Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,365 +1,19 @@
|
|
| 1 |
-
#
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
import tensorflow as tf
|
| 12 |
-
from sklearn.model_selection import train_test_split
|
| 13 |
-
import itertools
|
| 14 |
-
import random
|
| 15 |
-
|
| 16 |
-
# Import visualization libraries
|
| 17 |
-
import matplotlib.pyplot as plt
|
| 18 |
-
import matplotlib.cm as cm
|
| 19 |
-
import cv2
|
| 20 |
-
import seaborn as sns
|
| 21 |
-
|
| 22 |
-
# Tensorflow Libraries
|
| 23 |
-
from tensorflow import keras
|
| 24 |
-
from tensorflow.keras import layers, models
|
| 25 |
-
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
| 26 |
-
from tensorflow.keras.layers import Dense, Dropout
|
| 27 |
-
from tensorflow.keras.callbacks import Callback, EarlyStopping, ModelCheckpoint
|
| 28 |
-
from tensorflow.keras.optimizers import Adam
|
| 29 |
-
from tensorflow.keras.applications import MobileNetV2
|
| 30 |
-
from tensorflow.keras import Model
|
| 31 |
-
|
| 32 |
-
from keras.layers import Dense, Flatten, Dropout, BatchNormalization
|
| 33 |
-
|
| 34 |
-
# System libraries
|
| 35 |
-
from pathlib import Path
|
| 36 |
-
import os.path
|
| 37 |
-
|
| 38 |
-
# Metrics
|
| 39 |
-
from sklearn.metrics import classification_report, confusion_matrix
|
| 40 |
-
|
| 41 |
-
sns.set(style='darkgrid')
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
# Seed Everything to reproduce results for future use cases
|
| 46 |
-
def seed_everything(seed=42):
|
| 47 |
-
# Seed value for TensorFlow
|
| 48 |
-
tf.random.set_seed(seed)
|
| 49 |
-
|
| 50 |
-
# Seed value for NumPy
|
| 51 |
-
np.random.seed(seed)
|
| 52 |
-
|
| 53 |
-
# Seed value for Python's random library
|
| 54 |
-
random.seed(seed)
|
| 55 |
-
|
| 56 |
-
# Force TensorFlow to use single thread
|
| 57 |
-
# Multiple threads are a potential source of non-reproducible results.
|
| 58 |
-
session_conf = tf.compat.v1.ConfigProto(
|
| 59 |
-
intra_op_parallelism_threads=1,
|
| 60 |
-
inter_op_parallelism_threads=1
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
# Make sure that TensorFlow uses a deterministic operation wherever possible
|
| 64 |
-
tf.compat.v1.set_random_seed(seed)
|
| 65 |
-
|
| 66 |
-
sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf)
|
| 67 |
-
tf.compat.v1.keras.backend.set_session(sess)
|
| 68 |
-
|
| 69 |
-
seed_everything()
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
# URL of the file you want to download
|
| 74 |
-
url = "https://raw.githubusercontent.com/mrdbourke/tensorflow-deep-learning/main/extras/helper_functions.py"
|
| 75 |
-
|
| 76 |
-
# Send a GET request to the URL
|
| 77 |
-
response = requests.get(url)
|
| 78 |
-
|
| 79 |
-
# Check if the request was successful (status code 200)
|
| 80 |
-
if response.status_code == 200:
|
| 81 |
-
# Save the content of the response (the file) to a local file
|
| 82 |
-
with open("helper_functions.py", "wb") as f:
|
| 83 |
-
f.write(response.content)
|
| 84 |
-
print("File downloaded successfully!")
|
| 85 |
-
else:
|
| 86 |
-
print("Failed to download file")
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
# Import series of helper functions for our notebook
|
| 90 |
-
from helper_functions import create_tensorboard_callback, plot_loss_curves, unzip_data, compare_historys, walk_through_dir, pred_and_plot
|
| 91 |
-
|
| 92 |
-
BATCH_SIZE = 32
|
| 93 |
-
TARGET_SIZE = (224, 224)
|
| 94 |
-
|
| 95 |
-
# Define the Google Drive shareable link
|
| 96 |
-
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 97 |
-
|
| 98 |
-
# Extract the file ID from the URL
|
| 99 |
-
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
|
| 100 |
-
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
|
| 101 |
-
|
| 102 |
-
# Define the local filename to save the ZIP file
|
| 103 |
-
local_zip_file = 'file.zip'
|
| 104 |
-
|
| 105 |
-
# Download the ZIP file
|
| 106 |
-
gdown.download(direct_download_url, local_zip_file, quiet=False)
|
| 107 |
-
|
| 108 |
-
# Directory to extract files
|
| 109 |
-
extracted_path = 'extracted_files'
|
| 110 |
-
|
| 111 |
-
# Verify if the downloaded file is a ZIP file and extract it
|
| 112 |
-
try:
|
| 113 |
-
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
|
| 114 |
-
zip_ref.extractall(extracted_path)
|
| 115 |
-
print("Extraction successful!")
|
| 116 |
-
except zipfile.BadZipFile:
|
| 117 |
-
print("Error: The downloaded file is not a valid ZIP file.")
|
| 118 |
-
|
| 119 |
-
# Optionally, you can delete the ZIP file after extraction
|
| 120 |
-
os.remove(local_zip_file)
|
| 121 |
-
|
| 122 |
-
# Convert the extracted directory path to a pathlib.Path object
|
| 123 |
-
data_dir = Path(extracted_path)
|
| 124 |
-
|
| 125 |
-
# Print the directory structure to debug
|
| 126 |
-
for root, dirs, files in os.walk(extracted_path):
|
| 127 |
-
level = root.replace(extracted_path, '').count(os.sep)
|
| 128 |
-
indent = ' ' * 4 * (level)
|
| 129 |
-
print(f"{indent}{os.path.basename(root)}/")
|
| 130 |
-
subindent = ' ' * 4 * (level + 1)
|
| 131 |
-
for f in files:
|
| 132 |
-
print(f"{subindent}{f}")
|
| 133 |
-
|
| 134 |
-
# Function to convert the directory path to a DataFrame
|
| 135 |
-
def convert_path_to_df(dataset):
|
| 136 |
-
image_dir = Path(dataset)
|
| 137 |
-
|
| 138 |
-
# Get filepaths and labels
|
| 139 |
-
filepaths = list(image_dir.glob(r'**/*.JPG')) + list(image_dir.glob(r'**/*.jpg')) + list(image_dir.glob(r'**/*.png')) + list(image_dir.glob(r'**/*.PNG'))
|
| 140 |
-
|
| 141 |
-
labels = list(map(lambda x: os.path.split(os.path.split(x)[0])[1], filepaths))
|
| 142 |
-
|
| 143 |
-
filepaths = pd.Series(filepaths, name='Filepath').astype(str)
|
| 144 |
-
labels = pd.Series(labels, name='Label')
|
| 145 |
-
|
| 146 |
-
# Concatenate filepaths and labels
|
| 147 |
-
image_df = pd.concat([filepaths, labels], axis=1)
|
| 148 |
-
return image_df
|
| 149 |
-
|
| 150 |
-
# Path to the dataset directory
|
| 151 |
-
data_dir = Path('extracted_files/Pest_Dataset')
|
| 152 |
-
image_df = convert_path_to_df(data_dir)
|
| 153 |
-
|
| 154 |
-
# Check for corrupted images within the dataset
|
| 155 |
-
for img_p in data_dir.rglob("*.jpg"):
|
| 156 |
-
try:
|
| 157 |
-
img = Image.open(img_p)
|
| 158 |
-
except UnidentifiedImageError:
|
| 159 |
-
print(f"Corrupted image file: {img_p}")
|
| 160 |
-
|
| 161 |
-
# You can save the DataFrame to a CSV for further use
|
| 162 |
-
image_df.to_csv('image_dataset.csv', index=False)
|
| 163 |
-
print("DataFrame created and saved successfully!")
|
| 164 |
-
|
| 165 |
-
label_counts = image_df['Label'].value_counts()
|
| 166 |
-
|
| 167 |
-
plt.figure(figsize=(10, 6))
|
| 168 |
-
sns.barplot(x=label_counts.index, y=label_counts.values, alpha=0.8, palette='rocket')
|
| 169 |
-
plt.title('Distribution of Labels in Image Dataset', fontsize=16)
|
| 170 |
-
plt.xlabel('Label', fontsize=14)
|
| 171 |
-
plt.ylabel('Count', fontsize=14)
|
| 172 |
-
plt.xticks(rotation=45)
|
| 173 |
-
plt.show()
|
| 174 |
-
|
| 175 |
-
# Display 16 picture of the dataset with their labels
|
| 176 |
-
random_index = np.random.randint(0, len(image_df), 16)
|
| 177 |
-
fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(10, 10),
|
| 178 |
-
subplot_kw={'xticks': [], 'yticks': []})
|
| 179 |
-
|
| 180 |
-
for i, ax in enumerate(axes.flat):
|
| 181 |
-
ax.imshow(plt.imread(image_df.Filepath[random_index[i]]))
|
| 182 |
-
ax.set_title(image_df.Label[random_index[i]])
|
| 183 |
-
plt.tight_layout()
|
| 184 |
-
plt.show()
|
| 185 |
-
|
| 186 |
-
# Function to return a random image path from a given directory
|
| 187 |
-
def random_sample(directory):
|
| 188 |
-
images = [os.path.join(directory, img) for img in os.listdir(directory) if img.endswith(('.jpg', '.jpeg', '.png'))]
|
| 189 |
-
return random.choice(images)
|
| 190 |
-
|
| 191 |
-
# Function to compute the Error Level Analysis (ELA) of an image
|
| 192 |
-
def compute_ela_cv(path, quality):
|
| 193 |
-
temp_filename = 'temp.jpg'
|
| 194 |
-
orig = cv2.imread(path)
|
| 195 |
-
cv2.imwrite(temp_filename, orig, [int(cv2.IMWRITE_JPEG_QUALITY), quality])
|
| 196 |
-
compressed = cv2.imread(temp_filename)
|
| 197 |
-
ela_image = cv2.absdiff(orig, compressed)
|
| 198 |
-
ela_image = np.clip(ela_image * 10, 0, 255).astype(np.uint8)
|
| 199 |
-
return ela_image
|
| 200 |
-
|
| 201 |
-
# View random sample from the dataset
|
| 202 |
-
p = random_sample('extracted_files/Pest_Dataset/beetle')
|
| 203 |
-
orig = cv2.imread(p)
|
| 204 |
-
orig = cv2.cvtColor(orig, cv2.COLOR_BGR2RGB) / 255.0
|
| 205 |
-
init_val = 100
|
| 206 |
-
columns = 3
|
| 207 |
-
rows = 3
|
| 208 |
-
|
| 209 |
-
fig=plt.figure(figsize=(15, 10))
|
| 210 |
-
for i in range(1, columns*rows +1):
|
| 211 |
-
quality=init_val - (i-1) * 8
|
| 212 |
-
img = compute_ela_cv(path=p, quality=quality)
|
| 213 |
-
if i == 1:
|
| 214 |
-
img = orig.copy()
|
| 215 |
-
ax = fig.add_subplot(rows, columns, i)
|
| 216 |
-
ax.title.set_text(f'q: {quality}')
|
| 217 |
-
plt.imshow(img)
|
| 218 |
-
plt.show()
|
| 219 |
-
|
| 220 |
-
# Separate in train and test data
|
| 221 |
-
train_df, test_df = train_test_split(image_df, test_size=0.2, shuffle=True, random_state=42)
|
| 222 |
-
|
| 223 |
-
train_generator = ImageDataGenerator(
|
| 224 |
-
preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input,
|
| 225 |
-
validation_split=0.2
|
| 226 |
-
)
|
| 227 |
-
|
| 228 |
-
test_generator = ImageDataGenerator(
|
| 229 |
-
preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input
|
| 230 |
-
)
|
| 231 |
-
|
| 232 |
-
# Split the data into three categories.
|
| 233 |
-
train_images = train_generator.flow_from_dataframe(
|
| 234 |
-
dataframe=train_df,
|
| 235 |
-
x_col='Filepath',
|
| 236 |
-
y_col='Label',
|
| 237 |
-
target_size=(224, 224),
|
| 238 |
-
color_mode='rgb',
|
| 239 |
-
class_mode='categorical',
|
| 240 |
-
batch_size=32,
|
| 241 |
-
shuffle=True,
|
| 242 |
-
seed=42,
|
| 243 |
-
subset='training'
|
| 244 |
-
)
|
| 245 |
-
|
| 246 |
-
val_images = train_generator.flow_from_dataframe(
|
| 247 |
-
dataframe=train_df,
|
| 248 |
-
x_col='Filepath',
|
| 249 |
-
y_col='Label',
|
| 250 |
-
target_size=(224, 224),
|
| 251 |
-
color_mode='rgb',
|
| 252 |
-
class_mode='categorical',
|
| 253 |
-
batch_size=32,
|
| 254 |
-
shuffle=True,
|
| 255 |
-
seed=42,
|
| 256 |
-
subset='validation'
|
| 257 |
-
)
|
| 258 |
-
|
| 259 |
-
test_images = test_generator.flow_from_dataframe(
|
| 260 |
-
dataframe=test_df,
|
| 261 |
-
x_col='Filepath',
|
| 262 |
-
y_col='Label',
|
| 263 |
-
target_size=(224, 224),
|
| 264 |
-
color_mode='rgb',
|
| 265 |
-
class_mode='categorical',
|
| 266 |
-
batch_size=32,
|
| 267 |
-
shuffle=False
|
| 268 |
-
)
|
| 269 |
-
|
| 270 |
-
# Data Augmentation Step
|
| 271 |
-
augment = tf.keras.Sequential([
|
| 272 |
-
tf.keras.layers.Resizing(224, 224),
|
| 273 |
-
tf.keras.layers.Rescaling(1./255),
|
| 274 |
-
tf.keras.layers.RandomFlip("horizontal"),
|
| 275 |
-
tf.keras.layers.RandomRotation(0.1),
|
| 276 |
-
tf.keras.layers.RandomZoom(0.1),
|
| 277 |
-
tf.keras.layers.RandomContrast(0.1),
|
| 278 |
-
])
|
| 279 |
-
|
| 280 |
-
# Load the pretained model
|
| 281 |
-
pretrained_model = tf.keras.applications.efficientnet_v2.EfficientNetV2L(
|
| 282 |
-
input_shape=(224, 224, 3),
|
| 283 |
-
include_top=False,
|
| 284 |
-
weights='imagenet',
|
| 285 |
-
pooling='max'
|
| 286 |
-
)
|
| 287 |
-
|
| 288 |
-
pretrained_model.trainable = False
|
| 289 |
-
|
| 290 |
-
# Create checkpoint callback
|
| 291 |
-
checkpoint_path = "pests_cats_classification_model_checkpoint"
|
| 292 |
-
checkpoint_callback = ModelCheckpoint(checkpoint_path,
|
| 293 |
-
save_weights_only=True,
|
| 294 |
-
monitor="val_accuracy",
|
| 295 |
-
save_best_only=True)
|
| 296 |
-
|
| 297 |
-
# Setup EarlyStopping callback to stop training if model's val_loss doesn't improve for 3 epochs
|
| 298 |
-
early_stopping = EarlyStopping(monitor = "val_loss", # watch the val loss metric
|
| 299 |
-
patience = 5,
|
| 300 |
-
restore_best_weights = True) # if val loss decreases for 3 epochs in a row, stop training
|
| 301 |
-
|
| 302 |
-
inputs = pretrained_model.input
|
| 303 |
-
x = augment(inputs)
|
| 304 |
-
|
| 305 |
-
# Add new classification layers
|
| 306 |
-
x = Flatten()(pretrained_model.output)
|
| 307 |
-
x = Dense(256, activation='relu')(x)
|
| 308 |
-
x = Dropout(0.5)(x)
|
| 309 |
-
x = BatchNormalization()(x)
|
| 310 |
-
x = Dense(128, activation='relu')(x)
|
| 311 |
-
x = Dropout(0.5)(x)
|
| 312 |
-
|
| 313 |
-
outputs = Dense(12, activation='softmax')(x)
|
| 314 |
-
|
| 315 |
-
model = Model(inputs=inputs, outputs=outputs)
|
| 316 |
-
|
| 317 |
-
model.compile(
|
| 318 |
-
optimizer=Adam(0.00001),
|
| 319 |
-
loss='categorical_crossentropy',
|
| 320 |
-
metrics=['accuracy']
|
| 321 |
-
)
|
| 322 |
-
|
| 323 |
-
history = model.fit(
|
| 324 |
-
train_images,
|
| 325 |
-
steps_per_epoch=len(train_images),
|
| 326 |
-
validation_data=val_images,
|
| 327 |
-
validation_steps=len(val_images),
|
| 328 |
-
epochs=60, # Adjusted to 30 epochs
|
| 329 |
-
callbacks=[
|
| 330 |
-
early_stopping,
|
| 331 |
-
create_tensorboard_callback("training_logs",
|
| 332 |
-
"pests_cats_classification"),
|
| 333 |
-
checkpoint_callback,
|
| 334 |
-
]
|
| 335 |
-
)
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
results = model.evaluate(test_images, verbose=0)
|
| 339 |
-
|
| 340 |
-
print(" Test Loss: {:.5f}".format(results[0]))
|
| 341 |
-
print("Test Accuracy: {:.2f}%".format(results[1] * 100))
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
class_names = train_images.class_indices
|
| 345 |
-
class_names = {v: k for k, v in class_names.items()}
|
| 346 |
-
|
| 347 |
-
# Gradio Interface for Prediction
|
| 348 |
-
def predict_image(img):
|
| 349 |
-
img = np.array(img)
|
| 350 |
-
img_resized = tf.image.resize(img, (TARGET_SIZE[0], TARGET_SIZE[1]))
|
| 351 |
-
img_4d = tf.expand_dims(img_resized, axis=0)
|
| 352 |
-
prediction = model.predict(img_4d)[0]
|
| 353 |
-
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
| 354 |
-
|
| 355 |
-
# Launch Gradio interface
|
| 356 |
-
image = gr.Image()
|
| 357 |
-
label = gr.Label(num_top_classes=12)
|
| 358 |
|
| 359 |
gr.Interface(
|
| 360 |
fn=predict_image,
|
| 361 |
inputs=image,
|
| 362 |
outputs=label,
|
| 363 |
-
title="Pest Classification",
|
| 364 |
description="Upload an image of a pest to classify it into one of the predefined categories.",
|
|
|
|
| 365 |
).launch(debug=True)
|
|
|
|
| 1 |
+
# Define custom CSS for background image
|
| 2 |
+
custom_css = """
|
| 3 |
+
body {
|
| 4 |
+
background-image: url('/extracted_files/Pest_Dataset/bees/bees (444).jpg');
|
| 5 |
+
background-size: cover;
|
| 6 |
+
background-repeat: no-repeat;
|
| 7 |
+
background-attachment: fixed;
|
| 8 |
+
color: white;
|
| 9 |
+
}
|
| 10 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
gr.Interface(
|
| 13 |
fn=predict_image,
|
| 14 |
inputs=image,
|
| 15 |
outputs=label,
|
| 16 |
+
title="PestScout: An Agricultural Pest Image Classification System Using Deep Conventional Neural Networks",
|
| 17 |
description="Upload an image of a pest to classify it into one of the predefined categories.",
|
| 18 |
+
css=custom_css
|
| 19 |
).launch(debug=True)
|