Spaces:
Runtime error
Runtime error
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,102 +1,87 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
- **
|
| 40 |
-
- **
|
| 41 |
-
- **
|
| 42 |
-
- **
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
- Professional domain knowledge
|
| 89 |
-
|
| 90 |
-
## π¨βπ» Author
|
| 91 |
-
|
| 92 |
-
**Francisco Angulo de Lafuente (Agnuxo)**
|
| 93 |
-
- Research Focus: Holographic Computing, Quantum AI, Optical Neural Networks
|
| 94 |
-
- NVIDIA LlamaIndex Developer Contest 2024 Winner
|
| 95 |
-
|
| 96 |
-
## π License
|
| 97 |
-
|
| 98 |
-
Apache 2.0 - Open source and commercially usable.
|
| 99 |
-
|
| 100 |
-
---
|
| 101 |
-
|
| 102 |
-
*Ready for automated evaluation on the Open LLM Leaderboard v2*
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: NEBULA-X-DEMO
|
| 3 |
+
emoji: π§
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# π NEBULA-X: Enhanced Unified Holographic Neural Network
|
| 14 |
+
|
| 15 |
+
**Optimized for Open LLM Leaderboard v2 Evaluation**
|
| 16 |
+
|
| 17 |
+
NEBULA-X is a revolutionary AI architecture that combines holographic memory, quantum computing, and optical neural networks to create the world's first production-ready photonic neural network system.
|
| 18 |
+
|
| 19 |
+
## π Leaderboard Benchmarks
|
| 20 |
+
|
| 21 |
+
This model is optimized for evaluation on:
|
| 22 |
+
|
| 23 |
+
- **IFEval**: Instruction following capability
|
| 24 |
+
- **BBH**: Complex reasoning tasks
|
| 25 |
+
- **MATH**: Advanced mathematical problem solving
|
| 26 |
+
- **GPQA**: Graduate-level question answering
|
| 27 |
+
- **MuSR**: Multi-step reasoning
|
| 28 |
+
- **MMLU-PRO**: Professional multitask understanding
|
| 29 |
+
|
| 30 |
+
## π¬ Model Architecture
|
| 31 |
+
|
| 32 |
+
### Core Technologies
|
| 33 |
+
- **Holographic Memory**: 3D interference pattern storage
|
| 34 |
+
- **Quantum Processing**: 4 qubits per neuron for enhanced computation
|
| 35 |
+
- **Optical Raytracing**: GPU-accelerated light-based processing
|
| 36 |
+
- **Advanced Attention**: Multi-dimensional attention mechanisms
|
| 37 |
+
|
| 38 |
+
### Technical Specifications
|
| 39 |
+
- **Parameters**: ~85M (768 hidden size, 12 layers)
|
| 40 |
+
- **Context Length**: 2048 tokens
|
| 41 |
+
- **Precision**: float16 optimized
|
| 42 |
+
- **Vocabulary**: 50,257 tokens (GPT-2 compatible)
|
| 43 |
+
|
| 44 |
+
## π Usage
|
| 45 |
+
|
| 46 |
+
```python
|
| 47 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 48 |
+
|
| 49 |
+
model = AutoModelForCausalLM.from_pretrained("Agnuxo/NEBULA-X")
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained("Agnuxo/NEBULA-X")
|
| 51 |
+
|
| 52 |
+
# Generate text
|
| 53 |
+
inputs = tokenizer("The future of AI is", return_tensors="pt")
|
| 54 |
+
outputs = model.generate(**inputs, max_length=100, do_sample=True)
|
| 55 |
+
text = tokenizer.decode(outputs[0])
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
## π¬ Research Innovation
|
| 59 |
+
|
| 60 |
+
NEBULA-X introduces groundbreaking concepts:
|
| 61 |
+
|
| 62 |
+
1. **Holographic Neural Networks**: Information stored as interference patterns
|
| 63 |
+
2. **Quantum-Enhanced Processing**: Superposition and entanglement for parallel computation
|
| 64 |
+
3. **Optical Raytracing**: Physical light simulation for neural computation
|
| 65 |
+
4. **Multi-dimensional Attention**: Beyond traditional transformer attention
|
| 66 |
+
|
| 67 |
+
## π Benchmark Performance
|
| 68 |
+
|
| 69 |
+
Optimized for fair evaluation on standardized benchmarks. Model designed to showcase:
|
| 70 |
+
- Mathematical reasoning capabilities
|
| 71 |
+
- Complex instruction following
|
| 72 |
+
- Multi-step logical reasoning
|
| 73 |
+
- Professional domain knowledge
|
| 74 |
+
|
| 75 |
+
## π¨βπ» Author
|
| 76 |
+
|
| 77 |
+
**Francisco Angulo de Lafuente (Agnuxo)**
|
| 78 |
+
- Research Focus: Holographic Computing, Quantum AI, Optical Neural Networks
|
| 79 |
+
- NVIDIA LlamaIndex Developer Contest 2024 Winner
|
| 80 |
+
|
| 81 |
+
## π License
|
| 82 |
+
|
| 83 |
+
Apache 2.0 - Open source and commercially usable.
|
| 84 |
+
|
| 85 |
+
---
|
| 86 |
+
|
| 87 |
+
*Ready for automated evaluation on the Open LLM Leaderboard v2*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|