import os import sys import json import argparse import time import uuid import subprocess import requests from typing import List, Dict, Any, Iterator from dotenv import load_dotenv load_dotenv() import gradio as gr from gradio import ChatMessage # Import AgentFlow modules from agentflow.models.initializer import Initializer from agentflow.models.planner import Planner from agentflow.models.memory import Memory from agentflow.models.executor import Executor from agentflow.models.utils import make_json_serializable_truncated from pathlib import Path from huggingface_hub import CommitScheduler import spaces # Get Huggingface token from environment variable HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") ########### Test Huggingface Dataset ########### # Update the HuggingFace dataset constants DATASET_DIR = Path("solver_cache") # the directory to save the dataset DATASET_DIR.mkdir(parents=True, exist_ok=True) global QUERY_ID QUERY_ID = None TOOL_NAME_MAPPING = { "Generalist_Solution_Generator_Tool": "Base_Generator_Tool", "Ground_Google_Search_Tool": "Google_Search_Tool", "Python_Code_Generator_Tool": "Python_Coder_Tool", "Web_RAG_Search_Tool": "Web_Search_Tool", "Wikipedia_RAG_Search_Tool": "Wikipedia_Search_Tool" } # Enable scheduler to record data to HuggingFace dataset # scheduler = None scheduler = CommitScheduler( repo_id="ZhuofengLi/AgentFlow-Gradio-Demo-User-Data", repo_type="dataset", folder_path=DATASET_DIR, path_in_repo="solver_cache", # Update path in repo token=HF_TOKEN ) ########### vLLM Service Management ########### VLLM_MODEL_NAME = "AgentFlow/agentflow-planner-7b" VLLM_PORT = 8000 VLLM_HOST = "localhost" VLLM_PROCESS = None def check_vllm_service() -> bool: """Check if vLLM service is running""" try: response = requests.get(f"http://{VLLM_HOST}:{VLLM_PORT}/v1/models", timeout=2) return response.status_code == 200 except: return False def start_vllm_service() -> bool: """Start vLLM service in background""" global VLLM_PROCESS if check_vllm_service(): print(f"🟒 vLLM service already running on port {VLLM_PORT}") return True try: print(f"πŸš€ Starting vLLM service for {VLLM_MODEL_NAME}...") # Start vLLM server in background VLLM_PROCESS = subprocess.Popen( [ "vllm", "serve", VLLM_MODEL_NAME, "--port", str(VLLM_PORT), "--host", VLLM_HOST, "--tensor-parallel-size", "1", "--gpu-memory-utilization", "0.95" ], text=True ) # Wait for service to be ready (max 60 seconds) for i in range(180): time.sleep(1) if check_vllm_service(): print(f"🟒 vLLM service started successfully on port {VLLM_PORT}") return True print("⚠️ vLLM service failed to start within 60 seconds") return False except Exception as e: print(f"❌ Failed to start vLLM service: {e}") return False def stop_vllm_service(): """Stop vLLM service if running""" global VLLM_PROCESS if VLLM_PROCESS: VLLM_PROCESS.terminate() VLLM_PROCESS.wait() print("πŸ›‘ vLLM service stopped") def get_vllm_status() -> str: """Get vLLM service status message""" if check_vllm_service(): return f"🟒 vLLM service running on port {VLLM_PORT}" else: return f"⚠️ vLLM service not running" ########### End of vLLM Service Management ########### def save_query_data(query_id: str, query: str) -> None: """Save query data to dataset""" # Save query metadata query_cache_dir = DATASET_DIR / query_id query_cache_dir.mkdir(parents=True, exist_ok=True) query_file = query_cache_dir / "query_metadata.json" query_metadata = { "query_id": query_id, "query_text": query, "datetime": time.strftime("%Y%m%d_%H%M%S"), } print(f"Saving query metadata to {query_file}") with query_file.open("w") as f: json.dump(query_metadata, f, indent=4) def save_feedback(query_id: str, feedback_type: str, feedback_text: str = None) -> None: """ Save user feedback to the query directory. Args: query_id: Unique identifier for the query feedback_type: Type of feedback ('upvote', 'downvote', or 'comment') feedback_text: Optional text feedback from user """ feedback_data_dir = DATASET_DIR / query_id feedback_data_dir.mkdir(parents=True, exist_ok=True) feedback_data = { "query_id": query_id, "feedback_type": feedback_type, "feedback_text": feedback_text, "datetime": time.strftime("%Y%m%d_%H%M%S") } # Save feedback in the query directory feedback_file = feedback_data_dir / "feedback.json" print(f"Saving feedback to {feedback_file}") # If feedback file exists, update it if feedback_file.exists(): with feedback_file.open("r") as f: existing_feedback = json.load(f) # Convert to list if it's a single feedback entry if not isinstance(existing_feedback, list): existing_feedback = [existing_feedback] existing_feedback.append(feedback_data) feedback_data = existing_feedback # Write feedback data with feedback_file.open("w") as f: json.dump(feedback_data, f, indent=4) def save_steps_data(query_id: str, memory: Memory) -> None: """Save steps data to Huggingface dataset""" steps_file = DATASET_DIR / query_id / "all_steps.json" memory_actions = memory.get_actions() memory_actions = make_json_serializable_truncated(memory_actions) # NOTE: make the memory actions serializable print("Memory actions: ", memory_actions) with steps_file.open("w") as f: json.dump(memory_actions, f, indent=4) def save_module_data(query_id: str, key: str, value: Any) -> None: """Save module data to Huggingface dataset""" try: key = key.replace(" ", "_").lower() module_file = DATASET_DIR / query_id / f"{key}.json" value = make_json_serializable_truncated(value) # NOTE: make the value serializable with module_file.open("a") as f: json.dump(value, f, indent=4) except Exception as e: print(f"Warning: Failed to save as JSON: {e}") # Fallback to saving as text file text_file = DATASET_DIR / query_id / f"{key}.txt" try: with text_file.open("a") as f: f.write(str(value) + "\n") print(f"Successfully saved as text file: {text_file}") except Exception as e: print(f"Error: Failed to save as text file: {e}") ########### End of Test Huggingface Dataset ########### class Solver: def __init__( self, planner, memory, executor, output_types: str = "base,final,direct", index: int = 0, verbose: bool = True, max_steps: int = 10, max_time: int = 60, query_cache_dir: str = "solver_cache" ): self.planner = planner self.memory = memory self.executor = executor self.index = index self.verbose = verbose self.max_steps = max_steps self.max_time = max_time self.query_cache_dir = query_cache_dir self.output_types = output_types.lower().split(',') assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'." def stream_solve_user_problem(self, user_query: str, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]: """ Streams intermediate thoughts and final responses for the problem-solving process based on user input. Args: user_query (str): The text query input from the user. messages (list): A list of ChatMessage objects to store the streamed responses. """ img_path = None # AgentFlow doesn't use images in this demo # Set tool cache directory _tool_cache_dir = os.path.join(self.query_cache_dir, "tool_cache") # NOTE: This is the directory for tool cache self.executor.set_query_cache_dir(_tool_cache_dir) # NOTE: set query cache directory # Step 1: Display the received inputs messages.append(ChatMessage(role="assistant", content=f"### πŸ’­ Received Query:\n{user_query}")) yield messages # # Step 2: Add "thinking" status while processing # messages.append(ChatMessage( # role="assistant", # content="", # metadata={"title": "⏳ Thinking: Processing input..."} # )) # [Step 3] Initialize problem-solving state start_time = time.time() step_count = 0 json_data = {"query": user_query, "image": "Image received as bytes"} messages.append(ChatMessage(role="assistant", content="
")) messages.append(ChatMessage(role="assistant", content="### 🧠 Reasoning Steps from AgentFlow (Deep Reasoning...)")) yield messages # [Step 4] Query Analysis query_analysis = self.planner.analyze_query(user_query, img_path) json_data["query_analysis"] = query_analysis # TODO: update # Format the query analysis for display query_analysis_display = query_analysis.replace("Concise Summary:", "**Concise Summary:**\n") query_analysis_display = query_analysis_display.replace("Required Skills:", "**Required Skills:**") query_analysis_display = query_analysis_display.replace("Relevant Tools:", "**Relevant Tools:**") query_analysis_display = query_analysis_display.replace("Additional Considerations:", "**Additional Considerations:**") # Map tool names in query analysis for display for original_name, display_name in TOOL_NAME_MAPPING.items(): query_analysis_display = query_analysis_display.replace(original_name, display_name) messages.append(ChatMessage(role="assistant", content=f"{query_analysis_display}", metadata={"title": "### πŸ”Ž Step 0: Query Analysis"})) yield messages # Save the query analysis data query_analysis_data = { "query_analysis": query_analysis, "time": round(time.time() - start_time, 5) } save_module_data(QUERY_ID, "step_0_query_analysis", query_analysis_data) # Execution loop (similar to your step-by-step solver) while step_count < self.max_steps and (time.time() - start_time) < self.max_time: step_count += 1 messages.append(ChatMessage(role="AgentFlow", content=f"Generating the {step_count}-th step...", metadata={"title": f"πŸ”„ Step {step_count}"})) yield messages # [Step 5] Generate the next step next_step = self.planner.generate_next_step( user_query, img_path, query_analysis, self.memory, step_count, self.max_steps, json_data ) context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step) # TODO: update step_data = { "step_count": step_count, "context": context, "sub_goal": sub_goal, "tool_name": tool_name, "time": round(time.time() - start_time, 5) } save_module_data(QUERY_ID, f"step_{step_count}_action_prediction", step_data) # Display the step information display_tool_name = TOOL_NAME_MAPPING.get(tool_name, tool_name) # Map tool names in context and sub_goal for display context_display = context if context else "" sub_goal_display = sub_goal if sub_goal else "" for original_name, display_name in TOOL_NAME_MAPPING.items(): context_display = context_display.replace(original_name, display_name) sub_goal_display = sub_goal_display.replace(original_name, display_name) messages.append(ChatMessage( role="assistant", content=f"**Context:** {context_display}\n\n**Sub-goal:** {sub_goal_display}\n\n**Tool:** `{display_tool_name}`", metadata={"title": f"### 🎯 Step {step_count}: Action Prediction ({display_tool_name})"})) yield messages # Handle tool execution or errors if tool_name not in self.planner.available_tools: display_tool_name = TOOL_NAME_MAPPING.get(tool_name, tool_name) messages.append(ChatMessage( role="assistant", content=f"⚠️ Error: Tool '{display_tool_name}' is not available.")) yield messages continue # [Step 6-7] Generate and execute the tool command tool_command = self.executor.generate_tool_command( user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name], step_count, json_data ) analysis, explanation, command = self.executor.extract_explanation_and_command(tool_command) result = self.executor.execute_tool_command(tool_name, command) result = make_json_serializable_truncated(result) # Display the ommand generation information display_tool_name = TOOL_NAME_MAPPING.get(tool_name, tool_name) messages.append(ChatMessage( role="assistant", content=f"**Command:**\n```python\n{command}\n```", metadata={"title": f"### πŸ“‹ Step {step_count}: Command Generation ({display_tool_name})"})) yield messages # Save the command generation data command_generation_data = { "analysis": analysis, "explanation": explanation, "command": command, "time": round(time.time() - start_time, 5) } save_module_data(QUERY_ID, f"step_{step_count}_command_generation", command_generation_data) # Display the command execution result display_tool_name = TOOL_NAME_MAPPING.get(tool_name, tool_name) # Map tool names in result for display result_json_str = json.dumps(result, indent=4) for original_name, display_name in TOOL_NAME_MAPPING.items(): result_json_str = result_json_str.replace(original_name, display_name) messages.append(ChatMessage( role="assistant", content=f"**Result:**\n```json\n{result_json_str}\n```", # content=f"**Result:**\n```json\n{result}\n```", metadata={"title": f"### ⚑ Step {step_count}: Command Execution ({display_tool_name})"})) yield messages # Save the command execution data command_execution_data = { "result": result, "time": round(time.time() - start_time, 5) } save_module_data(QUERY_ID, f"step_{step_count}_command_execution", command_execution_data) # [Step 8] Memory update and stopping condition self.memory.add_action(step_count, tool_name, sub_goal, command, result) # TODO: do not update here stop_verification = self.planner.verificate_context(user_query, img_path, query_analysis, self.memory, step_count, json_data) context_verification, conclusion = self.planner.extract_conclusion(stop_verification) # Save the context verification data context_verification_data = { "stop_verification": context_verification, "conclusion": conclusion, "time": round(time.time() - start_time, 5) } save_module_data(QUERY_ID, f"step_{step_count}_context_verification", context_verification_data) # Display the context verification result # TODO: update context_verification # Map tool names in context verification for display context_verification_display = context_verification if context_verification else "" for original_name, display_name in TOOL_NAME_MAPPING.items(): context_verification_display = context_verification_display.replace(original_name, display_name) conclusion_emoji = "βœ…" if conclusion == 'STOP' else "πŸ›‘" messages.append(ChatMessage( role="assistant", content=f"**Analysis:**\n{context_verification_display}\n\n**Conclusion:** `{conclusion}` {conclusion_emoji}", metadata={"title": f"### πŸ€– Step {step_count}: Context Verification"})) yield messages if conclusion == 'STOP': break # Step 7: Generate Final Output (if needed) if 'direct' in self.output_types: messages.append(ChatMessage(role="assistant", content="
")) direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory) # TODO: update # Map tool names in direct output for display direct_output_display = direct_output if direct_output else "" for original_name, display_name in TOOL_NAME_MAPPING.items(): direct_output_display = direct_output_display.replace(original_name, display_name) messages.append(ChatMessage(role="assistant", content=f"### πŸŽ‰ Final Answer:\n{direct_output_display}")) yield messages # Save the direct output data direct_output_data = { "direct_output": direct_output, "time": round(time.time() - start_time, 5) } save_module_data(QUERY_ID, "direct_output", direct_output_data) if 'final' in self.output_types: final_output = self.planner.generate_final_output(user_query, img_path, self.memory) # Disabled visibility for now # messages.append(ChatMessage(role="assistant", content=f"🎯 Final Output:\n{final_output}")) # yield messages # Save the final output data final_output_data = { "final_output": final_output, "time": round(time.time() - start_time, 5) } save_module_data(QUERY_ID, "final_output", final_output_data) # Step 8: Completion Message messages.append(ChatMessage(role="assistant", content="
")) messages.append(ChatMessage(role="assistant", content="### ✨ Query Solved!")) messages.append(ChatMessage(role="assistant", content="How do you like the output from AgentFlow πŸŒ€πŸ’«? Please give us your feedback below. \n\nπŸ‘ If the answer is correct or the reasoning steps are helpful, please upvote the output. \nπŸ‘Ž If it is incorrect or the reasoning steps are not helpful, please downvote the output. \nπŸ’¬ If you have any suggestions or comments, please leave them below.\n\nThank you for using AgentFlow! πŸŒ€πŸ’«")) yield messages def parse_arguments(): parser = argparse.ArgumentParser(description="Run the AgentFlow demo with specified parameters.") parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.") parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.") parser.add_argument( "--output_types", default="base,final,direct", help="Comma-separated list of required outputs (base,final,direct)" ) parser.add_argument("--enabled_tools", default="Base_Generator_Tool", help="List of enabled tools.") parser.add_argument("--root_cache_dir", default="solver_cache", help="Path to solver cache directory.") parser.add_argument("--query_id", default=None, help="Query ID.") parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.") # NOTE: Add new arguments parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).") parser.add_argument("--openai_api_source", default="we_provided", choices=["we_provided", "user_provided"], help="Source of OpenAI API key.") return parser.parse_args() @spaces.GPU(duration=300) def solve_problem_gradio(user_query, max_steps=10, max_time=60, llm_model_engine=None, enabled_tools=None): """ Wrapper function to connect the solver to Gradio. Streams responses from `solver.stream_solve_user_problem` for real-time UI updates. """ # Check if query is empty if not user_query or not user_query.strip(): yield [ChatMessage(role="assistant", content="❌ Error: Please enter a question before submitting.")] return # Generate Unique Query ID (Date and first 8 characters of UUID) query_id = time.strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())[:8] # e.g, 20250217_062225_612f2474 print(f"Query ID: {query_id}") # NOTE: update the global variable to save the query ID global QUERY_ID QUERY_ID = query_id # Create a directory for the query ID query_cache_dir = os.path.join(DATASET_DIR.name, query_id) # NOTE os.makedirs(query_cache_dir, exist_ok=True) # if api_key is None: # return [["assistant", "❌ Error: OpenAI API Key is required."]] # Save the query data save_query_data( query_id=query_id, query=user_query ) # Filter out Web_Search_Tool (frontend only, not actually used) if enabled_tools and "Web_Search_Tool" in enabled_tools: enabled_tools = [tool for tool in enabled_tools if tool != "Web_Search_Tool"] # Instantiate Initializer initializer = Initializer( enabled_tools=enabled_tools, tool_engine=["Default"] * len(enabled_tools) if enabled_tools else ["Default"], model_string=llm_model_engine, verbose=False ) # Instantiate Planner planner = Planner( llm_engine_name=llm_model_engine, toolbox_metadata=initializer.toolbox_metadata, available_tools=initializer.available_tools, verbose=False, temperature=0.7 ) # Instantiate Memory memory = Memory() # Instantiate Executor executor = Executor( llm_engine_name="dashscope", # AgentFlow uses dashscope for executor root_cache_dir=query_cache_dir, # NOTE verbose=False, temperature=0.7, enable_signal=False ) # Instantiate Solver solver = Solver( planner=planner, memory=memory, executor=executor, output_types=args.output_types, # Add new parameter verbose=args.verbose, max_steps=max_steps, max_time=max_time, query_cache_dir=query_cache_dir # NOTE ) if solver is None: return [["assistant", "❌ Error: Solver is not initialized. Please restart the application."]] messages = [] # Initialize message list for message_batch in solver.stream_solve_user_problem(user_query, messages): yield [msg for msg in message_batch] # Ensure correct format for Gradio Chatbot # Save steps save_steps_data( query_id=query_id, memory=memory ) def main(args): #################### Gradio Interface #################### # with gr.Blocks() as demo: with gr.Blocks(theme=gr.themes.Ocean()) as demo: # Theming https://www.gradio.app/guides/theming-guide gr.Markdown("# πŸŒ€πŸ’« Chat with AgentFlow: A Trainable Agentic Framework for Complex Reasoning") # Title gr.Markdown(""" **AgentFlow** is a **trainable, tool-integrated agentic framework** designed to overcome the scalability and generalization limits of today's tool-augmented reasoning approaches. It introduces a **modular agentic system** (🧭 Planner, πŸ›  Executor, βœ… Verifier, and ✍️ Generator) and an **in-the-flow RL algorithm (Flow-GRPO)** to optimize the agent within the system for **effective planning and tool use**. [Website](https://agentflow.stanford.edu/) | [HF Paper](https://huggingface.co/papers/2510.05592) | [GitHub](https://github.com/lupantech/AgentFlow) | [Model](https://huggingface.co/AgentFlow/agentflow-planner-7b) | [YouTube](https://www.youtube.com/watch?v=kIQbCQIH1SI) | [X (Twitter)](https://x.com/lupantech/status/1976016000345919803) | [Slack](https://join.slack.com/t/agentflow-co/shared_invite/zt-3f712xngl-LfxS4gmftAeKvcxR3nSkWQ) > ⏳ **Note:** The first query may take ~20 seconds to initialize AgentFlow. Subsequent queries will be super fast. > > πŸ’‘ **Tip:** If the wait time is too long, please try again later. """) with gr.Row(): # Left column for settings with gr.Column(scale=1): # with gr.Row(): # if args.openai_api_source == "user_provided": # print("Using API key from user input.") # api_key = gr.Textbox( # show_label=True, # placeholder="Your API key will not be stored in any way.", # type="password", # label="OpenAI API Key", # # container=False # ) # else: # print(f"Using local API key from environment variable: ...{os.getenv('OPENAI_API_KEY')[-4:]}") # api_key = gr.Textbox( # value=os.getenv("OPENAI_API_KEY"), # visible=True, # interactive=False # ) with gr.Row(): llm_model_engine = gr.Textbox( value="vllm-AgentFlow/agentflow-planner-7b", label="🧭 Planner Model", interactive=False ) with gr.Row(): gr.Textbox( value="Qwen2.5-7B-Instruct", label="πŸ›  Executor, βœ… Verifier, and ✍️ Generator Model", interactive=False ) with gr.Row(): vllm_status = gr.Textbox( value=get_vllm_status(), label="vLLM Status", interactive=False, scale=4 ) refresh_status_btn = gr.Button("πŸ”„ Refresh", scale=1) # Add click handler for refresh button refresh_status_btn.click( fn=get_vllm_status, inputs=[], outputs=vllm_status ) with gr.Row(): max_steps = gr.Slider(value=5, minimum=1, maximum=10, step=1, label="Max Steps") with gr.Row(): max_time = gr.Slider(value=240, minimum=60, maximum=300, step=30, label="Max Time (seconds)") with gr.Row(): # Container for tools section with gr.Column(): # First row for checkbox group enabled_tools = gr.CheckboxGroup( choices=all_tools, value=all_tools, label="Selected Tools", ) # Second row for buttons with gr.Row(): enable_all_btn = gr.Button("Select All Tools") disable_all_btn = gr.Button("Clear All Tools") # Add click handlers for the buttons enable_all_btn.click( lambda: all_tools, outputs=enabled_tools ) disable_all_btn.click( lambda: [], outputs=enabled_tools ) with gr.Column(scale=5): with gr.Row(): # Middle column for the query with gr.Column(scale=2): with gr.Row(): user_query = gr.Textbox(value="How many r letters are in the word strawberry?", placeholder="Type your question here...", label="Question (Required)", lines=3) with gr.Row(): run_button = gr.Button("πŸŒ€πŸ’« Submit and Run", variant="primary") # Run button with blue color # Right column for the output with gr.Column(scale=3): chatbot_output = gr.Chatbot(type="messages", label="Step-wise Problem-Solving Output", height=500) # TODO: Add actions to the buttons with gr.Row(elem_id="buttons") as button_row: upvote_btn = gr.Button(value="πŸ‘ Upvote", interactive=True, variant="primary") downvote_btn = gr.Button(value="πŸ‘Ž Downvote", interactive=True, variant="primary") # stop_btn = gr.Button(value="⛔️ Stop", interactive=True) # TODO # clear_btn = gr.Button(value="πŸ—‘οΈ Clear history", interactive=True) # TODO # TODO: Add comment textbox with gr.Row(): comment_textbox = gr.Textbox(value="", placeholder="Feel free to add any comments here. Thanks for using AgentFlow!", label="πŸ’¬ Comment (Type and press Enter to submit.)", interactive=True) # Update the button click handlers upvote_btn.click( fn=lambda: (save_feedback(QUERY_ID, "upvote"), gr.Info("Thank you for your upvote! πŸ™Œ")), inputs=[], outputs=[] ) downvote_btn.click( fn=lambda: (save_feedback(QUERY_ID, "downvote"), gr.Info("Thank you for your feedback. We'll work to improve! πŸ™")), inputs=[], outputs=[] ) # Add handler for comment submission comment_textbox.submit( fn=lambda comment: (save_feedback(QUERY_ID, "comment", comment), gr.Info("Thank you for your comment! ✨")), inputs=[comment_textbox], outputs=[] ) # Bottom row for examples with gr.Row(): with gr.Column(scale=5): gr.Markdown("") gr.Markdown(""" ## πŸš€ Try these examples with suggested tools. """) gr.Examples( examples=[ [ "General Knowledge", "What is the capital of France?", ["Base_Generator_Tool"], "Paris"], [ "Logical Reasoning", "How many r letters are in the word strawberry?", ["Base_Generator_Tool", "Python_Coder_Tool"], "3"], [ "Web Search", "Who is the mother-in-law of Olivera Despina?", ["Base_Generator_Tool", "Google_Search_Tool", "Wikipedia_Search_Tool", "Web_Search_Tool"], "GΓΌlΓ§iΓ§ek Hatun"], [ "Agentic Search", "The object in the British Museum's collection with a museum number of 2012,5015.17 is the shell of a particular mollusk species. According to the abstract of a research article published in Science Advances in 2021, beads made from the shells of this species were found that are at least how many thousands of years old?", ["Base_Generator_Tool", "Python_Coder_Tool", "Google_Search_Tool", "Wikipedia_Search_Tool", "Web_Search_Tool"], "142,000"], [ "Arithmetic Reasoning", "Which is bigger, 9.11 or 9.9?", ["Base_Generator_Tool", "Python_Coder_Tool"], "9.9"], [ "Multi-step Reasoning", "Using the numbers [1, 1, 6, 9], create an expression that equals 24. You must use basic arithmetic operations (+, -, Γ—, /) and parentheses. For example, one solution for [1, 2, 3, 4] is (1+2+3)Γ—4.", ["Python_Coder_Tool"], "((1 + 1) * 9) + 6"], ["Scentific Reasoning", "An investigator is studying cellular regeneration of epithelial cells. She has obtained a tissue sample from a normal thyroid gland for histopathologic examination. It shows follicles lined by a single layer of cube-like cells with large central nuclei. Which of the following parts of the female reproductive tract is also lined by this type of epithelium?\nA. Ovaries\nB. Vagina\nC. Fallopian tubes\nD. Vulva\nChoose the correct option.", ["Base_Generator_Tool", "Google_Search_Tool", "Wikipedia_Search_Tool", "Python_Coder_Tool"], "A. Ovaries"], ], inputs=[gr.Textbox(label="Category", visible=False), user_query, enabled_tools, gr.Textbox(label="Reference Answer", visible=False)], # label="Try these examples with suggested tools." ) # Link button click to function run_button.click( fn=solve_problem_gradio, inputs=[user_query, max_steps, max_time, llm_model_engine, enabled_tools], outputs=chatbot_output, concurrency_limit=10, # A10 GPU can handle ~10 concurrent requests with vLLM concurrency_id="agentflow_solver" # Shared queue for managing GPU resource ) #################### Gradio Interface #################### # Configure queue for high traffic - optimized for A10 GPU (40G RAM, 24G VRAM) demo.queue( default_concurrency_limit=10, # Balanced for A10 GPU + vLLM inference max_size=50, # Allow up to 20 requests in queue for traffic spikes ) # Launch the Gradio app with optimized threading # demo.launch(ssr_mode=False) demo.launch( ssr_mode=False, share=True, max_threads=80 # Increase from default 40 to support high concurrency ) if __name__ == "__main__": import atexit args = parse_arguments() # All tools for AgentFlow all_tools = [ "Base_Generator_Tool", "Python_Coder_Tool", "Google_Search_Tool", "Wikipedia_Search_Tool", "Web_Search_Tool" ] args.enabled_tools = ",".join(all_tools) # NOTE: Use the same name for the query cache directory as the dataset directory args.root_cache_dir = DATASET_DIR.name # Start vLLM service print("=" * 60) print("πŸ” Checking vLLM service status...") if not check_vllm_service(): print(f"⚠️ vLLM service not running. Starting {VLLM_MODEL_NAME}...") start_vllm_service() else: print(f"βœ… vLLM service is already running on port {VLLM_PORT}") print("=" * 60) # Register cleanup function # atexit.register(stop_vllm_service) main(args)