Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +28 -23
src/streamlit_app.py
CHANGED
|
@@ -12,6 +12,7 @@ from streamlit_extras.stylable_container import stylable_container
|
|
| 12 |
from typing import Optional
|
| 13 |
from gliner import GLiNER
|
| 14 |
from comet_ml import Experiment
|
|
|
|
| 15 |
st.markdown(
|
| 16 |
"""
|
| 17 |
<style>
|
|
@@ -20,36 +21,36 @@ st.markdown(
|
|
| 20 |
background-color: #E8F5E9; /* A very light green */
|
| 21 |
color: #1B5E20; /* Dark green for the text */
|
| 22 |
}
|
| 23 |
-
|
| 24 |
/* Sidebar background color */
|
| 25 |
.css-1d36184 {
|
| 26 |
background-color: #A5D6A7; /* A medium light green */
|
| 27 |
secondary-background-color: #A5D6A7;
|
| 28 |
}
|
| 29 |
-
|
| 30 |
/* Expander background color and header */
|
| 31 |
.streamlit-expanderContent, .streamlit-expanderHeader {
|
| 32 |
background-color: #E8F5E9;
|
| 33 |
}
|
| 34 |
-
|
| 35 |
/* Text Area background and text color */
|
| 36 |
.stTextArea textarea {
|
| 37 |
background-color: #81C784; /* A slightly darker medium green */
|
| 38 |
color: #1B5E20; /* Dark green for text */
|
| 39 |
}
|
| 40 |
-
|
| 41 |
/* Button background and text color */
|
| 42 |
.stButton > button {
|
| 43 |
background-color: #81C784;
|
| 44 |
color: #1B5E20;
|
| 45 |
}
|
| 46 |
-
|
| 47 |
/* Warning box background and text color */
|
| 48 |
.stAlert.st-warning {
|
| 49 |
background-color: #66BB6A; /* A medium-dark green for the warning box */
|
| 50 |
color: #1B5E20;
|
| 51 |
}
|
| 52 |
-
|
| 53 |
/* Success box background and text color */
|
| 54 |
.stAlert.st-success {
|
| 55 |
background-color: #66BB6A; /* A medium-dark green for the success box */
|
|
@@ -58,6 +59,7 @@ st.markdown(
|
|
| 58 |
</style>
|
| 59 |
""",
|
| 60 |
unsafe_allow_html=True)
|
|
|
|
| 61 |
# --- Page Configuration and UI Elements ---
|
| 62 |
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
| 63 |
st.subheader("EntityFinance", divider="violet")
|
|
@@ -77,7 +79,6 @@ Results are presented in easy-to-read tables, visualized in an interactive tree
|
|
| 77 |
|
| 78 |
For any errors or inquiries, please contact us at [email protected]""")
|
| 79 |
|
| 80 |
-
|
| 81 |
with st.sidebar:
|
| 82 |
st.write("Use the following code to embed the EntityFinance web app on your website. Feel free to adjust the width and height values to fit your page.")
|
| 83 |
code = '''
|
|
@@ -95,6 +96,7 @@ with st.sidebar:
|
|
| 95 |
st.divider()
|
| 96 |
st.subheader("π Ready to build your own AI Web App?", divider="violet")
|
| 97 |
st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary")
|
|
|
|
| 98 |
# --- Comet ML Setup ---
|
| 99 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
| 100 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
|
@@ -102,6 +104,7 @@ COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
|
| 102 |
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
|
| 103 |
if not comet_initialized:
|
| 104 |
st.warning("Comet ML not initialized. Check environment variables.")
|
|
|
|
| 105 |
# --- Label Definitions ---
|
| 106 |
labels = [
|
| 107 |
"Monetary_value",
|
|
@@ -118,20 +121,16 @@ labels = [
|
|
| 118 |
"Location",
|
| 119 |
"Date",
|
| 120 |
"Time"]
|
|
|
|
| 121 |
# Corrected mapping dictionary
|
| 122 |
# Create a mapping dictionary for labels to categories
|
| 123 |
category_mapping = {
|
| 124 |
-
"People & Groups": [ "Person",
|
| 125 |
-
|
| 126 |
-
"Regulatory_entity"],
|
| 127 |
-
"Financial & Transactional": [ "Monetary_value",
|
| 128 |
-
"Financial_instrument",
|
| 129 |
-
"Company_identifier",
|
| 130 |
-
"Financial_event",
|
| 131 |
-
"Financial_metric", "Product", "Service"],
|
| 132 |
"Temporal": ["Date", "Time"],
|
| 133 |
"Locations": ["Location"],
|
| 134 |
"Documents & Context": ["Financial_document"]}
|
|
|
|
| 135 |
# --- Model Loading ---
|
| 136 |
@st.cache_resource
|
| 137 |
def load_ner_model():
|
|
@@ -144,23 +143,27 @@ def load_ner_model():
|
|
| 144 |
model = load_ner_model()
|
| 145 |
# Flatten the mapping to a single dictionary
|
| 146 |
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
|
|
|
|
| 147 |
# --- Text Input and Clear Button ---
|
| 148 |
word_limit = 200
|
| 149 |
text = st.text_area(f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", height=250, key='my_text_area')
|
| 150 |
word_count = len(text.split())
|
| 151 |
st.markdown(f"**Word count:** {word_count}/{word_limit}")
|
|
|
|
| 152 |
def clear_text():
|
| 153 |
"""Clears the text area."""
|
| 154 |
st.session_state['my_text_area'] = ""
|
|
|
|
| 155 |
st.button("Clear text", on_click=clear_text)
|
|
|
|
| 156 |
# --- Results Section ---
|
| 157 |
if st.button("Results"):
|
| 158 |
-
start_time = time.time()
|
| 159 |
if not text.strip():
|
| 160 |
st.warning("Please enter some text to extract entities.")
|
| 161 |
elif word_count > word_limit:
|
| 162 |
st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.")
|
| 163 |
else:
|
|
|
|
| 164 |
with st.spinner("Extracting entities...", show_time=True):
|
| 165 |
entities = model.predict_entities(text, labels)
|
| 166 |
df = pd.DataFrame(entities)
|
|
@@ -215,7 +218,7 @@ if st.button("Results"):
|
|
| 215 |
with col2:
|
| 216 |
st.subheader("Bar chart", divider = "violet")
|
| 217 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
| 218 |
-
fig_bar.update_layout(
|
| 219 |
paper_bgcolor='#E8F5E9',
|
| 220 |
plot_bgcolor='#E8F5E9'
|
| 221 |
)
|
|
@@ -265,10 +268,12 @@ if st.button("Results"):
|
|
| 265 |
if comet_initialized:
|
| 266 |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
|
| 267 |
experiment.end()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
else: # If df is empty
|
| 269 |
-
st.warning("No entities were found in the provided text.")
|
| 270 |
-
end_time = time.time()
|
| 271 |
-
elapsed_time = end_time - start_time
|
| 272 |
-
st.text("")
|
| 273 |
-
st.text("")
|
| 274 |
-
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|
|
|
|
| 12 |
from typing import Optional
|
| 13 |
from gliner import GLiNER
|
| 14 |
from comet_ml import Experiment
|
| 15 |
+
|
| 16 |
st.markdown(
|
| 17 |
"""
|
| 18 |
<style>
|
|
|
|
| 21 |
background-color: #E8F5E9; /* A very light green */
|
| 22 |
color: #1B5E20; /* Dark green for the text */
|
| 23 |
}
|
| 24 |
+
|
| 25 |
/* Sidebar background color */
|
| 26 |
.css-1d36184 {
|
| 27 |
background-color: #A5D6A7; /* A medium light green */
|
| 28 |
secondary-background-color: #A5D6A7;
|
| 29 |
}
|
| 30 |
+
|
| 31 |
/* Expander background color and header */
|
| 32 |
.streamlit-expanderContent, .streamlit-expanderHeader {
|
| 33 |
background-color: #E8F5E9;
|
| 34 |
}
|
| 35 |
+
|
| 36 |
/* Text Area background and text color */
|
| 37 |
.stTextArea textarea {
|
| 38 |
background-color: #81C784; /* A slightly darker medium green */
|
| 39 |
color: #1B5E20; /* Dark green for text */
|
| 40 |
}
|
| 41 |
+
|
| 42 |
/* Button background and text color */
|
| 43 |
.stButton > button {
|
| 44 |
background-color: #81C784;
|
| 45 |
color: #1B5E20;
|
| 46 |
}
|
| 47 |
+
|
| 48 |
/* Warning box background and text color */
|
| 49 |
.stAlert.st-warning {
|
| 50 |
background-color: #66BB6A; /* A medium-dark green for the warning box */
|
| 51 |
color: #1B5E20;
|
| 52 |
}
|
| 53 |
+
|
| 54 |
/* Success box background and text color */
|
| 55 |
.stAlert.st-success {
|
| 56 |
background-color: #66BB6A; /* A medium-dark green for the success box */
|
|
|
|
| 59 |
</style>
|
| 60 |
""",
|
| 61 |
unsafe_allow_html=True)
|
| 62 |
+
|
| 63 |
# --- Page Configuration and UI Elements ---
|
| 64 |
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
| 65 |
st.subheader("EntityFinance", divider="violet")
|
|
|
|
| 79 |
|
| 80 |
For any errors or inquiries, please contact us at [email protected]""")
|
| 81 |
|
|
|
|
| 82 |
with st.sidebar:
|
| 83 |
st.write("Use the following code to embed the EntityFinance web app on your website. Feel free to adjust the width and height values to fit your page.")
|
| 84 |
code = '''
|
|
|
|
| 96 |
st.divider()
|
| 97 |
st.subheader("π Ready to build your own AI Web App?", divider="violet")
|
| 98 |
st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary")
|
| 99 |
+
|
| 100 |
# --- Comet ML Setup ---
|
| 101 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
| 102 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
|
|
|
| 104 |
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
|
| 105 |
if not comet_initialized:
|
| 106 |
st.warning("Comet ML not initialized. Check environment variables.")
|
| 107 |
+
|
| 108 |
# --- Label Definitions ---
|
| 109 |
labels = [
|
| 110 |
"Monetary_value",
|
|
|
|
| 121 |
"Location",
|
| 122 |
"Date",
|
| 123 |
"Time"]
|
| 124 |
+
|
| 125 |
# Corrected mapping dictionary
|
| 126 |
# Create a mapping dictionary for labels to categories
|
| 127 |
category_mapping = {
|
| 128 |
+
"People & Groups": [ "Person", "Organization", "Regulatory_entity"],
|
| 129 |
+
"Financial & Transactional": [ "Monetary_value", "Financial_instrument", "Company_identifier", "Financial_event", "Financial_metric", "Product", "Service"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
"Temporal": ["Date", "Time"],
|
| 131 |
"Locations": ["Location"],
|
| 132 |
"Documents & Context": ["Financial_document"]}
|
| 133 |
+
|
| 134 |
# --- Model Loading ---
|
| 135 |
@st.cache_resource
|
| 136 |
def load_ner_model():
|
|
|
|
| 143 |
model = load_ner_model()
|
| 144 |
# Flatten the mapping to a single dictionary
|
| 145 |
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
|
| 146 |
+
|
| 147 |
# --- Text Input and Clear Button ---
|
| 148 |
word_limit = 200
|
| 149 |
text = st.text_area(f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", height=250, key='my_text_area')
|
| 150 |
word_count = len(text.split())
|
| 151 |
st.markdown(f"**Word count:** {word_count}/{word_limit}")
|
| 152 |
+
|
| 153 |
def clear_text():
|
| 154 |
"""Clears the text area."""
|
| 155 |
st.session_state['my_text_area'] = ""
|
| 156 |
+
|
| 157 |
st.button("Clear text", on_click=clear_text)
|
| 158 |
+
|
| 159 |
# --- Results Section ---
|
| 160 |
if st.button("Results"):
|
|
|
|
| 161 |
if not text.strip():
|
| 162 |
st.warning("Please enter some text to extract entities.")
|
| 163 |
elif word_count > word_limit:
|
| 164 |
st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.")
|
| 165 |
else:
|
| 166 |
+
start_time = time.time()
|
| 167 |
with st.spinner("Extracting entities...", show_time=True):
|
| 168 |
entities = model.predict_entities(text, labels)
|
| 169 |
df = pd.DataFrame(entities)
|
|
|
|
| 218 |
with col2:
|
| 219 |
st.subheader("Bar chart", divider = "violet")
|
| 220 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
| 221 |
+
fig_bar.update_layout(
|
| 222 |
paper_bgcolor='#E8F5E9',
|
| 223 |
plot_bgcolor='#E8F5E9'
|
| 224 |
)
|
|
|
|
| 268 |
if comet_initialized:
|
| 269 |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
|
| 270 |
experiment.end()
|
| 271 |
+
|
| 272 |
+
# Correctly placed time calculation
|
| 273 |
+
end_time = time.time()
|
| 274 |
+
elapsed_time = end_time - start_time
|
| 275 |
+
st.text("")
|
| 276 |
+
st.text("")
|
| 277 |
+
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|
| 278 |
else: # If df is empty
|
| 279 |
+
st.warning("No entities were found in the provided text.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|