Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import numpy as np
|
|
@@ -11,11 +9,17 @@ from tensorflow import keras
|
|
| 11 |
from tensorflow.keras import layers
|
| 12 |
from tensorflow.keras.models import Sequential
|
| 13 |
|
|
|
|
| 14 |
from PIL import Image
|
| 15 |
import gdown
|
| 16 |
import zipfile
|
|
|
|
| 17 |
import pathlib
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# Define the Google Drive shareable link
|
| 20 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 21 |
|
|
@@ -55,33 +59,57 @@ for root, dirs, files in os.walk(extracted_path):
|
|
| 55 |
for f in files:
|
| 56 |
print(f"{subindent}{f}")
|
| 57 |
|
|
|
|
| 58 |
# Path to the dataset directory
|
| 59 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
|
|
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
|
| 82 |
class_names = train_ds.class_names
|
| 83 |
print(class_names)
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
data_augmentation = keras.Sequential(
|
| 86 |
[
|
| 87 |
layers.RandomFlip("horizontal",
|
|
@@ -93,6 +121,7 @@ data_augmentation = keras.Sequential(
|
|
| 93 |
]
|
| 94 |
)
|
| 95 |
|
|
|
|
| 96 |
plt.figure(figsize=(10, 10))
|
| 97 |
for images, _ in train_ds.take(1):
|
| 98 |
for i in range(9):
|
|
@@ -118,10 +147,13 @@ model = Sequential([
|
|
| 118 |
layers.Dense(num_classes, name="outputs")
|
| 119 |
])
|
| 120 |
|
|
|
|
| 121 |
model.compile(optimizer='adam',
|
| 122 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
| 123 |
metrics=['accuracy'])
|
| 124 |
|
|
|
|
|
|
|
| 125 |
model.summary()
|
| 126 |
|
| 127 |
|
|
@@ -132,21 +164,39 @@ history = model.fit(
|
|
| 132 |
epochs=epochs
|
| 133 |
)
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
def predict_image(img):
|
| 136 |
img = np.array(img)
|
| 137 |
img_resized = tf.image.resize(img, (180, 180))
|
| 138 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
| 139 |
prediction = model.predict(img_4d)[0]
|
| 140 |
-
|
| 141 |
-
|
| 142 |
|
| 143 |
image = gr.Image()
|
| 144 |
label = gr.Label(num_top_classes=12)
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
gr.Interface(
|
| 147 |
-
fn=predict_image,
|
| 148 |
-
inputs=image,
|
| 149 |
-
outputs=label,
|
| 150 |
-
title="Pest Classification",
|
| 151 |
-
description="
|
|
|
|
| 152 |
).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import numpy as np
|
|
|
|
| 9 |
from tensorflow.keras import layers
|
| 10 |
from tensorflow.keras.models import Sequential
|
| 11 |
|
| 12 |
+
|
| 13 |
from PIL import Image
|
| 14 |
import gdown
|
| 15 |
import zipfile
|
| 16 |
+
|
| 17 |
import pathlib
|
| 18 |
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
# Define the Google Drive shareable link
|
| 24 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 25 |
|
|
|
|
| 59 |
for f in files:
|
| 60 |
print(f"{subindent}{f}")
|
| 61 |
|
| 62 |
+
import pathlib
|
| 63 |
# Path to the dataset directory
|
| 64 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
| 65 |
+
data_dir = pathlib.Path(data_dir)
|
| 66 |
+
|
| 67 |
|
| 68 |
+
bees = list(data_dir.glob('bees/*'))
|
| 69 |
+
print(bees[0])
|
| 70 |
+
PIL.Image.open(str(bees[0]))
|
| 71 |
|
| 72 |
+
|
| 73 |
+
bees = list(data_dir.glob('bees/*'))
|
| 74 |
+
print(bees[0])
|
| 75 |
+
PIL.Image.open(str(bees[0]))
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
img_height,img_width=180,180
|
| 79 |
+
batch_size=32
|
| 80 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 81 |
+
data_dir,
|
| 82 |
+
validation_split=0.2,
|
| 83 |
+
subset="training",
|
| 84 |
+
seed=123,
|
| 85 |
+
image_size=(img_height, img_width),
|
| 86 |
+
batch_size=batch_size)
|
| 87 |
+
|
| 88 |
|
| 89 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 90 |
+
data_dir,
|
| 91 |
+
validation_split=0.2,
|
| 92 |
+
subset="validation",
|
| 93 |
+
seed=123,
|
| 94 |
+
image_size=(img_height, img_width),
|
| 95 |
+
batch_size=batch_size)
|
| 96 |
+
|
| 97 |
|
| 98 |
class_names = train_ds.class_names
|
| 99 |
print(class_names)
|
| 100 |
|
| 101 |
+
|
| 102 |
+
import matplotlib.pyplot as plt
|
| 103 |
+
|
| 104 |
+
plt.figure(figsize=(10, 10))
|
| 105 |
+
for images, labels in train_ds.take(1):
|
| 106 |
+
for i in range(9):
|
| 107 |
+
ax = plt.subplot(3, 3, i + 1)
|
| 108 |
+
plt.imshow(images[i].numpy().astype("uint8"))
|
| 109 |
+
plt.title(class_names[labels[i]])
|
| 110 |
+
plt.axis("off")
|
| 111 |
+
|
| 112 |
+
|
| 113 |
data_augmentation = keras.Sequential(
|
| 114 |
[
|
| 115 |
layers.RandomFlip("horizontal",
|
|
|
|
| 121 |
]
|
| 122 |
)
|
| 123 |
|
| 124 |
+
|
| 125 |
plt.figure(figsize=(10, 10))
|
| 126 |
for images, _ in train_ds.take(1):
|
| 127 |
for i in range(9):
|
|
|
|
| 147 |
layers.Dense(num_classes, name="outputs")
|
| 148 |
])
|
| 149 |
|
| 150 |
+
|
| 151 |
model.compile(optimizer='adam',
|
| 152 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
| 153 |
metrics=['accuracy'])
|
| 154 |
|
| 155 |
+
|
| 156 |
+
|
| 157 |
model.summary()
|
| 158 |
|
| 159 |
|
|
|
|
| 164 |
epochs=epochs
|
| 165 |
)
|
| 166 |
|
| 167 |
+
|
| 168 |
+
import gradio as gr
|
| 169 |
+
import numpy as np
|
| 170 |
+
import tensorflow as tf
|
| 171 |
+
|
| 172 |
def predict_image(img):
|
| 173 |
img = np.array(img)
|
| 174 |
img_resized = tf.image.resize(img, (180, 180))
|
| 175 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
| 176 |
prediction = model.predict(img_4d)[0]
|
| 177 |
+
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
| 178 |
+
|
| 179 |
|
| 180 |
image = gr.Image()
|
| 181 |
label = gr.Label(num_top_classes=12)
|
| 182 |
|
| 183 |
+
# Define custom CSS for background image
|
| 184 |
+
custom_css = """
|
| 185 |
+
body {
|
| 186 |
+
background-image: url('\extracted_files\Pest_Dataset\bees\bees (444).jpg');
|
| 187 |
+
background-size: cover;
|
| 188 |
+
background-repeat: no-repeat;
|
| 189 |
+
background-attachment: fixed;
|
| 190 |
+
color: white;
|
| 191 |
+
}
|
| 192 |
+
"""
|
| 193 |
+
|
| 194 |
gr.Interface(
|
| 195 |
+
fn=predict_image,
|
| 196 |
+
inputs=image,
|
| 197 |
+
outputs=label,
|
| 198 |
+
title="Welcome to Agricultural Pest Image Classification",
|
| 199 |
+
description="The image data set used was obtaied from Kaggle and has a collection of 12 different types of agricultral pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
| 200 |
+
css=custom_css
|
| 201 |
).launch(debug=True)
|
| 202 |
+
|