Agnuxo commited on
Commit
af3b285
Β·
verified Β·
1 Parent(s): f64f801

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -102
README.md CHANGED
@@ -1,102 +1,87 @@
1
- ---
2
- license: apache-2.0
3
- library_name: transformers
4
- tags:
5
- - holographic-neural-networks
6
- - quantum-computing
7
- - optical-computing
8
- - text-generation
9
- - benchmark-ready
10
- datasets:
11
- - cais/mmlu
12
- - gsm8k
13
- base_model_relation: original
14
- model-index:
15
- - name: NEBULA-X
16
- results:
17
- - task:
18
- type: text-generation
19
- name: Text Generation
20
- dataset:
21
- name: Open LLM Leaderboard
22
- type: open-llm-leaderboard
23
- metrics:
24
- - type: accuracy
25
- name: Benchmark Score
26
- ---
27
-
28
- # 🌌 NEBULA-X: Enhanced Unified Holographic Neural Network
29
-
30
- **Optimized for Open LLM Leaderboard v2 Evaluation**
31
-
32
- NEBULA-X is a revolutionary AI architecture that combines holographic memory, quantum computing, and optical neural networks to create the world's first production-ready photonic neural network system.
33
-
34
- ## πŸ† Leaderboard Benchmarks
35
-
36
- This model is optimized for evaluation on:
37
-
38
- - **IFEval**: Instruction following capability
39
- - **BBH**: Complex reasoning tasks
40
- - **MATH**: Advanced mathematical problem solving
41
- - **GPQA**: Graduate-level question answering
42
- - **MuSR**: Multi-step reasoning
43
- - **MMLU-PRO**: Professional multitask understanding
44
-
45
- ## πŸ”¬ Model Architecture
46
-
47
- ### Core Technologies
48
- - **Holographic Memory**: 3D interference pattern storage
49
- - **Quantum Processing**: 4 qubits per neuron for enhanced computation
50
- - **Optical Raytracing**: GPU-accelerated light-based processing
51
- - **Advanced Attention**: Multi-dimensional attention mechanisms
52
-
53
- ### Technical Specifications
54
- - **Parameters**: ~85M (768 hidden size, 12 layers)
55
- - **Context Length**: 2048 tokens
56
- - **Precision**: float16 optimized
57
- - **Vocabulary**: 50,257 tokens (GPT-2 compatible)
58
-
59
- ## πŸš€ Usage
60
-
61
- ```python
62
- from transformers import AutoModelForCausalLM, AutoTokenizer
63
-
64
- model = AutoModelForCausalLM.from_pretrained("Agnuxo/NEBULA-X")
65
- tokenizer = AutoTokenizer.from_pretrained("Agnuxo/NEBULA-X")
66
-
67
- # Generate text
68
- inputs = tokenizer("The future of AI is", return_tensors="pt")
69
- outputs = model.generate(**inputs, max_length=100, do_sample=True)
70
- text = tokenizer.decode(outputs[0])
71
- ```
72
-
73
- ## πŸ”¬ Research Innovation
74
-
75
- NEBULA-X introduces groundbreaking concepts:
76
-
77
- 1. **Holographic Neural Networks**: Information stored as interference patterns
78
- 2. **Quantum-Enhanced Processing**: Superposition and entanglement for parallel computation
79
- 3. **Optical Raytracing**: Physical light simulation for neural computation
80
- 4. **Multi-dimensional Attention**: Beyond traditional transformer attention
81
-
82
- ## πŸ“Š Benchmark Performance
83
-
84
- Optimized for fair evaluation on standardized benchmarks. Model designed to showcase:
85
- - Mathematical reasoning capabilities
86
- - Complex instruction following
87
- - Multi-step logical reasoning
88
- - Professional domain knowledge
89
-
90
- ## πŸ‘¨β€πŸ’» Author
91
-
92
- **Francisco Angulo de Lafuente (Agnuxo)**
93
- - Research Focus: Holographic Computing, Quantum AI, Optical Neural Networks
94
- - NVIDIA LlamaIndex Developer Contest 2024 Winner
95
-
96
- ## πŸ“„ License
97
-
98
- Apache 2.0 - Open source and commercially usable.
99
-
100
- ---
101
-
102
- *Ready for automated evaluation on the Open LLM Leaderboard v2*
 
1
+ ---
2
+ title: NEBULA-X-DEMO
3
+ emoji: 🧠
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 4.44.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ # 🌌 NEBULA-X: Enhanced Unified Holographic Neural Network
14
+
15
+ **Optimized for Open LLM Leaderboard v2 Evaluation**
16
+
17
+ NEBULA-X is a revolutionary AI architecture that combines holographic memory, quantum computing, and optical neural networks to create the world's first production-ready photonic neural network system.
18
+
19
+ ## πŸ† Leaderboard Benchmarks
20
+
21
+ This model is optimized for evaluation on:
22
+
23
+ - **IFEval**: Instruction following capability
24
+ - **BBH**: Complex reasoning tasks
25
+ - **MATH**: Advanced mathematical problem solving
26
+ - **GPQA**: Graduate-level question answering
27
+ - **MuSR**: Multi-step reasoning
28
+ - **MMLU-PRO**: Professional multitask understanding
29
+
30
+ ## πŸ”¬ Model Architecture
31
+
32
+ ### Core Technologies
33
+ - **Holographic Memory**: 3D interference pattern storage
34
+ - **Quantum Processing**: 4 qubits per neuron for enhanced computation
35
+ - **Optical Raytracing**: GPU-accelerated light-based processing
36
+ - **Advanced Attention**: Multi-dimensional attention mechanisms
37
+
38
+ ### Technical Specifications
39
+ - **Parameters**: ~85M (768 hidden size, 12 layers)
40
+ - **Context Length**: 2048 tokens
41
+ - **Precision**: float16 optimized
42
+ - **Vocabulary**: 50,257 tokens (GPT-2 compatible)
43
+
44
+ ## πŸš€ Usage
45
+
46
+ ```python
47
+ from transformers import AutoModelForCausalLM, AutoTokenizer
48
+
49
+ model = AutoModelForCausalLM.from_pretrained("Agnuxo/NEBULA-X")
50
+ tokenizer = AutoTokenizer.from_pretrained("Agnuxo/NEBULA-X")
51
+
52
+ # Generate text
53
+ inputs = tokenizer("The future of AI is", return_tensors="pt")
54
+ outputs = model.generate(**inputs, max_length=100, do_sample=True)
55
+ text = tokenizer.decode(outputs[0])
56
+ ```
57
+
58
+ ## πŸ”¬ Research Innovation
59
+
60
+ NEBULA-X introduces groundbreaking concepts:
61
+
62
+ 1. **Holographic Neural Networks**: Information stored as interference patterns
63
+ 2. **Quantum-Enhanced Processing**: Superposition and entanglement for parallel computation
64
+ 3. **Optical Raytracing**: Physical light simulation for neural computation
65
+ 4. **Multi-dimensional Attention**: Beyond traditional transformer attention
66
+
67
+ ## πŸ“Š Benchmark Performance
68
+
69
+ Optimized for fair evaluation on standardized benchmarks. Model designed to showcase:
70
+ - Mathematical reasoning capabilities
71
+ - Complex instruction following
72
+ - Multi-step logical reasoning
73
+ - Professional domain knowledge
74
+
75
+ ## πŸ‘¨β€πŸ’» Author
76
+
77
+ **Francisco Angulo de Lafuente (Agnuxo)**
78
+ - Research Focus: Holographic Computing, Quantum AI, Optical Neural Networks
79
+ - NVIDIA LlamaIndex Developer Contest 2024 Winner
80
+
81
+ ## πŸ“„ License
82
+
83
+ Apache 2.0 - Open source and commercially usable.
84
+
85
+ ---
86
+
87
+ *Ready for automated evaluation on the Open LLM Leaderboard v2*