Spaces:
Running
on
A10G
Running
on
A10G
| import os | |
| import sys | |
| import json | |
| import argparse | |
| import time | |
| import uuid | |
| import subprocess | |
| import requests | |
| from typing import List, Dict, Any, Iterator | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| import gradio as gr | |
| from gradio import ChatMessage | |
| # Import AgentFlow modules | |
| from agentflow.models.initializer import Initializer | |
| from agentflow.models.planner import Planner | |
| from agentflow.models.memory import Memory | |
| from agentflow.models.executor import Executor | |
| from agentflow.models.utils import make_json_serializable_truncated | |
| from pathlib import Path | |
| from huggingface_hub import CommitScheduler | |
| # Get Huggingface token from environment variable | |
| HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
| ########### Test Huggingface Dataset ########### | |
| # Update the HuggingFace dataset constants | |
| DATASET_DIR = Path("solver_cache") # the directory to save the dataset | |
| DATASET_DIR.mkdir(parents=True, exist_ok=True) | |
| global QUERY_ID | |
| QUERY_ID = None | |
| # Enable scheduler to record data to HuggingFace dataset | |
| # scheduler = None | |
| scheduler = CommitScheduler( | |
| repo_id="ZhuofengLi/AgentFlow-Gradio-Demo-User-Data", | |
| repo_type="dataset", | |
| folder_path=DATASET_DIR, | |
| path_in_repo="solver_cache", # Update path in repo | |
| token=HF_TOKEN | |
| ) | |
| ########### vLLM Service Management ########### | |
| VLLM_MODEL_NAME = "AgentFlow/agentflow-planner-7b" | |
| VLLM_PORT = 8000 | |
| VLLM_HOST = "localhost" | |
| VLLM_PROCESS = None | |
| def check_vllm_service() -> bool: | |
| """Check if vLLM service is running""" | |
| try: | |
| response = requests.get(f"http://{VLLM_HOST}:{VLLM_PORT}/v1/models", timeout=2) | |
| return response.status_code == 200 | |
| except: | |
| return False | |
| def start_vllm_service() -> bool: | |
| """Start vLLM service in background""" | |
| global VLLM_PROCESS | |
| if check_vllm_service(): | |
| print(f"π’ vLLM service already running on port {VLLM_PORT}") | |
| return True | |
| try: | |
| print(f"π Starting vLLM service for {VLLM_MODEL_NAME}...") | |
| # Start vLLM server in background | |
| VLLM_PROCESS = subprocess.Popen( | |
| [ | |
| "vllm", "serve", VLLM_MODEL_NAME, | |
| "--port", str(VLLM_PORT), | |
| "--host", VLLM_HOST | |
| ], | |
| text=True | |
| ) | |
| # Wait for service to be ready (max 60 seconds) | |
| for i in range(180): | |
| time.sleep(1) | |
| if check_vllm_service(): | |
| print(f"π’ vLLM service started successfully on port {VLLM_PORT}") | |
| return True | |
| print("β οΈ vLLM service failed to start within 60 seconds") | |
| return False | |
| except Exception as e: | |
| print(f"β Failed to start vLLM service: {e}") | |
| return False | |
| def stop_vllm_service(): | |
| """Stop vLLM service if running""" | |
| global VLLM_PROCESS | |
| if VLLM_PROCESS: | |
| VLLM_PROCESS.terminate() | |
| VLLM_PROCESS.wait() | |
| print("π vLLM service stopped") | |
| def get_vllm_status() -> str: | |
| """Get vLLM service status message""" | |
| if check_vllm_service(): | |
| return f"π’ vLLM service running on port {VLLM_PORT}" | |
| else: | |
| return f"β οΈ vLLM service not running" | |
| ########### End of vLLM Service Management ########### | |
| def save_query_data(query_id: str, query: str) -> None: | |
| """Save query data to dataset""" | |
| # Save query metadata | |
| query_cache_dir = DATASET_DIR / query_id | |
| query_cache_dir.mkdir(parents=True, exist_ok=True) | |
| query_file = query_cache_dir / "query_metadata.json" | |
| query_metadata = { | |
| "query_id": query_id, | |
| "query_text": query, | |
| "datetime": time.strftime("%Y%m%d_%H%M%S"), | |
| } | |
| print(f"Saving query metadata to {query_file}") | |
| with query_file.open("w") as f: | |
| json.dump(query_metadata, f, indent=4) | |
| def save_feedback(query_id: str, feedback_type: str, feedback_text: str = None) -> None: | |
| """ | |
| Save user feedback to the query directory. | |
| Args: | |
| query_id: Unique identifier for the query | |
| feedback_type: Type of feedback ('upvote', 'downvote', or 'comment') | |
| feedback_text: Optional text feedback from user | |
| """ | |
| feedback_data_dir = DATASET_DIR / query_id | |
| feedback_data_dir.mkdir(parents=True, exist_ok=True) | |
| feedback_data = { | |
| "query_id": query_id, | |
| "feedback_type": feedback_type, | |
| "feedback_text": feedback_text, | |
| "datetime": time.strftime("%Y%m%d_%H%M%S") | |
| } | |
| # Save feedback in the query directory | |
| feedback_file = feedback_data_dir / "feedback.json" | |
| print(f"Saving feedback to {feedback_file}") | |
| # If feedback file exists, update it | |
| if feedback_file.exists(): | |
| with feedback_file.open("r") as f: | |
| existing_feedback = json.load(f) | |
| # Convert to list if it's a single feedback entry | |
| if not isinstance(existing_feedback, list): | |
| existing_feedback = [existing_feedback] | |
| existing_feedback.append(feedback_data) | |
| feedback_data = existing_feedback | |
| # Write feedback data | |
| with feedback_file.open("w") as f: | |
| json.dump(feedback_data, f, indent=4) | |
| def save_steps_data(query_id: str, memory: Memory) -> None: | |
| """Save steps data to Huggingface dataset""" | |
| steps_file = DATASET_DIR / query_id / "all_steps.json" | |
| memory_actions = memory.get_actions() | |
| memory_actions = make_json_serializable_truncated(memory_actions) # NOTE: make the memory actions serializable | |
| print("Memory actions: ", memory_actions) | |
| with steps_file.open("w") as f: | |
| json.dump(memory_actions, f, indent=4) | |
| def save_module_data(query_id: str, key: str, value: Any) -> None: | |
| """Save module data to Huggingface dataset""" | |
| try: | |
| key = key.replace(" ", "_").lower() | |
| module_file = DATASET_DIR / query_id / f"{key}.json" | |
| value = make_json_serializable_truncated(value) # NOTE: make the value serializable | |
| with module_file.open("a") as f: | |
| json.dump(value, f, indent=4) | |
| except Exception as e: | |
| print(f"Warning: Failed to save as JSON: {e}") | |
| # Fallback to saving as text file | |
| text_file = DATASET_DIR / query_id / f"{key}.txt" | |
| try: | |
| with text_file.open("a") as f: | |
| f.write(str(value) + "\n") | |
| print(f"Successfully saved as text file: {text_file}") | |
| except Exception as e: | |
| print(f"Error: Failed to save as text file: {e}") | |
| ########### End of Test Huggingface Dataset ########### | |
| class Solver: | |
| def __init__( | |
| self, | |
| planner, | |
| memory, | |
| executor, | |
| output_types: str = "base,final,direct", | |
| index: int = 0, | |
| verbose: bool = True, | |
| max_steps: int = 10, | |
| max_time: int = 60, | |
| query_cache_dir: str = "solver_cache" | |
| ): | |
| self.planner = planner | |
| self.memory = memory | |
| self.executor = executor | |
| self.index = index | |
| self.verbose = verbose | |
| self.max_steps = max_steps | |
| self.max_time = max_time | |
| self.query_cache_dir = query_cache_dir | |
| self.output_types = output_types.lower().split(',') | |
| assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'." | |
| def stream_solve_user_problem(self, user_query: str, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]: | |
| """ | |
| Streams intermediate thoughts and final responses for the problem-solving process based on user input. | |
| Args: | |
| user_query (str): The text query input from the user. | |
| messages (list): A list of ChatMessage objects to store the streamed responses. | |
| """ | |
| img_path = None # AgentFlow doesn't use images in this demo | |
| # Set tool cache directory | |
| _tool_cache_dir = os.path.join(self.query_cache_dir, "tool_cache") # NOTE: This is the directory for tool cache | |
| self.executor.set_query_cache_dir(_tool_cache_dir) # NOTE: set query cache directory | |
| # Step 1: Display the received inputs | |
| messages.append(ChatMessage(role="assistant", content=f"### π Received Query:\n{user_query}")) | |
| yield messages | |
| # # Step 2: Add "thinking" status while processing | |
| # messages.append(ChatMessage( | |
| # role="assistant", | |
| # content="", | |
| # metadata={"title": "β³ Thinking: Processing input..."} | |
| # )) | |
| # [Step 3] Initialize problem-solving state | |
| start_time = time.time() | |
| step_count = 0 | |
| json_data = {"query": user_query, "image": "Image received as bytes"} | |
| messages.append(ChatMessage(role="assistant", content="<br>")) | |
| messages.append(ChatMessage(role="assistant", content="### π§ Reasoning Steps from AgentFlow (Deep Reasoning...)")) | |
| yield messages | |
| # [Step 4] Query Analysis | |
| query_analysis = self.planner.analyze_query(user_query, img_path) | |
| json_data["query_analysis"] = query_analysis | |
| query_analysis = query_analysis.replace("Concise Summary:", "**Concise Summary:**\n") | |
| query_analysis = query_analysis.replace("Required Skills:", "**Required Skills:**") | |
| query_analysis = query_analysis.replace("Relevant Tools:", "**Relevant Tools:**") | |
| query_analysis = query_analysis.replace("Additional Considerations:", "**Additional Considerations:**") | |
| messages.append(ChatMessage(role="assistant", | |
| content=f"{query_analysis}", | |
| metadata={"title": "### π Step 0: Query Analysis"})) | |
| yield messages | |
| # Save the query analysis data | |
| query_analysis_data = { | |
| "query_analysis": query_analysis, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, "step_0_query_analysis", query_analysis_data) | |
| # Execution loop (similar to your step-by-step solver) | |
| while step_count < self.max_steps and (time.time() - start_time) < self.max_time: | |
| step_count += 1 | |
| messages.append(ChatMessage(role="AgentFlow", | |
| content=f"Generating the {step_count}-th step...", | |
| metadata={"title": f"π Step {step_count}"})) | |
| yield messages | |
| # [Step 5] Generate the next step | |
| next_step = self.planner.generate_next_step( | |
| user_query, img_path, query_analysis, self.memory, step_count, self.max_steps, json_data | |
| ) | |
| context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step) | |
| step_data = { | |
| "step_count": step_count, | |
| "context": context, | |
| "sub_goal": sub_goal, | |
| "tool_name": tool_name, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, f"step_{step_count}_action_prediction", step_data) | |
| # Display the step information | |
| messages.append(ChatMessage( | |
| role="assistant", | |
| content=f"**Context:** {context}\n\n**Sub-goal:** {sub_goal}\n\n**Tool:** `{tool_name}`", | |
| metadata={"title": f"### π― Step {step_count}: Action Prediction ({tool_name})"})) | |
| yield messages | |
| # Handle tool execution or errors | |
| if tool_name not in self.planner.available_tools: | |
| messages.append(ChatMessage( | |
| role="assistant", | |
| content=f"β οΈ Error: Tool '{tool_name}' is not available.")) | |
| yield messages | |
| continue | |
| # [Step 6-7] Generate and execute the tool command | |
| tool_command = self.executor.generate_tool_command( | |
| user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name], step_count, json_data | |
| ) | |
| analysis, explanation, command = self.executor.extract_explanation_and_command(tool_command) | |
| result = self.executor.execute_tool_command(tool_name, command) | |
| result = make_json_serializable_truncated(result) | |
| # Display the ommand generation information | |
| messages.append(ChatMessage( | |
| role="assistant", | |
| content=f"**Command:**\n```python\n{command}\n```", | |
| metadata={"title": f"### π Step {step_count}: Command Generation ({tool_name})"})) | |
| yield messages | |
| # Save the command generation data | |
| command_generation_data = { | |
| "analysis": analysis, | |
| "explanation": explanation, | |
| "command": command, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, f"step_{step_count}_command_generation", command_generation_data) | |
| # Display the command execution result | |
| messages.append(ChatMessage( | |
| role="assistant", | |
| content=f"**Result:**\n```json\n{json.dumps(result, indent=4)}\n```", | |
| # content=f"**Result:**\n```json\n{result}\n```", | |
| metadata={"title": f"### β‘ Step {step_count}: Command Execution ({tool_name})"})) | |
| yield messages | |
| # Save the command execution data | |
| command_execution_data = { | |
| "result": result, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, f"step_{step_count}_command_execution", command_execution_data) | |
| # [Step 8] Memory update and stopping condition | |
| self.memory.add_action(step_count, tool_name, sub_goal, command, result) | |
| stop_verification = self.planner.verificate_context(user_query, img_path, query_analysis, self.memory, step_count, json_data) | |
| context_verification, conclusion = self.planner.extract_conclusion(stop_verification) | |
| # Save the context verification data | |
| context_verification_data = { | |
| "stop_verification": context_verification, | |
| "conclusion": conclusion, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, f"step_{step_count}_context_verification", context_verification_data) | |
| # Display the context verification result | |
| conclusion_emoji = "β " if conclusion == 'STOP' else "π" | |
| messages.append(ChatMessage( | |
| role="assistant", | |
| content=f"**Analysis:**\n{context_verification}\n\n**Conclusion:** `{conclusion}` {conclusion_emoji}", | |
| metadata={"title": f"### π€ Step {step_count}: Context Verification"})) | |
| yield messages | |
| if conclusion == 'STOP': | |
| break | |
| # Step 7: Generate Final Output (if needed) | |
| if 'direct' in self.output_types: | |
| messages.append(ChatMessage(role="assistant", content="<br>")) | |
| direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory) | |
| messages.append(ChatMessage(role="assistant", content=f"### π Final Answer:\n{direct_output}")) | |
| yield messages | |
| # Save the direct output data | |
| direct_output_data = { | |
| "direct_output": direct_output, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, "direct_output", direct_output_data) | |
| if 'final' in self.output_types: | |
| final_output = self.planner.generate_final_output(user_query, img_path, self.memory) # Disabled visibility for now | |
| # messages.append(ChatMessage(role="assistant", content=f"π― Final Output:\n{final_output}")) | |
| # yield messages | |
| # Save the final output data | |
| final_output_data = { | |
| "final_output": final_output, | |
| "time": round(time.time() - start_time, 5) | |
| } | |
| save_module_data(QUERY_ID, "final_output", final_output_data) | |
| # Step 8: Completion Message | |
| messages.append(ChatMessage(role="assistant", content="<br>")) | |
| messages.append(ChatMessage(role="assistant", content="### β¨ Query Solved!")) | |
| messages.append(ChatMessage(role="assistant", content="How do you like the output from AgentFlow ππ«? Please give us your feedback below. \n\nπ If the answer is correct or the reasoning steps are helpful, please upvote the output. \nπ If it is incorrect or the reasoning steps are not helpful, please downvote the output. \nπ¬ If you have any suggestions or comments, please leave them below.\n\nThank you for using AgentFlow! ππ«")) | |
| yield messages | |
| def parse_arguments(): | |
| parser = argparse.ArgumentParser(description="Run the AgentFlow demo with specified parameters.") | |
| parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.") | |
| parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.") | |
| parser.add_argument( | |
| "--output_types", | |
| default="base,final,direct", | |
| help="Comma-separated list of required outputs (base,final,direct)" | |
| ) | |
| parser.add_argument("--enabled_tools", default="Base_Generator_Tool", help="List of enabled tools.") | |
| parser.add_argument("--root_cache_dir", default="solver_cache", help="Path to solver cache directory.") | |
| parser.add_argument("--query_id", default=None, help="Query ID.") | |
| parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.") | |
| # NOTE: Add new arguments | |
| parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).") | |
| parser.add_argument("--openai_api_source", default="we_provided", choices=["we_provided", "user_provided"], help="Source of OpenAI API key.") | |
| return parser.parse_args() | |
| def solve_problem_gradio(user_query, max_steps=10, max_time=60, llm_model_engine=None, enabled_tools=None): | |
| """ | |
| Wrapper function to connect the solver to Gradio. | |
| Streams responses from `solver.stream_solve_user_problem` for real-time UI updates. | |
| """ | |
| # Check if query is empty | |
| if not user_query or not user_query.strip(): | |
| yield [ChatMessage(role="assistant", content="β Error: Please enter a question before submitting.")] | |
| return | |
| # Generate Unique Query ID (Date and first 8 characters of UUID) | |
| query_id = time.strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())[:8] # e.g, 20250217_062225_612f2474 | |
| print(f"Query ID: {query_id}") | |
| # NOTE: update the global variable to save the query ID | |
| global QUERY_ID | |
| QUERY_ID = query_id | |
| # Create a directory for the query ID | |
| query_cache_dir = os.path.join(DATASET_DIR.name, query_id) # NOTE | |
| os.makedirs(query_cache_dir, exist_ok=True) | |
| # if api_key is None: | |
| # return [["assistant", "β Error: OpenAI API Key is required."]] | |
| # Save the query data | |
| save_query_data( | |
| query_id=query_id, | |
| query=user_query | |
| ) | |
| # Filter out Web_Search_Tool (frontend only, not actually used) | |
| if enabled_tools and "Web_Search_Tool" in enabled_tools: | |
| enabled_tools = [tool for tool in enabled_tools if tool != "Web_Search_Tool"] | |
| # Instantiate Initializer | |
| initializer = Initializer( | |
| enabled_tools=enabled_tools, | |
| tool_engine=["Default"] * len(enabled_tools) if enabled_tools else ["Default"], | |
| model_string=llm_model_engine, | |
| verbose=False | |
| ) | |
| # Instantiate Planner | |
| planner = Planner( | |
| llm_engine_name=llm_model_engine, | |
| toolbox_metadata=initializer.toolbox_metadata, | |
| available_tools=initializer.available_tools, | |
| verbose=False, | |
| temperature=0.7 | |
| ) | |
| # Instantiate Memory | |
| memory = Memory() | |
| # Instantiate Executor | |
| executor = Executor( | |
| llm_engine_name="dashscope", # AgentFlow uses dashscope for executor | |
| root_cache_dir=query_cache_dir, # NOTE | |
| verbose=False, | |
| temperature=0.7, | |
| enable_signal=False | |
| ) | |
| # Instantiate Solver | |
| solver = Solver( | |
| planner=planner, | |
| memory=memory, | |
| executor=executor, | |
| output_types=args.output_types, # Add new parameter | |
| verbose=args.verbose, | |
| max_steps=max_steps, | |
| max_time=max_time, | |
| query_cache_dir=query_cache_dir # NOTE | |
| ) | |
| if solver is None: | |
| return [["assistant", "β Error: Solver is not initialized. Please restart the application."]] | |
| messages = [] # Initialize message list | |
| for message_batch in solver.stream_solve_user_problem(user_query, messages): | |
| yield [msg for msg in message_batch] # Ensure correct format for Gradio Chatbot | |
| # Save steps | |
| save_steps_data( | |
| query_id=query_id, | |
| memory=memory | |
| ) | |
| def main(args): | |
| #################### Gradio Interface #################### | |
| # with gr.Blocks() as demo: | |
| with gr.Blocks(theme=gr.themes.Ocean()) as demo: | |
| # Theming https://www.gradio.app/guides/theming-guide | |
| gr.Markdown("# ππ« Chat with AgentFlow: A Trainable Agentic Framework for Complex Reasoning") # Title | |
| gr.Markdown(""" | |
| **AgentFlow** is a **trainable, tool-integrated agentic framework** designed to overcome the scalability and generalization limits of today's tool-augmented reasoning approaches. It introduces a **modular agentic system** (π§ Planner, π Executor, β Verifier, and βοΈ Generator) and an **in-the-flow RL algorithm (Flow-GRPO)** to optimize the agent within the system for **effective planning and tool use**. | |
| [Website](https://agentflow.stanford.edu/) | | |
| [Paper](https://arxiv.org/abs/2510.05592) | | |
| [GitHub](https://github.com/lupantech/AgentFlow) | | |
| > β³ **Note:** The first query may take ~20 seconds to initialize AgentFlow. Subsequent queries will be supper fast. | |
| """) | |
| with gr.Row(): | |
| # Left column for settings | |
| with gr.Column(scale=1): | |
| # with gr.Row(): | |
| # if args.openai_api_source == "user_provided": | |
| # print("Using API key from user input.") | |
| # api_key = gr.Textbox( | |
| # show_label=True, | |
| # placeholder="Your API key will not be stored in any way.", | |
| # type="password", | |
| # label="OpenAI API Key", | |
| # # container=False | |
| # ) | |
| # else: | |
| # print(f"Using local API key from environment variable: ...{os.getenv('OPENAI_API_KEY')[-4:]}") | |
| # api_key = gr.Textbox( | |
| # value=os.getenv("OPENAI_API_KEY"), | |
| # visible=True, | |
| # interactive=False | |
| # ) | |
| with gr.Row(): | |
| llm_model_engine = gr.Textbox( | |
| value="vllm-AgentFlow/agentflow-planner-7b", | |
| label="π§ Planner Model", | |
| interactive=False | |
| ) | |
| with gr.Row(): | |
| gr.Textbox( | |
| value="Qwen2.5-7B-Instruct", | |
| label="π Executor, β Verifier, and βοΈ Generator Model", | |
| interactive=False | |
| ) | |
| with gr.Row(): | |
| vllm_status = gr.Textbox( | |
| value=get_vllm_status(), | |
| label="vLLM Status", | |
| interactive=False, | |
| scale=4 | |
| ) | |
| refresh_status_btn = gr.Button("π Refresh", scale=1) | |
| # Add click handler for refresh button | |
| refresh_status_btn.click( | |
| fn=get_vllm_status, | |
| inputs=[], | |
| outputs=vllm_status | |
| ) | |
| with gr.Row(): | |
| max_steps = gr.Slider(value=5, minimum=1, maximum=10, step=1, label="Max Steps") | |
| with gr.Row(): | |
| max_time = gr.Slider(value=240, minimum=60, maximum=300, step=30, label="Max Time (seconds)") | |
| with gr.Row(): | |
| # Container for tools section | |
| with gr.Column(): | |
| # First row for checkbox group | |
| enabled_tools = gr.CheckboxGroup( | |
| choices=all_tools, | |
| value=all_tools, | |
| label="Selected Tools", | |
| ) | |
| # Second row for buttons | |
| with gr.Row(): | |
| enable_all_btn = gr.Button("Select All Tools") | |
| disable_all_btn = gr.Button("Clear All Tools") | |
| # Add click handlers for the buttons | |
| enable_all_btn.click( | |
| lambda: all_tools, | |
| outputs=enabled_tools | |
| ) | |
| disable_all_btn.click( | |
| lambda: [], | |
| outputs=enabled_tools | |
| ) | |
| with gr.Column(scale=5): | |
| with gr.Row(): | |
| # Middle column for the query | |
| with gr.Column(scale=2): | |
| with gr.Row(): | |
| user_query = gr.Textbox(value="How many r letters are in the word strawberry?", placeholder="Type your question here...", label="Question (Required)", lines=3) | |
| with gr.Row(): | |
| run_button = gr.Button("ππ« Submit and Run", variant="primary") # Run button with blue color | |
| # Right column for the output | |
| with gr.Column(scale=3): | |
| chatbot_output = gr.Chatbot(type="messages", label="Step-wise Problem-Solving Output", height=500) | |
| # TODO: Add actions to the buttons | |
| with gr.Row(elem_id="buttons") as button_row: | |
| upvote_btn = gr.Button(value="π Upvote", interactive=True, variant="primary") | |
| downvote_btn = gr.Button(value="π Downvote", interactive=True, variant="primary") | |
| # stop_btn = gr.Button(value="βοΈ Stop", interactive=True) # TODO | |
| # clear_btn = gr.Button(value="ποΈ Clear history", interactive=True) # TODO | |
| # TODO: Add comment textbox | |
| with gr.Row(): | |
| comment_textbox = gr.Textbox(value="", | |
| placeholder="Feel free to add any comments here. Thanks for using AgentFlow!", | |
| label="π¬ Comment (Type and press Enter to submit.)", interactive=True) | |
| # Update the button click handlers | |
| upvote_btn.click( | |
| fn=lambda: (save_feedback(QUERY_ID, "upvote"), gr.Info("Thank you for your upvote! π")), | |
| inputs=[], | |
| outputs=[] | |
| ) | |
| downvote_btn.click( | |
| fn=lambda: (save_feedback(QUERY_ID, "downvote"), gr.Info("Thank you for your feedback. We'll work to improve! π")), | |
| inputs=[], | |
| outputs=[] | |
| ) | |
| # Add handler for comment submission | |
| comment_textbox.submit( | |
| fn=lambda comment: (save_feedback(QUERY_ID, "comment", comment), gr.Info("Thank you for your comment! β¨")), | |
| inputs=[comment_textbox], | |
| outputs=[] | |
| ) | |
| # Bottom row for examples | |
| with gr.Row(): | |
| with gr.Column(scale=5): | |
| gr.Markdown("") | |
| gr.Markdown(""" | |
| ## π Try these examples with suggested tools. | |
| """) | |
| gr.Examples( | |
| examples=[ | |
| [ "General Knowledge", | |
| "What is the capital of France?", | |
| ["Base_Generator_Tool"], | |
| "Paris"], | |
| [ "Logical Reasoning", | |
| "How many r letters are in the word strawberry?", | |
| ["Base_Generator_Tool", "Python_Coder_Tool"], | |
| "3"], | |
| [ "Web Search", | |
| "Who is the mother-in-law of Olivera Despina?", | |
| ["Base_Generator_Tool", "Google_Search_Tool", "Wikipedia_Search_Tool", "Web_Search_Tool"], | |
| "GΓΌlΓ§iΓ§ek Hatun"], | |
| [ "Agentic Search", | |
| "The object in the British Museum's collection with a museum number of 2012,5015.17 is the shell of a particular mollusk species. According to the abstract of a research article published in Science Advances in 2021, beads made from the shells of this species were found that are at least how many thousands of years old?", | |
| ["Base_Generator_Tool", "Python_Coder_Tool", "Google_Search_Tool", "Wikipedia_Search_Tool", "Web_Search_Tool"], | |
| "142,000"], | |
| [ "Arithmetic Reasoning", | |
| "Which is bigger, 9.11 or 9.9?", | |
| ["Base_Generator_Tool", "Python_Coder_Tool"], | |
| "9.9"], | |
| [ "Multi-step Reasoning", | |
| "Using the numbers [1, 1, 6, 9], create an expression that equals 24. You must use basic arithmetic operations (+, -, Γ, /) and parentheses. For example, one solution for [1, 2, 3, 4] is (1+2+3)Γ4.", | |
| ["Python_Coder_Tool"], | |
| "((1 + 1) * 9) + 6"], | |
| ["Scentific Reasoning", | |
| "An investigator is studying cellular regeneration of epithelial cells. She has obtained a tissue sample from a normal thyroid gland for histopathologic examination. It shows follicles lined by a single layer of cube-like cells with large central nuclei. Which of the following parts of the female reproductive tract is also lined by this type of epithelium?\nA. Ovaries\nB. Vagina\nC. Fallopian tubes\nD. Vulva\nChoose the correct option.", | |
| ["Base_Generator_Tool", "Google_Search_Tool", "Wikipedia_Search_Tool", "Python_Coder_Tool"], | |
| "A. Ovaries"], | |
| ], | |
| inputs=[gr.Textbox(label="Category", visible=False), user_query, enabled_tools, gr.Textbox(label="Reference Answer", visible=False)], | |
| # label="Try these examples with suggested tools." | |
| ) | |
| # Link button click to function | |
| run_button.click( | |
| fn=solve_problem_gradio, | |
| inputs=[user_query, max_steps, max_time, llm_model_engine, enabled_tools], | |
| outputs=chatbot_output | |
| ) | |
| #################### Gradio Interface #################### | |
| # Launch the Gradio app | |
| # demo.launch(ssr_mode=False) | |
| demo.launch(ssr_mode=False, share=True) # Added share=True parameter | |
| if __name__ == "__main__": | |
| import atexit | |
| args = parse_arguments() | |
| # All tools for AgentFlow | |
| all_tools = [ | |
| "Base_Generator_Tool", | |
| "Python_Coder_Tool", | |
| "Google_Search_Tool", | |
| "Wikipedia_Search_Tool", | |
| "Web_Search_Tool" | |
| ] | |
| args.enabled_tools = ",".join(all_tools) | |
| # NOTE: Use the same name for the query cache directory as the dataset directory | |
| args.root_cache_dir = DATASET_DIR.name | |
| # Start vLLM service | |
| print("=" * 60) | |
| print("π Checking vLLM service status...") | |
| if not check_vllm_service(): | |
| print(f"β οΈ vLLM service not running. Starting {VLLM_MODEL_NAME}...") | |
| start_vllm_service() | |
| else: | |
| print(f"β vLLM service is already running on port {VLLM_PORT}") | |
| print("=" * 60) | |
| # Register cleanup function | |
| # atexit.register(stop_vllm_service) | |
| main(args) | |