 72 |
-
).to(device)
|
| 73 |
-
models[lang]["pipe"] = pipeline(
|
| 74 |
-
"translation",
|
| 75 |
-
model=model,
|
| 76 |
-
tokenizer=tokenizer,
|
| 77 |
-
device=0 if torch.cuda.is_available() else -1,
|
| 78 |
-
max_length=512,
|
| 79 |
-
batch_size=4 if torch.cuda.is_available() else 1,
|
| 80 |
-
truncation=True
|
| 81 |
-
)
|
| 82 |
-
except Exception as e:
|
| 83 |
-
print(f"Error loading {lang} model: {e}")
|
| 84 |
-
models[lang]["pipe"] = None
|
| 85 |
-
|
| 86 |
-
# ============== LOAD CHATBOT MODEL ==============
|
| 87 |
-
chatbot_tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
|
| 88 |
-
chatbot_model = AutoModelForCausalLM.from_pretrained(
|
| 89 |
-
"bigscience/bloomz-560m",
|
| 90 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 91 |
-
).to(device)
|
| 92 |
-
|
| 93 |
-
chatbot_pipeline = pipeline(
|
| 94 |
-
"text-generation",
|
| 95 |
-
model=chatbot_model,
|
| 96 |
-
tokenizer=chatbot_tokenizer,
|
| 97 |
-
device=0 if torch.cuda.is_available() else -1,
|
| 98 |
-
max_new_tokens=100,
|
| 99 |
-
do_sample=True,
|
| 100 |
-
temperature=0.6,
|
| 101 |
-
top_p=0.9,
|
| 102 |
-
pad_token_id=chatbot_tokenizer.eos_token_id,
|
| 103 |
-
batch_size=1
|
| 104 |
-
)
|
| 105 |
-
llm = HuggingFacePipeline(pipeline=chatbot_pipeline)
|
| 106 |
-
|
| 107 |
-
# LangChain Chatbot Setup
|
| 108 |
-
prompt = ChatPromptTemplate.from_template("""
|
| 109 |
-
You are a professional culinary assistant. You will answer the user's question directly based on the provided recipe.
|
| 110 |
-
Do not repeat the recipe or question in your answer. Be concise.
|
| 111 |
-
|
| 112 |
-
Dish: {title}
|
| 113 |
-
Ingredients: {ingredients}
|
| 114 |
-
Instructions: {instructions}
|
| 115 |
-
|
| 116 |
-
User Question: {question}
|
| 117 |
-
Answer:
|
| 118 |
-
""")
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
chain = prompt | llm
|
| 122 |
-
chat_histories = {}
|
| 123 |
-
|
| 124 |
-
def get_session_history(session_id):
|
| 125 |
-
if session_id not in chat_histories:
|
| 126 |
-
chat_histories[session_id] = InMemoryChatMessageHistory()
|
| 127 |
-
return chat_histories[session_id]
|
| 128 |
-
|
| 129 |
-
chatbot_chain = RunnableWithMessageHistory(
|
| 130 |
-
chain,
|
| 131 |
-
get_session_history,
|
| 132 |
-
input_messages_key="question",
|
| 133 |
-
history_messages_key="history"
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
# ============== GLOBAL STATE ==============
|
| 137 |
-
current_recipe_context = {"context": "", "title": "", "ingredients": [], "instructions": [], "image": None}
|
| 138 |
-
|
| 139 |
-
# ============== RECIPE FORMAT & TRANSLATE ==============
|
| 140 |
-
def format_recipe(title, ingredients, instructions, lang):
|
| 141 |
-
emoji = {"title": "π½οΈ", "ingredients": "π§", "instructions": "π"}
|
| 142 |
-
titles = {
|
| 143 |
-
"en": {"ingredients": "Ingredients", "instructions": "Instructions"},
|
| 144 |
-
"ja": {"ingredients": "Ingredients (ζζ)", "instructions": "Instructions (δ½γζΉ)"},
|
| 145 |
-
"zh": {"ingredients": "Ingredients (ι£ζ)", "instructions": "Instructions (ζ₯ιͺ€)"},
|
| 146 |
-
"vi": {"ingredients": "Ingredients (NguyΓͺn liα»u)", "instructions": "Instructions (CΓ‘ch lΓ m)"},
|
| 147 |
-
}
|
| 148 |
-
|
| 149 |
-
code_mapping = {
|
| 150 |
-
"English (original)": "en",
|
| 151 |
-
"Japanese": "ja",
|
| 152 |
-
"Chinese": "zh",
|
| 153 |
-
"Vietnamese": "vi",
|
| 154 |
-
}
|
| 155 |
-
code = code_mapping.get(lang, "en")
|
| 156 |
-
|
| 157 |
-
result = [f"### {emoji['title']} {title}", f"**{emoji['ingredients']} {titles[code]['ingredients']}:**"]
|
| 158 |
-
result.extend([f"- {i}" for i in ingredients])
|
| 159 |
-
result.append(f"\n**{emoji['instructions']} {titles[code]['instructions']}:**")
|
| 160 |
-
result.extend([f"{i+1}. {step}" for i, step in enumerate(instructions)])
|
| 161 |
-
return "\n".join(result)
|
| 162 |
-
|
| 163 |
-
def translate_section(text, lang):
|
| 164 |
-
if lang == "English (original)":
|
| 165 |
-
return text
|
| 166 |
-
|
| 167 |
-
if lang == "Vietnamese":
|
| 168 |
-
if pipe_envit5 is None:
|
| 169 |
-
return f"β Vietnamese translation model not available"
|
| 170 |
-
try:
|
| 171 |
-
max_chunk_length = 400
|
| 172 |
-
if len(text) > max_chunk_length:
|
| 173 |
-
sentences = text.split('. ')
|
| 174 |
-
chunks = []
|
| 175 |
-
current_chunk = ""
|
| 176 |
-
for sentence in sentences:
|
| 177 |
-
if len(current_chunk) + len(sentence) < max_chunk_length:
|
| 178 |
-
current_chunk += sentence + ". "
|
| 179 |
-
else:
|
| 180 |
-
chunks.append(current_chunk)
|
| 181 |
-
current_chunk = sentence + ". "
|
| 182 |
-
if current_chunk:
|
| 183 |
-
chunks.append(current_chunk)
|
| 184 |
-
else:
|
| 185 |
-
chunks = [text]
|
| 186 |
-
|
| 187 |
-
translated_chunks = []
|
| 188 |
-
for chunk in chunks:
|
| 189 |
-
chunk = f"en-vi: {chunk}"
|
| 190 |
-
translated = pipe_envit5(chunk, max_new_tokens=512)[0]["generated_text"]
|
| 191 |
-
translated = translated.replace("vi: vi: ", "").replace("vi: Vi: ", "").replace("vi: ", "").strip()
|
| 192 |
-
translated_chunks.append(translated)
|
| 193 |
-
|
| 194 |
-
return " ".join(translated_chunks)
|
| 195 |
-
except Exception as e:
|
| 196 |
-
print(f"Vietnamese translation error: {e}")
|
| 197 |
-
return text
|
| 198 |
-
|
| 199 |
-
if models.get(lang, {}).get("pipe") is None:
|
| 200 |
-
return f"β Translation model for {lang} not available"
|
| 201 |
-
|
| 202 |
-
try:
|
| 203 |
-
max_chunk_length = 400
|
| 204 |
-
if len(text) > max_chunk_length:
|
| 205 |
-
sentences = text.split('. ')
|
| 206 |
-
chunks = []
|
| 207 |
-
current_chunk = ""
|
| 208 |
-
for sentence in sentences:
|
| 209 |
-
if len(current_chunk) + len(sentence) < max_chunk_length:
|
| 210 |
-
current_chunk += sentence + ". "
|
| 211 |
-
else:
|
| 212 |
-
chunks.append(current_chunk)
|
| 213 |
-
current_chunk = sentence + ". "
|
| 214 |
-
if current_chunk:
|
| 215 |
-
chunks.append(current_chunk)
|
| 216 |
-
else:
|
| 217 |
-
chunks = [text]
|
| 218 |
-
|
| 219 |
-
translated_chunks = []
|
| 220 |
-
for chunk in chunks:
|
| 221 |
-
translated = models[lang]["pipe"](chunk, max_length=512)[0]["translation_text"]
|
| 222 |
-
translated_chunks.append(translated)
|
| 223 |
-
|
| 224 |
-
return " ".join(translated_chunks)
|
| 225 |
-
except Exception as e:
|
| 226 |
-
print(f"Translation error ({lang}): {e}")
|
| 227 |
-
return text
|
| 228 |
-
|
| 229 |
-
def translate_recipe(lang):
|
| 230 |
-
if not current_recipe_context["title"]:
|
| 231 |
-
return "β Please generate a recipe from an image first."
|
| 232 |
-
title = translate_section(current_recipe_context["title"], lang)
|
| 233 |
-
ingrs = [translate_section(i, lang) for i in current_recipe_context["ingredients"]]
|
| 234 |
-
instrs = [translate_section(s, lang) for s in current_recipe_context["instructions"]]
|
| 235 |
-
return format_recipe(title, ingrs, instrs, lang)
|
| 236 |
-
|
| 237 |
-
# ============== NUTRITION ANALYSIS ==============
|
| 238 |
-
def nutrition_analysis(ingredient_input):
|
| 239 |
-
ingredients = " ".join(ingredient_input.strip().split())
|
| 240 |
-
api_url = f'https://api.api-ninjas.com/v1/nutrition?query={ingredients}'
|
| 241 |
-
headers = {'X-Api-Key': 'AHVy+tpkUoueBNdaFs9nCg==sFZTMRn8ikZVzx6E'}
|
| 242 |
-
response = requests.get(api_url, headers=headers)
|
| 243 |
-
if response.status_code != 200:
|
| 244 |
-
return "β API error or quota exceeded.", None, None, None
|
| 245 |
-
data = response.json()
|
| 246 |
-
df = pd.DataFrame(data)
|
| 247 |
-
numeric_cols = []
|
| 248 |
-
for col in df.columns:
|
| 249 |
-
if col == "name":
|
| 250 |
-
continue
|
| 251 |
-
df[col] = pd.to_numeric(df[col], errors="coerce")
|
| 252 |
-
if df[col].notna().sum() > 0:
|
| 253 |
-
numeric_cols.append(col)
|
| 254 |
-
if df.empty or len(numeric_cols) < 3:
|
| 255 |
-
return "β οΈ Insufficient numerical data for charts (need at least 3 metrics).", None, None, None
|
| 256 |
-
draw_cols = numeric_cols[:3]
|
| 257 |
-
fig_bar = px.bar(df, x="name", y=draw_cols[0], title=f"Bar Chart: {draw_cols[0]}", text_auto=True)
|
| 258 |
-
pie_data = df[[draw_cols[1], "name"]].dropna()
|
| 259 |
-
if pie_data[draw_cols[1]].sum() > 0:
|
| 260 |
-
fig_pie = px.pie(pie_data, names="name", values=draw_cols[1], title=f"Pie Chart: {draw_cols[1]}")
|
| 261 |
-
else:
|
| 262 |
-
fig_pie = px.bar(title="β οΈ Insufficient data for pie chart")
|
| 263 |
-
fig_line = px.line(df, x="name", y=draw_cols[2], markers=True, title=f"Line Chart: {draw_cols[2]}")
|
| 264 |
-
return "β
Analysis successful!", fig_bar, fig_pie, fig_line
|
| 265 |
-
|
| 266 |
-
def load_recipe_ingredients():
|
| 267 |
-
if not current_recipe_context["ingredients"]:
|
| 268 |
-
return "β οΈ No ingredients available. Generate a recipe first."
|
| 269 |
-
return "\n".join(current_recipe_context["ingredients"])
|
| 270 |
-
|
| 271 |
-
# ============== CHATBOT ==============
|
| 272 |
-
def clean_response(response):
|
| 273 |
-
# Remove everything before "Answer:" if present
|
| 274 |
-
if "Answer:" in response:
|
| 275 |
-
response = response.split("Answer:")[-1]
|
| 276 |
-
|
| 277 |
-
# Remove potential repetitions of Dish, Ingredients, Instructions
|
| 278 |
-
response = re.sub(r"Dish:.*?(Ingredients:|Instructions:).*?", "", response, flags=re.DOTALL)
|
| 279 |
-
response = re.sub(r"Ingredients:.*?(Instructions:).*?", "", response, flags=re.DOTALL)
|
| 280 |
-
response = re.sub(r"Instructions:.*", "", response, flags=re.DOTALL)
|
| 281 |
-
|
| 282 |
-
# Remove redundant system info
|
| 283 |
-
response = re.sub(r"You are a professional culinary assistant.*?Answer:", "", response, flags=re.DOTALL)
|
| 284 |
-
|
| 285 |
-
# Remove duplicate user question inside response (very common in these LLM outputs)
|
| 286 |
-
response = re.sub(r"User Question:.*", "", response, flags=re.DOTALL)
|
| 287 |
-
|
| 288 |
-
# Final strip + cleanup
|
| 289 |
-
return response.strip()
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
def validate_cooking_time(question, instructions):
|
| 293 |
-
# Extract cooking times from instructions
|
| 294 |
-
time_pattern = r"(\d+)\s*(minutes|minute)"
|
| 295 |
-
total_time = 0
|
| 296 |
-
for instr in instructions:
|
| 297 |
-
matches = re.findall(time_pattern, instr)
|
| 298 |
-
for match in matches:
|
| 299 |
-
total_time += int(match[0])
|
| 300 |
-
|
| 301 |
-
# Check if user question contains a time
|
| 302 |
-
user_time = re.search(time_pattern, question)
|
| 303 |
-
if user_time:
|
| 304 |
-
user_minutes = int(user_time.group(1))
|
| 305 |
-
if user_minutes != total_time:
|
| 306 |
-
return f"The recipe takes about {total_time} minutes to cook, not {user_minutes} minutes."
|
| 307 |
-
return None
|
| 308 |
-
|
| 309 |
-
def generate_chat_response(message, session_id="default"):
|
| 310 |
-
if not current_recipe_context["title"]:
|
| 311 |
-
return "Please generate a recipe from an image before asking about the dish."
|
| 312 |
-
|
| 313 |
-
# Validate cooking time if relevant
|
| 314 |
-
correction = validate_cooking_time(message, current_recipe_context["instructions"])
|
| 315 |
-
|
| 316 |
-
response = chatbot_chain.invoke(
|
| 317 |
-
{
|
| 318 |
-
"title": current_recipe_context["title"],
|
| 319 |
-
"ingredients": ", ".join(current_recipe_context["ingredients"]),
|
| 320 |
-
"instructions": " ".join(current_recipe_context["instructions"]),
|
| 321 |
-
"question": message
|
| 322 |
-
},
|
| 323 |
-
config={"configurable": {"session_id": session_id}}
|
| 324 |
-
)
|
| 325 |
-
|
| 326 |
-
response = clean_response(response)
|
| 327 |
-
if correction:
|
| 328 |
-
response = f"{correction} {response}"
|
| 329 |
-
|
| 330 |
-
return response.strip()
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
def chat_with_bot(message, chat_history, session_id="default"):
|
| 334 |
-
if not message.strip():
|
| 335 |
-
return "", chat_history
|
| 336 |
-
response = generate_chat_response(message, session_id)
|
| 337 |
-
chat_history.append({"role": "user", "content": message})
|
| 338 |
-
chat_history.append({"role": "assistant", "content": response})
|
| 339 |
-
return "", chat_history
|
| 340 |
-
|
| 341 |
-
# ============== IMAGE TO RECIPE ==============
|
| 342 |
-
with open("ingr_vocab.pkl", 'rb') as f:
|
| 343 |
-
ingrs_vocab = pickle.load(f)
|
| 344 |
-
with open("instr_vocab.pkl", 'rb') as f:
|
| 345 |
-
vocab = pickle.load(f)
|
| 346 |
-
|
| 347 |
-
args = get_parser()
|
| 348 |
-
args.maxseqlen = 15
|
| 349 |
-
args.ingrs_only = False
|
| 350 |
-
model_ic = get_model(args, len(ingrs_vocab), len(vocab))
|
| 351 |
-
model_ic.load_state_dict(torch.load("modelbest.ckpt", map_location=map_loc, weights_only=True))
|
| 352 |
-
model_ic.to(device).eval()
|
| 353 |
-
|
| 354 |
-
transform = transforms.Compose([
|
| 355 |
-
transforms.Resize(256),
|
| 356 |
-
transforms.CenterCrop(224),
|
| 357 |
-
transforms.ToTensor(),
|
| 358 |
-
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
|
| 359 |
-
])
|
| 360 |
-
|
| 361 |
-
def generate_recipe(image):
|
| 362 |
-
if image is None:
|
| 363 |
-
return "β Please upload an image."
|
| 364 |
-
current_recipe_context["image"] = image
|
| 365 |
-
image = transform(image.convert("RGB")).unsqueeze(0).to(device)
|
| 366 |
-
with torch.no_grad():
|
| 367 |
-
outputs = model_ic.sample(image, greedy=True, temperature=1.0, beam=-1, true_ingrs=None)
|
| 368 |
-
ids = (outputs['ingr_ids'].cpu().numpy(), outputs['recipe_ids'].cpu().numpy())
|
| 369 |
-
outs, valid = prepare_output(ids[1][0], ids[0][0], ingrs_vocab, vocab)
|
| 370 |
-
if not valid['is_valid']:
|
| 371 |
-
return f"β Invalid recipe: {valid['reason']}"
|
| 372 |
-
current_recipe_context.update({
|
| 373 |
-
"title": outs['title'],
|
| 374 |
-
"ingredients": outs['ingrs'],
|
| 375 |
-
"instructions": outs['recipe']
|
| 376 |
-
})
|
| 377 |
-
return format_recipe(outs['title'], outs['ingrs'], outs['recipe'], "English (original)")
|
| 378 |
-
|
| 379 |
-
# ============== GOOGLE TTS ==============
|
| 380 |
-
languages_tts = {
|
| 381 |
-
"English": "en",
|
| 382 |
-
"Chinese": "zh-CN",
|
| 383 |
-
"Japanese": "ja",
|
| 384 |
-
"Vietnamese": "vi",
|
| 385 |
-
}
|
| 386 |
-
|
| 387 |
-
async def fetch_tts_audio_async(session, chunk, lang_code):
|
| 388 |
-
url = f"https://translate.google.com/translate_tts?ie=UTF-8&q={quote_plus(chunk)}&tl={lang_code}&client=tw-ob"
|
| 389 |
-
headers = {
|
| 390 |
-
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
| 391 |
-
"Referer": "https://translate.google.com/",
|
| 392 |
-
}
|
| 393 |
-
try:
|
| 394 |
-
async with session.get(url, headers=headers, timeout=10) as response:
|
| 395 |
-
response.raise_for_status()
|
| 396 |
-
return await response.read()
|
| 397 |
-
except Exception as e:
|
| 398 |
-
print(f"TTS Error for chunk: {e}")
|
| 399 |
-
return None
|
| 400 |
-
|
| 401 |
-
async def fetch_all_tts_audio(chunks, lang_code):
|
| 402 |
-
async with aiohttp.ClientSession() as session:
|
| 403 |
-
tasks = [fetch_tts_audio_async(session, chunk, lang_code) for chunk in chunks]
|
| 404 |
-
return await asyncio.gather(*tasks)
|
| 405 |
-
|
| 406 |
-
def google_tts(text, lang):
|
| 407 |
-
if not text or text.startswith("β"):
|
| 408 |
-
return None, gr.update(visible=False)
|
| 409 |
-
|
| 410 |
-
# Clean text for TTS
|
| 411 |
-
clean_text = text.replace("**", "").replace("###", "").replace("- ", "")
|
| 412 |
-
for emoji in ["π½οΈ", "π§", "π"]:
|
| 413 |
-
clean_text = clean_text.replace(emoji, "")
|
| 414 |
-
|
| 415 |
-
# Split into chunks (Google TTS max ~200 chars)
|
| 416 |
-
max_chunk_length = 200
|
| 417 |
-
chunks = [clean_text[i:i+max_chunk_length] for i in range(0, len(clean_text), max_chunk_length)]
|
| 418 |
-
if not chunks:
|
| 419 |
-
return None, gr.update(visible=False)
|
| 420 |
-
|
| 421 |
-
# Fetch audio chunks asynchronously
|
| 422 |
-
lang_code = languages_tts.get(lang, "en")
|
| 423 |
-
audio_contents = asyncio.run(fetch_all_tts_audio(chunks, lang_code))
|
| 424 |
-
|
| 425 |
-
# Filter out failed requests
|
| 426 |
-
audio_files = []
|
| 427 |
-
for i, content in enumerate(audio_contents):
|
| 428 |
-
if content:
|
| 429 |
-
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as f:
|
| 430 |
-
f.write(content)
|
| 431 |
-
audio_files.append(f.name)
|
| 432 |
-
|
| 433 |
-
if not audio_files:
|
| 434 |
-
return None, gr.update(visible=False)
|
| 435 |
-
|
| 436 |
-
# Combine audio if FFmpeg is available
|
| 437 |
-
if len(audio_files) == 1:
|
| 438 |
-
return audio_files[0], gr.update(visible=True)
|
| 439 |
-
|
| 440 |
-
if which("ffmpeg"):
|
| 441 |
-
try:
|
| 442 |
-
combined = AudioSegment.empty()
|
| 443 |
-
for file in audio_files:
|
| 444 |
-
combined += AudioSegment.from_mp3(file)
|
| 445 |
-
output_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False).name
|
| 446 |
-
combined.export(output_file, format="mp3")
|
| 447 |
-
for file in audio_files:
|
| 448 |
-
os.unlink(file)
|
| 449 |
-
return output_file, gr.update(visible=True)
|
| 450 |
-
except Exception as e:
|
| 451 |
-
print(f"Error combining audio files: {e}")
|
| 452 |
-
# Fallback to first chunk
|
| 453 |
-
for i in range(1, len(audio_files)):
|
| 454 |
-
os.unlink(audio_files[i])
|
| 455 |
-
return audio_files[0], gr.update(visible=True)
|
| 456 |
-
else:
|
| 457 |
-
print("FFmpeg not found, returning first audio chunk.")
|
| 458 |
-
for i in range(1, len(audio_files)):
|
| 459 |
-
os.unlink(audio_files[i])
|
| 460 |
-
return audio_files[0], gr.update(visible=True)
|
| 461 |
-
|
| 462 |
-
# ============== VIDEO SEARCH ==============
|
| 463 |
-
def search_top_3_videos(keyword):
|
| 464 |
-
if not keyword.strip():
|
| 465 |
-
return ["", "", ""] * 3
|
| 466 |
-
try:
|
| 467 |
-
search = Search(f"How to make {keyword}")
|
| 468 |
-
results = search.results[:3]
|
| 469 |
-
embeds, titles, urls = [], [], []
|
| 470 |
-
for video in results:
|
| 471 |
-
embed_html = f'''
|
| 472 |
-
<iframe width="520" height="320"
|
| 473 |
-
src="https://www.youtube.com/embed/{video.video_id}"
|
| 474 |
-
frameborder="0" allowfullscreen></iframe>
|
| 475 |
-
'''
|
| 476 |
-
embeds.append(embed_html)
|
| 477 |
-
titles.append(video.title)
|
| 478 |
-
urls.append(f"https://www.youtube.com/watch?v={video.video_id}")
|
| 479 |
-
while len(embeds) < 3:
|
| 480 |
-
embeds.append("No video found")
|
| 481 |
-
titles.append("")
|
| 482 |
-
urls.append("")
|
| 483 |
-
return embeds + titles + urls
|
| 484 |
-
except Exception as e:
|
| 485 |
-
print(f"Video search error: {e}")
|
| 486 |
-
return ["", "", ""] * 3
|
| 487 |
-
|
| 488 |
-
# ============== RESTAURANT SEARCH ==============
|
| 489 |
-
def get_google_maps_search_url(dish_name, city="Ho Chi Minh City"):
|
| 490 |
-
query = f"{dish_name} in {city}"
|
| 491 |
-
url = f"https://www.google.com/maps/search/{query.replace(' ', '+')}"
|
| 492 |
-
return url
|
| 493 |
-
|
| 494 |
-
def search_and_show_link(dish):
|
| 495 |
-
if not dish.strip():
|
| 496 |
-
return "Go to Google Maps", gr.update(visible=False)
|
| 497 |
-
url = get_google_maps_search_url(dish)
|
| 498 |
-
return url, gr.update(visible=True)
|
| 499 |
-
|
| 500 |
-
# ============== PDF GENERATION ==============
|
| 501 |
-
def generate_pdf_recipe():
|
| 502 |
-
if not current_recipe_context["title"]:
|
| 503 |
-
return None, "β Please generate a recipe from an image first."
|
| 504 |
-
|
| 505 |
-
output_file = "recipe.pdf"
|
| 506 |
-
doc = SimpleDocTemplate(output_file, pagesize=letter)
|
| 507 |
-
styles = getSampleStyleSheet()
|
| 508 |
-
story = []
|
| 509 |
-
|
| 510 |
-
if current_recipe_context["image"]:
|
| 511 |
-
try:
|
| 512 |
-
img_buffer = BytesIO()
|
| 513 |
-
current_recipe_context["image"].save(img_buffer, format="PNG")
|
| 514 |
-
img_buffer.seek(0)
|
| 515 |
-
img = ReportLabImage(img_buffer, width=200, height=200)
|
| 516 |
-
story.append(img)
|
| 517 |
-
story.append(Spacer(1, 12))
|
| 518 |
-
except Exception as e:
|
| 519 |
-
print(f"Error adding image to PDF: {e}")
|
| 520 |
-
|
| 521 |
-
story.append(Paragraph(current_recipe_context["title"], styles['Title']))
|
| 522 |
-
story.append(Spacer(1, 12))
|
| 523 |
-
story.append(Paragraph("Ingredients:", styles['Heading2']))
|
| 524 |
-
for ingr in current_recipe_context["ingredients"]:
|
| 525 |
-
story.append(Paragraph(f"- {ingr}", styles['Normal']))
|
| 526 |
-
story.append(Spacer(1, 12))
|
| 527 |
-
story.append(Paragraph("Instructions:", styles['Heading2']))
|
| 528 |
-
for i, instr in enumerate(current_recipe_context["instructions"], 1):
|
| 529 |
-
story.append(Paragraph(f"{i}. {instr}", styles['Normal']))
|
| 530 |
-
|
| 531 |
-
doc.build(story)
|
| 532 |
-
return output_file, "β
Recipe saved as recipe.pdf"
|
| 533 |
-
|
| 534 |
-
# ============== GRADIO UI ==============
|
| 535 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="AI Recipe Generator") as demo:
|
| 536 |
-
gr.Markdown("""
|
| 537 |
-
# π³ AI Recipe Generator & Multilingual Cooking Assistant
|
| 538 |
-
Generate recipes from images, translate to multiple languages, get cooking videos, chat with a culinary assistant, analyze nutrition, and find restaurants!
|
| 539 |
-
""")
|
| 540 |
-
|
| 541 |
-
with gr.Tab("π· Generate Recipe"):
|
| 542 |
-
with gr.Row():
|
| 543 |
-
with gr.Column():
|
| 544 |
-
image_input = gr.Image(type="pil", label="Upload Dish Image", height=300)
|
| 545 |
-
gen_btn = gr.Button("Generate Recipe", variant="primary", elem_id="action-btn")
|
| 546 |
-
save_pdf_btn = gr.Button("Save as PDF", variant="secondary", elem_id="action-btn")
|
| 547 |
-
pdf_output = gr.File(label="Download Recipe PDF", interactive=False)
|
| 548 |
-
recipe_output = gr.Markdown("### Your recipe will appear here", elem_classes="recipe-box")
|
| 549 |
-
gen_btn.click(generate_recipe, inputs=image_input, outputs=recipe_output)
|
| 550 |
-
save_pdf_btn.click(fn=generate_pdf_recipe, outputs=[pdf_output, recipe_output])
|
| 551 |
-
|
| 552 |
-
with gr.Tab("π Translate & TTS"):
|
| 553 |
-
with gr.Row():
|
| 554 |
-
with gr.Column():
|
| 555 |
-
lang_dropdown = gr.Dropdown(
|
| 556 |
-
choices=["English (original)", "Japanese", "Chinese", "Vietnamese"],
|
| 557 |
-
value="Japanese",
|
| 558 |
-
label="Select Language"
|
| 559 |
-
)
|
| 560 |
-
with gr.Row():
|
| 561 |
-
trans_btn = gr.Button("Translate Recipe", variant="primary", elem_id="action-btn")
|
| 562 |
-
tts_btn = gr.Button("π Listen to Recipe", variant="secondary", elem_id="action-btn")
|
| 563 |
-
with gr.Column():
|
| 564 |
-
translation_output = gr.Markdown("### Translated recipe will appear here", elem_classes="recipe-box")
|
| 565 |
-
tts_audio = gr.Audio(interactive=False, label="Audio Output", visible=False)
|
| 566 |
-
trans_btn.click(fn=translate_recipe, inputs=lang_dropdown, outputs=translation_output)
|
| 567 |
-
tts_btn.click(fn=google_tts, inputs=[translation_output, lang_dropdown], outputs=[tts_audio, tts_audio])
|
| 568 |
-
|
| 569 |
-
with gr.Tab("π₯ Cooking Videos"):
|
| 570 |
-
with gr.Row():
|
| 571 |
-
with gr.Column():
|
| 572 |
-
video_keyword = gr.Textbox(label="Search Cooking Videos", placeholder="e.g. beef pho")
|
| 573 |
-
search_btn = gr.Button("Search Videos", variant="primary", elem_id="action-btn")
|
| 574 |
-
with gr.Column():
|
| 575 |
-
video_embeds, video_titles, video_urls = [], [], []
|
| 576 |
-
for i in range(3):
|
| 577 |
-
with gr.Column():
|
| 578 |
-
video_embeds.append(gr.HTML(label=f"π¬ Video {i+1}"))
|
| 579 |
-
video_titles.append(gr.Textbox(label=f"π Title {i+1}", interactive=False))
|
| 580 |
-
video_urls.append(gr.Textbox(label=f"π URL {i+1}", interactive=False, visible=False))
|
| 581 |
-
search_btn.click(fn=search_top_3_videos, inputs=video_keyword, outputs=video_embeds + video_titles + video_urls)
|
| 582 |
-
|
| 583 |
-
with gr.Tab("π¬ Culinary Chatbot"):
|
| 584 |
-
chatbot = gr.Chatbot(height=400, type="messages")
|
| 585 |
-
with gr.Row():
|
| 586 |
-
chat_input = gr.Textbox(placeholder="Ask about the dish...", scale=4)
|
| 587 |
-
chat_btn = gr.Button("Send", variant="primary", scale=1, elem_id="action-btn")
|
| 588 |
-
chat_btn.click(chat_with_bot, inputs=[chat_input, chatbot], outputs=[chat_input, chatbot])
|
| 589 |
-
chat_input.submit(chat_with_bot, inputs=[chat_input, chatbot], outputs=[chat_input, chatbot])
|
| 590 |
-
|
| 591 |
-
with gr.Tab("π₯ Nutrition Analysis"):
|
| 592 |
-
with gr.Row():
|
| 593 |
-
with gr.Column():
|
| 594 |
-
ingredient_input = gr.Textbox(
|
| 595 |
-
label="π§Ύ Enter Ingredients (one per line or space-separated)",
|
| 596 |
-
lines=10,
|
| 597 |
-
placeholder="cheese\npepper\negg\n..."
|
| 598 |
-
)
|
| 599 |
-
with gr.Row():
|
| 600 |
-
load_ingredients_btn = gr.Button("Load Recipe Ingredients", variant="secondary", elem_id="action-btn")
|
| 601 |
-
analyze_btn = gr.Button("Analyze Nutrition", variant="primary", elem_id="action-btn")
|
| 602 |
-
with gr.Column():
|
| 603 |
-
nutrition_message = gr.Textbox(label="π Message", interactive=False)
|
| 604 |
-
bar_chart = gr.Plot(label="π Bar Chart")
|
| 605 |
-
pie_chart = gr.Plot(label="π₯§ Pie Chart")
|
| 606 |
-
line_chart = gr.Plot(label="π Line Chart")
|
| 607 |
-
load_ingredients_btn.click(fn=load_recipe_ingredients, outputs=ingredient_input)
|
| 608 |
-
analyze_btn.click(
|
| 609 |
-
fn=nutrition_analysis,
|
| 610 |
-
inputs=ingredient_input,
|
| 611 |
-
outputs=[nutrition_message, bar_chart, pie_chart, line_chart]
|
| 612 |
-
)
|
| 613 |
-
|
| 614 |
-
with gr.Tab("π½οΈ Find Restaurants"):
|
| 615 |
-
with gr.Row():
|
| 616 |
-
with gr.Column():
|
| 617 |
-
dish_input = gr.Textbox(label="Enter Dish Name", placeholder="e.g. beef pho", interactive=True)
|
| 618 |
-
search_restaurant_btn = gr.Button("Find Restaurants", variant="primary", elem_id="action-btn")
|
| 619 |
-
open_maps_btn = gr.Button("Go to Google Maps", visible=True, variant="secondary", elem_id="open-maps-btn")
|
| 620 |
-
search_restaurant_btn.click(fn=search_and_show_link, inputs=dish_input, outputs=[open_maps_btn, open_maps_btn])
|
| 621 |
-
open_maps_btn.click(
|
| 622 |
-
fn=lambda url: url,
|
| 623 |
-
inputs=open_maps_btn,
|
| 624 |
-
outputs=None,
|
| 625 |
-
js="(url) => { if(url) window.open(url, '_blank'); }"
|
| 626 |
-
)
|
| 627 |
-
|
| 628 |
-
demo.css = """
|
| 629 |
-
.recipe-box {
|
| 630 |
-
padding: 20px;
|
| 631 |
-
border-radius: 10px;
|
| 632 |
-
background: #f9f9f9;
|
| 633 |
-
border: 1px solid #e0e0e0;
|
| 634 |
-
}
|
| 635 |
-
.dark .recipe-box {
|
| 636 |
-
background: #2a2a2a;
|
| 637 |
-
border-color: #444;
|
| 638 |
-
}
|
| 639 |
-
.gr-box {
|
| 640 |
-
margin-bottom: 20px;
|
| 641 |
-
}
|
| 642 |
-
#action-btn {
|
| 643 |
-
max-width: 220px;
|
| 644 |
-
margin: 10px auto;
|
| 645 |
-
font-weight: 600;
|
| 646 |
-
font-size: 16px;
|
| 647 |
-
border-radius: 8px;
|
| 648 |
-
}
|
| 649 |
-
#open-maps-btn {
|
| 650 |
-
max-width: 220px;
|
| 651 |
-
margin: 10px auto;
|
| 652 |
-
font-weight: 600;
|
| 653 |
-
font-size: 16px;
|
| 654 |
-
border-radius: 8px;
|
| 655 |
-
}
|
| 656 |
-
"""
|
| 657 |
-
|
| 658 |
-
if __name__ == "__main__":
|
| 659 |
-
demo.launch(
|
| 660 |
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import torch
|
| 4 |
+
import pickle
|
| 5 |
+
import logging
|
| 6 |
+
import tempfile
|
| 7 |
+
import requests
|
| 8 |
+
import re
|
| 9 |
+
import asyncio
|
| 10 |
+
import aiohttp
|
| 11 |
+
from urllib.parse import quote_plus
|
| 12 |
+
from pytube import Search
|
| 13 |
+
from PIL import Image
|
| 14 |
+
from torchvision import transforms
|
| 15 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, AutoModelForCausalLM
|
| 16 |
+
import gradio as gr
|
| 17 |
+
import pandas as pd
|
| 18 |
+
import plotly.express as px
|
| 19 |
+
from reportlab.lib.pagesizes import letter
|
| 20 |
+
from reportlab.lib import colors
|
| 21 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as ReportLabImage
|
| 22 |
+
from reportlab.lib.styles import getSampleStyleSheet
|
| 23 |
+
from io import BytesIO
|
| 24 |
+
from langchain_huggingface import HuggingFacePipeline
|
| 25 |
+
from langchain_core.runnables.history import RunnableWithMessageHistory
|
| 26 |
+
from langchain_core.chat_history import InMemoryChatMessageHistory
|
| 27 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 28 |
+
from pydub import AudioSegment
|
| 29 |
+
from pydub.utils import which
|
| 30 |
+
|
| 31 |
+
# Local imports (assumed to be available)
|
| 32 |
+
from args import get_parser
|
| 33 |
+
from model import get_model
|
| 34 |
+
from output_utils import prepare_output
|
| 35 |
+
|
| 36 |
+
# ============== DEVICE CONFIG ==============
|
| 37 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 38 |
+
map_loc = None if torch.cuda.is_available() else "cpu"
|
| 39 |
+
logging.getLogger("pytube").setLevel(logging.ERROR)
|
| 40 |
+
|
| 41 |
+
# ============== LOAD TRANSLATION MODELS ==============
|
| 42 |
+
model_envit5_name = "VietAI/envit5-translation"
|
| 43 |
+
try:
|
| 44 |
+
tokenizer_envit5 = AutoTokenizer.from_pretrained(model_envit5_name)
|
| 45 |
+
model_envit5 = AutoModelForSeq2SeqLM.from_pretrained(
|
| 46 |
+
model_envit5_name,
|
| 47 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 48 |
+
).to(device)
|
| 49 |
+
pipe_envit5 = pipeline(
|
| 50 |
+
"text2text-generation",
|
| 51 |
+
model=model_envit5,
|
| 52 |
+
tokenizer=tokenizer_envit5,
|
| 53 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 54 |
+
max_new_tokens=512,
|
| 55 |
+
do_sample=False
|
| 56 |
+
)
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print(f"Error loading Vietnamese model: {e}")
|
| 59 |
+
pipe_envit5 = None
|
| 60 |
+
|
| 61 |
+
models = {
|
| 62 |
+
"Japanese": {"model_name": "Helsinki-NLP/opus-mt-en-jap"},
|
| 63 |
+
"Chinese": {"model_name": "Helsinki-NLP/opus-mt-en-zh"}
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
for lang in models:
|
| 67 |
+
try:
|
| 68 |
+
tokenizer = AutoTokenizer.from_pretrained(models[lang]["model_name"])
|
| 69 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 70 |
+
models[lang]["model_name"],
|
| 71 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 72 |
+
).to(device)
|
| 73 |
+
models[lang]["pipe"] = pipeline(
|
| 74 |
+
"translation",
|
| 75 |
+
model=model,
|
| 76 |
+
tokenizer=tokenizer,
|
| 77 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 78 |
+
max_length=512,
|
| 79 |
+
batch_size=4 if torch.cuda.is_available() else 1,
|
| 80 |
+
truncation=True
|
| 81 |
+
)
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print(f"Error loading {lang} model: {e}")
|
| 84 |
+
models[lang]["pipe"] = None
|
| 85 |
+
|
| 86 |
+
# ============== LOAD CHATBOT MODEL ==============
|
| 87 |
+
chatbot_tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
|
| 88 |
+
chatbot_model = AutoModelForCausalLM.from_pretrained(
|
| 89 |
+
"bigscience/bloomz-560m",
|
| 90 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 91 |
+
).to(device)
|
| 92 |
+
|
| 93 |
+
chatbot_pipeline = pipeline(
|
| 94 |
+
"text-generation",
|
| 95 |
+
model=chatbot_model,
|
| 96 |
+
tokenizer=chatbot_tokenizer,
|
| 97 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 98 |
+
max_new_tokens=100,
|
| 99 |
+
do_sample=True,
|
| 100 |
+
temperature=0.6,
|
| 101 |
+
top_p=0.9,
|
| 102 |
+
pad_token_id=chatbot_tokenizer.eos_token_id,
|
| 103 |
+
batch_size=1
|
| 104 |
+
)
|
| 105 |
+
llm = HuggingFacePipeline(pipeline=chatbot_pipeline)
|
| 106 |
+
|
| 107 |
+
# LangChain Chatbot Setup
|
| 108 |
+
prompt = ChatPromptTemplate.from_template("""
|
| 109 |
+
You are a professional culinary assistant. You will answer the user's question directly based on the provided recipe.
|
| 110 |
+
Do not repeat the recipe or question in your answer. Be concise.
|
| 111 |
+
|
| 112 |
+
Dish: {title}
|
| 113 |
+
Ingredients: {ingredients}
|
| 114 |
+
Instructions: {instructions}
|
| 115 |
+
|
| 116 |
+
User Question: {question}
|
| 117 |
+
Answer:
|
| 118 |
+
""")
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
chain = prompt | llm
|
| 122 |
+
chat_histories = {}
|
| 123 |
+
|
| 124 |
+
def get_session_history(session_id):
|
| 125 |
+
if session_id not in chat_histories:
|
| 126 |
+
chat_histories[session_id] = InMemoryChatMessageHistory()
|
| 127 |
+
return chat_histories[session_id]
|
| 128 |
+
|
| 129 |
+
chatbot_chain = RunnableWithMessageHistory(
|
| 130 |
+
chain,
|
| 131 |
+
get_session_history,
|
| 132 |
+
input_messages_key="question",
|
| 133 |
+
history_messages_key="history"
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# ============== GLOBAL STATE ==============
|
| 137 |
+
current_recipe_context = {"context": "", "title": "", "ingredients": [], "instructions": [], "image": None}
|
| 138 |
+
|
| 139 |
+
# ============== RECIPE FORMAT & TRANSLATE ==============
|
| 140 |
+
def format_recipe(title, ingredients, instructions, lang):
|
| 141 |
+
emoji = {"title": "π½οΈ", "ingredients": "π§", "instructions": "π"}
|
| 142 |
+
titles = {
|
| 143 |
+
"en": {"ingredients": "Ingredients", "instructions": "Instructions"},
|
| 144 |
+
"ja": {"ingredients": "Ingredients (ζζ)", "instructions": "Instructions (δ½γζΉ)"},
|
| 145 |
+
"zh": {"ingredients": "Ingredients (ι£ζ)", "instructions": "Instructions (ζ₯ιͺ€)"},
|
| 146 |
+
"vi": {"ingredients": "Ingredients (NguyΓͺn liα»u)", "instructions": "Instructions (CΓ‘ch lΓ m)"},
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
code_mapping = {
|
| 150 |
+
"English (original)": "en",
|
| 151 |
+
"Japanese": "ja",
|
| 152 |
+
"Chinese": "zh",
|
| 153 |
+
"Vietnamese": "vi",
|
| 154 |
+
}
|
| 155 |
+
code = code_mapping.get(lang, "en")
|
| 156 |
+
|
| 157 |
+
result = [f"### {emoji['title']} {title}", f"**{emoji['ingredients']} {titles[code]['ingredients']}:**"]
|
| 158 |
+
result.extend([f"- {i}" for i in ingredients])
|
| 159 |
+
result.append(f"\n**{emoji['instructions']} {titles[code]['instructions']}:**")
|
| 160 |
+
result.extend([f"{i+1}. {step}" for i, step in enumerate(instructions)])
|
| 161 |
+
return "\n".join(result)
|
| 162 |
+
|
| 163 |
+
def translate_section(text, lang):
|
| 164 |
+
if lang == "English (original)":
|
| 165 |
+
return text
|
| 166 |
+
|
| 167 |
+
if lang == "Vietnamese":
|
| 168 |
+
if pipe_envit5 is None:
|
| 169 |
+
return f"β Vietnamese translation model not available"
|
| 170 |
+
try:
|
| 171 |
+
max_chunk_length = 400
|
| 172 |
+
if len(text) > max_chunk_length:
|
| 173 |
+
sentences = text.split('. ')
|
| 174 |
+
chunks = []
|
| 175 |
+
current_chunk = ""
|
| 176 |
+
for sentence in sentences:
|
| 177 |
+
if len(current_chunk) + len(sentence) < max_chunk_length:
|
| 178 |
+
current_chunk += sentence + ". "
|
| 179 |
+
else:
|
| 180 |
+
chunks.append(current_chunk)
|
| 181 |
+
current_chunk = sentence + ". "
|
| 182 |
+
if current_chunk:
|
| 183 |
+
chunks.append(current_chunk)
|
| 184 |
+
else:
|
| 185 |
+
chunks = [text]
|
| 186 |
+
|
| 187 |
+
translated_chunks = []
|
| 188 |
+
for chunk in chunks:
|
| 189 |
+
chunk = f"en-vi: {chunk}"
|
| 190 |
+
translated = pipe_envit5(chunk, max_new_tokens=512)[0]["generated_text"]
|
| 191 |
+
translated = translated.replace("vi: vi: ", "").replace("vi: Vi: ", "").replace("vi: ", "").strip()
|
| 192 |
+
translated_chunks.append(translated)
|
| 193 |
+
|
| 194 |
+
return " ".join(translated_chunks)
|
| 195 |
+
except Exception as e:
|
| 196 |
+
print(f"Vietnamese translation error: {e}")
|
| 197 |
+
return text
|
| 198 |
+
|
| 199 |
+
if models.get(lang, {}).get("pipe") is None:
|
| 200 |
+
return f"β Translation model for {lang} not available"
|
| 201 |
+
|
| 202 |
+
try:
|
| 203 |
+
max_chunk_length = 400
|
| 204 |
+
if len(text) > max_chunk_length:
|
| 205 |
+
sentences = text.split('. ')
|
| 206 |
+
chunks = []
|
| 207 |
+
current_chunk = ""
|
| 208 |
+
for sentence in sentences:
|
| 209 |
+
if len(current_chunk) + len(sentence) < max_chunk_length:
|
| 210 |
+
current_chunk += sentence + ". "
|
| 211 |
+
else:
|
| 212 |
+
chunks.append(current_chunk)
|
| 213 |
+
current_chunk = sentence + ". "
|
| 214 |
+
if current_chunk:
|
| 215 |
+
chunks.append(current_chunk)
|
| 216 |
+
else:
|
| 217 |
+
chunks = [text]
|
| 218 |
+
|
| 219 |
+
translated_chunks = []
|
| 220 |
+
for chunk in chunks:
|
| 221 |
+
translated = models[lang]["pipe"](chunk, max_length=512)[0]["translation_text"]
|
| 222 |
+
translated_chunks.append(translated)
|
| 223 |
+
|
| 224 |
+
return " ".join(translated_chunks)
|
| 225 |
+
except Exception as e:
|
| 226 |
+
print(f"Translation error ({lang}): {e}")
|
| 227 |
+
return text
|
| 228 |
+
|
| 229 |
+
def translate_recipe(lang):
|
| 230 |
+
if not current_recipe_context["title"]:
|
| 231 |
+
return "β Please generate a recipe from an image first."
|
| 232 |
+
title = translate_section(current_recipe_context["title"], lang)
|
| 233 |
+
ingrs = [translate_section(i, lang) for i in current_recipe_context["ingredients"]]
|
| 234 |
+
instrs = [translate_section(s, lang) for s in current_recipe_context["instructions"]]
|
| 235 |
+
return format_recipe(title, ingrs, instrs, lang)
|
| 236 |
+
|
| 237 |
+
# ============== NUTRITION ANALYSIS ==============
|
| 238 |
+
def nutrition_analysis(ingredient_input):
|
| 239 |
+
ingredients = " ".join(ingredient_input.strip().split())
|
| 240 |
+
api_url = f'https://api.api-ninjas.com/v1/nutrition?query={ingredients}'
|
| 241 |
+
headers = {'X-Api-Key': 'AHVy+tpkUoueBNdaFs9nCg==sFZTMRn8ikZVzx6E'}
|
| 242 |
+
response = requests.get(api_url, headers=headers)
|
| 243 |
+
if response.status_code != 200:
|
| 244 |
+
return "β API error or quota exceeded.", None, None, None
|
| 245 |
+
data = response.json()
|
| 246 |
+
df = pd.DataFrame(data)
|
| 247 |
+
numeric_cols = []
|
| 248 |
+
for col in df.columns:
|
| 249 |
+
if col == "name":
|
| 250 |
+
continue
|
| 251 |
+
df[col] = pd.to_numeric(df[col], errors="coerce")
|
| 252 |
+
if df[col].notna().sum() > 0:
|
| 253 |
+
numeric_cols.append(col)
|
| 254 |
+
if df.empty or len(numeric_cols) < 3:
|
| 255 |
+
return "β οΈ Insufficient numerical data for charts (need at least 3 metrics).", None, None, None
|
| 256 |
+
draw_cols = numeric_cols[:3]
|
| 257 |
+
fig_bar = px.bar(df, x="name", y=draw_cols[0], title=f"Bar Chart: {draw_cols[0]}", text_auto=True)
|
| 258 |
+
pie_data = df[[draw_cols[1], "name"]].dropna()
|
| 259 |
+
if pie_data[draw_cols[1]].sum() > 0:
|
| 260 |
+
fig_pie = px.pie(pie_data, names="name", values=draw_cols[1], title=f"Pie Chart: {draw_cols[1]}")
|
| 261 |
+
else:
|
| 262 |
+
fig_pie = px.bar(title="β οΈ Insufficient data for pie chart")
|
| 263 |
+
fig_line = px.line(df, x="name", y=draw_cols[2], markers=True, title=f"Line Chart: {draw_cols[2]}")
|
| 264 |
+
return "β
Analysis successful!", fig_bar, fig_pie, fig_line
|
| 265 |
+
|
| 266 |
+
def load_recipe_ingredients():
|
| 267 |
+
if not current_recipe_context["ingredients"]:
|
| 268 |
+
return "β οΈ No ingredients available. Generate a recipe first."
|
| 269 |
+
return "\n".join(current_recipe_context["ingredients"])
|
| 270 |
+
|
| 271 |
+
# ============== CHATBOT ==============
|
| 272 |
+
def clean_response(response):
|
| 273 |
+
# Remove everything before "Answer:" if present
|
| 274 |
+
if "Answer:" in response:
|
| 275 |
+
response = response.split("Answer:")[-1]
|
| 276 |
+
|
| 277 |
+
# Remove potential repetitions of Dish, Ingredients, Instructions
|
| 278 |
+
response = re.sub(r"Dish:.*?(Ingredients:|Instructions:).*?", "", response, flags=re.DOTALL)
|
| 279 |
+
response = re.sub(r"Ingredients:.*?(Instructions:).*?", "", response, flags=re.DOTALL)
|
| 280 |
+
response = re.sub(r"Instructions:.*", "", response, flags=re.DOTALL)
|
| 281 |
+
|
| 282 |
+
# Remove redundant system info
|
| 283 |
+
response = re.sub(r"You are a professional culinary assistant.*?Answer:", "", response, flags=re.DOTALL)
|
| 284 |
+
|
| 285 |
+
# Remove duplicate user question inside response (very common in these LLM outputs)
|
| 286 |
+
response = re.sub(r"User Question:.*", "", response, flags=re.DOTALL)
|
| 287 |
+
|
| 288 |
+
# Final strip + cleanup
|
| 289 |
+
return response.strip()
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
def validate_cooking_time(question, instructions):
|
| 293 |
+
# Extract cooking times from instructions
|
| 294 |
+
time_pattern = r"(\d+)\s*(minutes|minute)"
|
| 295 |
+
total_time = 0
|
| 296 |
+
for instr in instructions:
|
| 297 |
+
matches = re.findall(time_pattern, instr)
|
| 298 |
+
for match in matches:
|
| 299 |
+
total_time += int(match[0])
|
| 300 |
+
|
| 301 |
+
# Check if user question contains a time
|
| 302 |
+
user_time = re.search(time_pattern, question)
|
| 303 |
+
if user_time:
|
| 304 |
+
user_minutes = int(user_time.group(1))
|
| 305 |
+
if user_minutes != total_time:
|
| 306 |
+
return f"The recipe takes about {total_time} minutes to cook, not {user_minutes} minutes."
|
| 307 |
+
return None
|
| 308 |
+
|
| 309 |
+
def generate_chat_response(message, session_id="default"):
|
| 310 |
+
if not current_recipe_context["title"]:
|
| 311 |
+
return "Please generate a recipe from an image before asking about the dish."
|
| 312 |
+
|
| 313 |
+
# Validate cooking time if relevant
|
| 314 |
+
correction = validate_cooking_time(message, current_recipe_context["instructions"])
|
| 315 |
+
|
| 316 |
+
response = chatbot_chain.invoke(
|
| 317 |
+
{
|
| 318 |
+
"title": current_recipe_context["title"],
|
| 319 |
+
"ingredients": ", ".join(current_recipe_context["ingredients"]),
|
| 320 |
+
"instructions": " ".join(current_recipe_context["instructions"]),
|
| 321 |
+
"question": message
|
| 322 |
+
},
|
| 323 |
+
config={"configurable": {"session_id": session_id}}
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
response = clean_response(response)
|
| 327 |
+
if correction:
|
| 328 |
+
response = f"{correction} {response}"
|
| 329 |
+
|
| 330 |
+
return response.strip()
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
def chat_with_bot(message, chat_history, session_id="default"):
|
| 334 |
+
if not message.strip():
|
| 335 |
+
return "", chat_history
|
| 336 |
+
response = generate_chat_response(message, session_id)
|
| 337 |
+
chat_history.append({"role": "user", "content": message})
|
| 338 |
+
chat_history.append({"role": "assistant", "content": response})
|
| 339 |
+
return "", chat_history
|
| 340 |
+
|
| 341 |
+
# ============== IMAGE TO RECIPE ==============
|
| 342 |
+
with open("ingr_vocab.pkl", 'rb') as f:
|
| 343 |
+
ingrs_vocab = pickle.load(f)
|
| 344 |
+
with open("instr_vocab.pkl", 'rb') as f:
|
| 345 |
+
vocab = pickle.load(f)
|
| 346 |
+
|
| 347 |
+
args = get_parser()
|
| 348 |
+
args.maxseqlen = 15
|
| 349 |
+
args.ingrs_only = False
|
| 350 |
+
model_ic = get_model(args, len(ingrs_vocab), len(vocab))
|
| 351 |
+
model_ic.load_state_dict(torch.load("modelbest.ckpt", map_location=map_loc, weights_only=True))
|
| 352 |
+
model_ic.to(device).eval()
|
| 353 |
+
|
| 354 |
+
transform = transforms.Compose([
|
| 355 |
+
transforms.Resize(256),
|
| 356 |
+
transforms.CenterCrop(224),
|
| 357 |
+
transforms.ToTensor(),
|
| 358 |
+
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
|
| 359 |
+
])
|
| 360 |
+
|
| 361 |
+
def generate_recipe(image):
|
| 362 |
+
if image is None:
|
| 363 |
+
return "β Please upload an image."
|
| 364 |
+
current_recipe_context["image"] = image
|
| 365 |
+
image = transform(image.convert("RGB")).unsqueeze(0).to(device)
|
| 366 |
+
with torch.no_grad():
|
| 367 |
+
outputs = model_ic.sample(image, greedy=True, temperature=1.0, beam=-1, true_ingrs=None)
|
| 368 |
+
ids = (outputs['ingr_ids'].cpu().numpy(), outputs['recipe_ids'].cpu().numpy())
|
| 369 |
+
outs, valid = prepare_output(ids[1][0], ids[0][0], ingrs_vocab, vocab)
|
| 370 |
+
if not valid['is_valid']:
|
| 371 |
+
return f"β Invalid recipe: {valid['reason']}"
|
| 372 |
+
current_recipe_context.update({
|
| 373 |
+
"title": outs['title'],
|
| 374 |
+
"ingredients": outs['ingrs'],
|
| 375 |
+
"instructions": outs['recipe']
|
| 376 |
+
})
|
| 377 |
+
return format_recipe(outs['title'], outs['ingrs'], outs['recipe'], "English (original)")
|
| 378 |
+
|
| 379 |
+
# ============== GOOGLE TTS ==============
|
| 380 |
+
languages_tts = {
|
| 381 |
+
"English": "en",
|
| 382 |
+
"Chinese": "zh-CN",
|
| 383 |
+
"Japanese": "ja",
|
| 384 |
+
"Vietnamese": "vi",
|
| 385 |
+
}
|
| 386 |
+
|
| 387 |
+
async def fetch_tts_audio_async(session, chunk, lang_code):
|
| 388 |
+
url = f"https://translate.google.com/translate_tts?ie=UTF-8&q={quote_plus(chunk)}&tl={lang_code}&client=tw-ob"
|
| 389 |
+
headers = {
|
| 390 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
| 391 |
+
"Referer": "https://translate.google.com/",
|
| 392 |
+
}
|
| 393 |
+
try:
|
| 394 |
+
async with session.get(url, headers=headers, timeout=10) as response:
|
| 395 |
+
response.raise_for_status()
|
| 396 |
+
return await response.read()
|
| 397 |
+
except Exception as e:
|
| 398 |
+
print(f"TTS Error for chunk: {e}")
|
| 399 |
+
return None
|
| 400 |
+
|
| 401 |
+
async def fetch_all_tts_audio(chunks, lang_code):
|
| 402 |
+
async with aiohttp.ClientSession() as session:
|
| 403 |
+
tasks = [fetch_tts_audio_async(session, chunk, lang_code) for chunk in chunks]
|
| 404 |
+
return await asyncio.gather(*tasks)
|
| 405 |
+
|
| 406 |
+
def google_tts(text, lang):
|
| 407 |
+
if not text or text.startswith("β"):
|
| 408 |
+
return None, gr.update(visible=False)
|
| 409 |
+
|
| 410 |
+
# Clean text for TTS
|
| 411 |
+
clean_text = text.replace("**", "").replace("###", "").replace("- ", "")
|
| 412 |
+
for emoji in ["π½οΈ", "π§", "π"]:
|
| 413 |
+
clean_text = clean_text.replace(emoji, "")
|
| 414 |
+
|
| 415 |
+
# Split into chunks (Google TTS max ~200 chars)
|
| 416 |
+
max_chunk_length = 200
|
| 417 |
+
chunks = [clean_text[i:i+max_chunk_length] for i in range(0, len(clean_text), max_chunk_length)]
|
| 418 |
+
if not chunks:
|
| 419 |
+
return None, gr.update(visible=False)
|
| 420 |
+
|
| 421 |
+
# Fetch audio chunks asynchronously
|
| 422 |
+
lang_code = languages_tts.get(lang, "en")
|
| 423 |
+
audio_contents = asyncio.run(fetch_all_tts_audio(chunks, lang_code))
|
| 424 |
+
|
| 425 |
+
# Filter out failed requests
|
| 426 |
+
audio_files = []
|
| 427 |
+
for i, content in enumerate(audio_contents):
|
| 428 |
+
if content:
|
| 429 |
+
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as f:
|
| 430 |
+
f.write(content)
|
| 431 |
+
audio_files.append(f.name)
|
| 432 |
+
|
| 433 |
+
if not audio_files:
|
| 434 |
+
return None, gr.update(visible=False)
|
| 435 |
+
|
| 436 |
+
# Combine audio if FFmpeg is available
|
| 437 |
+
if len(audio_files) == 1:
|
| 438 |
+
return audio_files[0], gr.update(visible=True)
|
| 439 |
+
|
| 440 |
+
if which("ffmpeg"):
|
| 441 |
+
try:
|
| 442 |
+
combined = AudioSegment.empty()
|
| 443 |
+
for file in audio_files:
|
| 444 |
+
combined += AudioSegment.from_mp3(file)
|
| 445 |
+
output_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False).name
|
| 446 |
+
combined.export(output_file, format="mp3")
|
| 447 |
+
for file in audio_files:
|
| 448 |
+
os.unlink(file)
|
| 449 |
+
return output_file, gr.update(visible=True)
|
| 450 |
+
except Exception as e:
|
| 451 |
+
print(f"Error combining audio files: {e}")
|
| 452 |
+
# Fallback to first chunk
|
| 453 |
+
for i in range(1, len(audio_files)):
|
| 454 |
+
os.unlink(audio_files[i])
|
| 455 |
+
return audio_files[0], gr.update(visible=True)
|
| 456 |
+
else:
|
| 457 |
+
print("FFmpeg not found, returning first audio chunk.")
|
| 458 |
+
for i in range(1, len(audio_files)):
|
| 459 |
+
os.unlink(audio_files[i])
|
| 460 |
+
return audio_files[0], gr.update(visible=True)
|
| 461 |
+
|
| 462 |
+
# ============== VIDEO SEARCH ==============
|
| 463 |
+
def search_top_3_videos(keyword):
|
| 464 |
+
if not keyword.strip():
|
| 465 |
+
return ["", "", ""] * 3
|
| 466 |
+
try:
|
| 467 |
+
search = Search(f"How to make {keyword}")
|
| 468 |
+
results = search.results[:3]
|
| 469 |
+
embeds, titles, urls = [], [], []
|
| 470 |
+
for video in results:
|
| 471 |
+
embed_html = f'''
|
| 472 |
+
<iframe width="520" height="320"
|
| 473 |
+
src="https://www.youtube.com/embed/{video.video_id}"
|
| 474 |
+
frameborder="0" allowfullscreen></iframe>
|
| 475 |
+
'''
|
| 476 |
+
embeds.append(embed_html)
|
| 477 |
+
titles.append(video.title)
|
| 478 |
+
urls.append(f"https://www.youtube.com/watch?v={video.video_id}")
|
| 479 |
+
while len(embeds) < 3:
|
| 480 |
+
embeds.append("No video found")
|
| 481 |
+
titles.append("")
|
| 482 |
+
urls.append("")
|
| 483 |
+
return embeds + titles + urls
|
| 484 |
+
except Exception as e:
|
| 485 |
+
print(f"Video search error: {e}")
|
| 486 |
+
return ["", "", ""] * 3
|
| 487 |
+
|
| 488 |
+
# ============== RESTAURANT SEARCH ==============
|
| 489 |
+
def get_google_maps_search_url(dish_name, city="Ho Chi Minh City"):
|
| 490 |
+
query = f"{dish_name} in {city}"
|
| 491 |
+
url = f"https://www.google.com/maps/search/{query.replace(' ', '+')}"
|
| 492 |
+
return url
|
| 493 |
+
|
| 494 |
+
def search_and_show_link(dish):
|
| 495 |
+
if not dish.strip():
|
| 496 |
+
return "Go to Google Maps", gr.update(visible=False)
|
| 497 |
+
url = get_google_maps_search_url(dish)
|
| 498 |
+
return url, gr.update(visible=True)
|
| 499 |
+
|
| 500 |
+
# ============== PDF GENERATION ==============
|
| 501 |
+
def generate_pdf_recipe():
|
| 502 |
+
if not current_recipe_context["title"]:
|
| 503 |
+
return None, "β Please generate a recipe from an image first."
|
| 504 |
+
|
| 505 |
+
output_file = "recipe.pdf"
|
| 506 |
+
doc = SimpleDocTemplate(output_file, pagesize=letter)
|
| 507 |
+
styles = getSampleStyleSheet()
|
| 508 |
+
story = []
|
| 509 |
+
|
| 510 |
+
if current_recipe_context["image"]:
|
| 511 |
+
try:
|
| 512 |
+
img_buffer = BytesIO()
|
| 513 |
+
current_recipe_context["image"].save(img_buffer, format="PNG")
|
| 514 |
+
img_buffer.seek(0)
|
| 515 |
+
img = ReportLabImage(img_buffer, width=200, height=200)
|
| 516 |
+
story.append(img)
|
| 517 |
+
story.append(Spacer(1, 12))
|
| 518 |
+
except Exception as e:
|
| 519 |
+
print(f"Error adding image to PDF: {e}")
|
| 520 |
+
|
| 521 |
+
story.append(Paragraph(current_recipe_context["title"], styles['Title']))
|
| 522 |
+
story.append(Spacer(1, 12))
|
| 523 |
+
story.append(Paragraph("Ingredients:", styles['Heading2']))
|
| 524 |
+
for ingr in current_recipe_context["ingredients"]:
|
| 525 |
+
story.append(Paragraph(f"- {ingr}", styles['Normal']))
|
| 526 |
+
story.append(Spacer(1, 12))
|
| 527 |
+
story.append(Paragraph("Instructions:", styles['Heading2']))
|
| 528 |
+
for i, instr in enumerate(current_recipe_context["instructions"], 1):
|
| 529 |
+
story.append(Paragraph(f"{i}. {instr}", styles['Normal']))
|
| 530 |
+
|
| 531 |
+
doc.build(story)
|
| 532 |
+
return output_file, "β
Recipe saved as recipe.pdf"
|
| 533 |
+
|
| 534 |
+
# ============== GRADIO UI ==============
|
| 535 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="AI Recipe Generator") as demo:
|
| 536 |
+
gr.Markdown("""
|
| 537 |
+
# π³ AI Recipe Generator & Multilingual Cooking Assistant
|
| 538 |
+
Generate recipes from images, translate to multiple languages, get cooking videos, chat with a culinary assistant, analyze nutrition, and find restaurants!
|
| 539 |
+
""")
|
| 540 |
+
|
| 541 |
+
with gr.Tab("π· Generate Recipe"):
|
| 542 |
+
with gr.Row():
|
| 543 |
+
with gr.Column():
|
| 544 |
+
image_input = gr.Image(type="pil", label="Upload Dish Image", height=300)
|
| 545 |
+
gen_btn = gr.Button("Generate Recipe", variant="primary", elem_id="action-btn")
|
| 546 |
+
save_pdf_btn = gr.Button("Save as PDF", variant="secondary", elem_id="action-btn")
|
| 547 |
+
pdf_output = gr.File(label="Download Recipe PDF", interactive=False)
|
| 548 |
+
recipe_output = gr.Markdown("### Your recipe will appear here", elem_classes="recipe-box")
|
| 549 |
+
gen_btn.click(generate_recipe, inputs=image_input, outputs=recipe_output)
|
| 550 |
+
save_pdf_btn.click(fn=generate_pdf_recipe, outputs=[pdf_output, recipe_output])
|
| 551 |
+
|
| 552 |
+
with gr.Tab("π Translate & TTS"):
|
| 553 |
+
with gr.Row():
|
| 554 |
+
with gr.Column():
|
| 555 |
+
lang_dropdown = gr.Dropdown(
|
| 556 |
+
choices=["English (original)", "Japanese", "Chinese", "Vietnamese"],
|
| 557 |
+
value="Japanese",
|
| 558 |
+
label="Select Language"
|
| 559 |
+
)
|
| 560 |
+
with gr.Row():
|
| 561 |
+
trans_btn = gr.Button("Translate Recipe", variant="primary", elem_id="action-btn")
|
| 562 |
+
tts_btn = gr.Button("π Listen to Recipe", variant="secondary", elem_id="action-btn")
|
| 563 |
+
with gr.Column():
|
| 564 |
+
translation_output = gr.Markdown("### Translated recipe will appear here", elem_classes="recipe-box")
|
| 565 |
+
tts_audio = gr.Audio(interactive=False, label="Audio Output", visible=False)
|
| 566 |
+
trans_btn.click(fn=translate_recipe, inputs=lang_dropdown, outputs=translation_output)
|
| 567 |
+
tts_btn.click(fn=google_tts, inputs=[translation_output, lang_dropdown], outputs=[tts_audio, tts_audio])
|
| 568 |
+
|
| 569 |
+
with gr.Tab("π₯ Cooking Videos"):
|
| 570 |
+
with gr.Row():
|
| 571 |
+
with gr.Column():
|
| 572 |
+
video_keyword = gr.Textbox(label="Search Cooking Videos", placeholder="e.g. beef pho")
|
| 573 |
+
search_btn = gr.Button("Search Videos", variant="primary", elem_id="action-btn")
|
| 574 |
+
with gr.Column():
|
| 575 |
+
video_embeds, video_titles, video_urls = [], [], []
|
| 576 |
+
for i in range(3):
|
| 577 |
+
with gr.Column():
|
| 578 |
+
video_embeds.append(gr.HTML(label=f"π¬ Video {i+1}"))
|
| 579 |
+
video_titles.append(gr.Textbox(label=f"π Title {i+1}", interactive=False))
|
| 580 |
+
video_urls.append(gr.Textbox(label=f"π URL {i+1}", interactive=False, visible=False))
|
| 581 |
+
search_btn.click(fn=search_top_3_videos, inputs=video_keyword, outputs=video_embeds + video_titles + video_urls)
|
| 582 |
+
|
| 583 |
+
with gr.Tab("π¬ Culinary Chatbot"):
|
| 584 |
+
chatbot = gr.Chatbot(height=400, type="messages")
|
| 585 |
+
with gr.Row():
|
| 586 |
+
chat_input = gr.Textbox(placeholder="Ask about the dish...", scale=4)
|
| 587 |
+
chat_btn = gr.Button("Send", variant="primary", scale=1, elem_id="action-btn")
|
| 588 |
+
chat_btn.click(chat_with_bot, inputs=[chat_input, chatbot], outputs=[chat_input, chatbot])
|
| 589 |
+
chat_input.submit(chat_with_bot, inputs=[chat_input, chatbot], outputs=[chat_input, chatbot])
|
| 590 |
+
|
| 591 |
+
with gr.Tab("π₯ Nutrition Analysis"):
|
| 592 |
+
with gr.Row():
|
| 593 |
+
with gr.Column():
|
| 594 |
+
ingredient_input = gr.Textbox(
|
| 595 |
+
label="π§Ύ Enter Ingredients (one per line or space-separated)",
|
| 596 |
+
lines=10,
|
| 597 |
+
placeholder="cheese\npepper\negg\n..."
|
| 598 |
+
)
|
| 599 |
+
with gr.Row():
|
| 600 |
+
load_ingredients_btn = gr.Button("Load Recipe Ingredients", variant="secondary", elem_id="action-btn")
|
| 601 |
+
analyze_btn = gr.Button("Analyze Nutrition", variant="primary", elem_id="action-btn")
|
| 602 |
+
with gr.Column():
|
| 603 |
+
nutrition_message = gr.Textbox(label="π Message", interactive=False)
|
| 604 |
+
bar_chart = gr.Plot(label="π Bar Chart")
|
| 605 |
+
pie_chart = gr.Plot(label="π₯§ Pie Chart")
|
| 606 |
+
line_chart = gr.Plot(label="π Line Chart")
|
| 607 |
+
load_ingredients_btn.click(fn=load_recipe_ingredients, outputs=ingredient_input)
|
| 608 |
+
analyze_btn.click(
|
| 609 |
+
fn=nutrition_analysis,
|
| 610 |
+
inputs=ingredient_input,
|
| 611 |
+
outputs=[nutrition_message, bar_chart, pie_chart, line_chart]
|
| 612 |
+
)
|
| 613 |
+
|
| 614 |
+
with gr.Tab("π½οΈ Find Restaurants"):
|
| 615 |
+
with gr.Row():
|
| 616 |
+
with gr.Column():
|
| 617 |
+
dish_input = gr.Textbox(label="Enter Dish Name", placeholder="e.g. beef pho", interactive=True)
|
| 618 |
+
search_restaurant_btn = gr.Button("Find Restaurants", variant="primary", elem_id="action-btn")
|
| 619 |
+
open_maps_btn = gr.Button("Go to Google Maps", visible=True, variant="secondary", elem_id="open-maps-btn")
|
| 620 |
+
search_restaurant_btn.click(fn=search_and_show_link, inputs=dish_input, outputs=[open_maps_btn, open_maps_btn])
|
| 621 |
+
open_maps_btn.click(
|
| 622 |
+
fn=lambda url: url,
|
| 623 |
+
inputs=open_maps_btn,
|
| 624 |
+
outputs=None,
|
| 625 |
+
js="(url) => { if(url) window.open(url, '_blank'); }"
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
demo.css = """
|
| 629 |
+
.recipe-box {
|
| 630 |
+
padding: 20px;
|
| 631 |
+
border-radius: 10px;
|
| 632 |
+
background: #f9f9f9;
|
| 633 |
+
border: 1px solid #e0e0e0;
|
| 634 |
+
}
|
| 635 |
+
.dark .recipe-box {
|
| 636 |
+
background: #2a2a2a;
|
| 637 |
+
border-color: #444;
|
| 638 |
+
}
|
| 639 |
+
.gr-box {
|
| 640 |
+
margin-bottom: 20px;
|
| 641 |
+
}
|
| 642 |
+
#action-btn {
|
| 643 |
+
max-width: 220px;
|
| 644 |
+
margin: 10px auto;
|
| 645 |
+
font-weight: 600;
|
| 646 |
+
font-size: 16px;
|
| 647 |
+
border-radius: 8px;
|
| 648 |
+
}
|
| 649 |
+
#open-maps-btn {
|
| 650 |
+
max-width: 220px;
|
| 651 |
+
margin: 10px auto;
|
| 652 |
+
font-weight: 600;
|
| 653 |
+
font-size: 16px;
|
| 654 |
+
border-radius: 8px;
|
| 655 |
+
}
|
| 656 |
+
"""
|
| 657 |
+
|
| 658 |
+
if __name__ == "__main__":
|
| 659 |
+
demo.launch()
|
| 660 |
|