File size: 12,115 Bytes
4db8ed6 3e96d3c 4db8ed6 5185793 4db8ed6 5185793 425caa5 4db8ed6 ba35a1f 5185793 8328a3e 5185793 4db8ed6 5185793 6f550fc 3e96d3c 4db8ed6 5185793 3e96d3c 4db8ed6 5185793 4db8ed6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import os
import json
from typing import List
from urllib.parse import quote
import logging
import gradio as gr
import pandas as pd
from server import cv_processor, job_processor, applicant_evaluator
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logo_base64 = cv_processor.encode_base64(
"static/AIRecruiterAgent.png"
)
def evaluate_applicants(
cv_files: List[str],
job_description: str,
#progress=gr.Progress(visible=True, label="Evaluating Applicants...")
) -> pd.DataFrame:
"""
Evaluate applicants' CVs against the job description.
Parameters
----------
cv_files: List[str]
List of CV file paths to evaluate.
job_description: str
The job description text to evaluate against.
Returns
-------
pd.DataFrame: DataFrame containing evaluation results with match scores and reasoning.
"""
# TODO: Add progress bar support with batch processing
# TODO: Add error handling for file processing and evaluation
# if not cv_files:
# gr.Error("Please upload applicants CV files in PDF format.")
# if not job_description:
# gr.Error("Please provide the job description text for evaluation.")
# Get job annotation
logger.info("Getting job annotation from job description.")
job_annotation = job_processor.get_job_content(job_description)
evaluation_res = []
for cv_file in cv_files:
# Get CV annotation
logger.info("Getting cv annotation from CV file: %s", cv_file.name)
cv_annotation = cv_processor.get_cv_content(cv_file.name)
# Evaluate the applicant against the job description
logger.info("Evaluating applicant CV against job description.")
res = applicant_evaluator.evaluate_applicant(
cv_annotation["cv"]["annotation"],
job_annotation["job"]["annotation"]
)
evaluation = json.loads(res["evaluation"])
cv_base64 = cv_processor.encode_base64(cv_file.name)
score = float(evaluation["match_score"])
if score >= 0.8:
match_labels = "Strong Matched"
elif score >= 0.5:
match_labels = "Partially Matched"
else:
match_labels = "Not Matched"
evaluation_res.append(
{
"Applicant": os.path.basename(cv_file.name),
"Match Score": evaluation["match_score"],
"Match Labels": match_labels,
"Match Reasoning": evaluation["match_reasoning"],
"CV Base64": cv_base64,
"CV Url": f"gradio_api/file={cv_file.name}"
}
)
#logger.info(f"Evaluation results: {response}")
evaluation_res = sorted(
evaluation_res,
key=lambda d: d['Match Score'],
reverse=True
)
return pd.DataFrame.from_records(evaluation_res)
def df_select_callback(df: pd.DataFrame, evt: gr.SelectData):
selected_row = evt.row_value
if not selected_row:
return "No row selected.", ""
match_score = selected_row[1] # .get('Match Score', 'N/A')
match_labels = selected_row[2] # .get('Match Labels', 'N/A')
match_reasoning = selected_row[3] # .get('Match Reasoning', 'N/A')
cv_base64 = selected_row[4] # .get('CV Base64', '')
pdf_url = selected_row[5] # .get('CV Url', '')
pdf_encoded_url = f"https://agents-mcp-hackathon-airecruiteragent.hf.space/{pdf_url}"
if cv_base64:
pdf_encoded = gr.HTML(
"""
<!-- The Modal -->
<div id="myModal" class="modal" style="display: none;">
<!-- Modal content -->
<div class="modal-content">
<div class="modal-header">
<span class="close" onclick="hide_pdfviewer()">×</span>
<h2>Candidate CV</h2>
</div>
<div class="modal-body">
<div id="my-pdf" class="pdfobject-container" style="height: 100%">
<object data="data:application/pdf;base64,{cv_base64}" type="application/pdf" style="height: 100%; width: 100%;">
<iframe src="https://docs.google.com/viewer?url={pdf_encoded_url}&embedded=true" style="height: 100%; width: 100%;" frameborder="0" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
</object>
</div>
</div>
<div class="modal-footer">
</div>
</div>
</div>
""".format(
title=selected_row[0],
cv_base64=cv_base64,
pdf_url=pdf_url,
pdf_encoded_url=pdf_encoded_url
),
label="CV PDF Viewer",
elem_id="pdf_viewer",
min_height="0px",
max_height="100%",
visible=True,
)
else:
pdf_encoded = gr.HTML(
"",
label="CV PDF Viewer",
elem_id="pdf_viewer",
min_height="0px",
max_height="100%",
visible=False,
)
return match_reasoning, pdf_encoded
head = """
<script src="https://unpkg.com/[email protected]/pdfobject.min.js"></script>
<script type="text/javascript">
function hide_pdfviewer(){
document.getElementById('myModal').style.display="none";
}
function show_pdfviewer(){
document.getElementById('myModal').style.display="block";
}
</script>
"""
css = """
.logo-container {
width:100%;
height:auto;
padding:1%;
}
.logo-img {
margin-left:2%;
float:left;
height:40px;
width:40px;
}
/* The Modal (background) */
.modal {
display: none;
position: fixed;
z-index: 1000; /* Sit on top */
padding-top: 100px;
left: 0;
top: 0;
width: 100%;
height: 100%;
overflow: auto; /* Enable scroll if needed */
background-color: rgb(0,0,0); /* Fallback color */
background-color: rgba(0,0,0,0.4); /* Black w/ opacity */
}
/* Modal Content */
.modal-content {
position: relative;
background-color: #fefefe;
margin: auto;
padding: 0;
border: 1px solid #888;
width: 80%;
height: 90%;
overflow: auto;
box-shadow: 0 4px 8px 0 rgba(0,0,0,0.2),0 6px 20px 0 rgba(0,0,0,0.19);
-webkit-animation-name: animatetop;
-webkit-animation-duration: 0.4s;
animation-name: animatetop;
animation-duration: 0.4s
}
/* Add Animation */
@-webkit-keyframes animatetop {
from {top:-300px; opacity:0}
to {top:0; opacity:1}
}
@keyframes animatetop {
from {top:-300px; opacity:0}
to {top:0; opacity:1}
}
/* The Close Button */
.close {
color: white;
float: right;
font-size: 28px;
font-weight: bold;
}
.close:hover,
.close:focus {
color: #000;
text-decoration: none;
cursor: pointer;
}
.modal-header {
padding: 2px 16px;
background-color: #5cb85c;
color: white;
}
.modal-body {
padding: 2px 16px;
height: 90%;
}
.modal-footer {
padding: 2px 16px;
background-color: #5cb85c;
color: white;
}
"""
# Create the Gradio interface
with gr.Blocks(head=head, css=css) as demo_app:
# Title section
with gr.Row():
gr.HTML(
"""
<div style="text-align:center; margin-bottom: 10px;">
<div class="logo-container" style="display: inline-block; text-align: center;">
<img src="data:image/png;base64,{logo_base64}" alt="AI Recruiter Agent" style="height: 100px; width: auto; " class="logo-img">
<h1 style="color: #4A90E2; font-size: 2.5em;">
AI Recruiter Agent
</h1>
<h3>Revolutionizing recruitment with AI-driven insights.</h3>
</div>
</div>
""".format(logo_base64=logo_base64) # Assuming logo_base64 is defined elsewhere
)
with gr.Row():
# Input section for resumes and job description
with gr.Column(scale=1):
gr.Markdown("### Upload Resumes and Job Description")
gr.Markdown(
"Upload multiple resumes in PDF format and provide the job description text for evaluation."
)
cv_files = gr.Files(
file_count="multiple",
file_types=[".pdf"], # , ".docx", ".txt"
label="Upload Candidate Resume files",
height="150px",
)
job_description = gr.TextArea(
placeholder="Enter Job Description text here...",
label="Job Description",
lines=12,
max_lines=12,
)
with gr.Row():
# Buttons for starting over and submitting
start_over_button = gr.Button("Start Over", variant="secondary")
submit_button = gr.Button("Match Applicants", variant="primary")
# Output section for evaluation results
with gr.Column(scale=1):
gr.Markdown("### Evaluation Results")
gr.Markdown(
"Click on the results to view detailed evaluation of each applicant against the job description."
)
# Output area for evaluation results
result_df = gr.DataFrame(
headers=[
"Applicant",
"Match Score",
"Match Labels",
],
#label="Evaluation Results",
elem_id="myResult",
type="pandas",
interactive=False,
show_row_numbers=True,
column_widths=["50%", "25%", "25%", "0%", "0%", "0%"],
wrap=False,
)
# output = gr.JSON(label="Evaluation Results")
result_detail_textbox = gr.Textbox(
label="Detailed Evaluation",
placeholder="Click on a row to see detailed evaluation.",
lines=8,
max_lines=8,
)
show_pdf_button = gr.Button(
"Show Selected Candidate CV",
variant="secondary",
elem_id="show_pdf_button",
)
pdf_viewer = gr.HTML(
"",
label="CV PDF Viewer",
elem_id="pdf_viewer",
min_height="0px",
max_height="100%",
visible=False,
)
# Button click handlers
def reset_fields():
return (
[], "", [], "",
gr.HTML(
"",
label="CV PDF Viewer",
elem_id="pdf_viewer",
min_height="0px",
max_height="100%",
visible=False,
)
)
# Reset function to clear inputs and outputs
start_over_button.click(
fn=reset_fields,
inputs=None,
outputs=[
cv_files,
job_description,
result_df,
result_detail_textbox,
pdf_viewer
]
)
submit_button.click(
fn=evaluate_applicants, inputs=[cv_files, job_description], outputs=[result_df]
)
result_df.select(
fn=df_select_callback,
inputs=[result_df],
outputs=[result_detail_textbox, pdf_viewer],
)
show_pdf_button.click(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=pdf_viewer,
js="show_pdfviewer()",
)
# Launch the interface and MCP server
if __name__ == "__main__":
demo_app.launch(
mcp_server=True,
allowed_paths=["static"]
)
|