--- title: NEBULA-X-DEMO emoji: 🧠 colorFrom: blue colorTo: purple sdk: gradio sdk_version: 5.43.1 app_file: app.py pinned: false license: mit --- # 🌌 NEBULA-X: Enhanced Unified Holographic Neural Network **Optimized for Open LLM Leaderboard v2 Evaluation** NEBULA-X is a revolutionary AI architecture that combines holographic memory, quantum computing, and optical neural networks to create the world's first production-ready photonic neural network system. ## 🏆 Leaderboard Benchmarks This model is optimized for evaluation on: - **IFEval**: Instruction following capability - **BBH**: Complex reasoning tasks - **MATH**: Advanced mathematical problem solving - **GPQA**: Graduate-level question answering - **MuSR**: Multi-step reasoning - **MMLU-PRO**: Professional multitask understanding ## 🔬 Model Architecture ### Core Technologies - **Holographic Memory**: 3D interference pattern storage - **Quantum Processing**: 4 qubits per neuron for enhanced computation - **Optical Raytracing**: GPU-accelerated light-based processing - **Advanced Attention**: Multi-dimensional attention mechanisms ### Technical Specifications - **Parameters**: ~85M (768 hidden size, 12 layers) - **Context Length**: 2048 tokens - **Precision**: float16 optimized - **Vocabulary**: 50,257 tokens (GPT-2 compatible) ## 🚀 Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("Agnuxo/NEBULA-X") tokenizer = AutoTokenizer.from_pretrained("Agnuxo/NEBULA-X") # Generate text inputs = tokenizer("The future of AI is", return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True) text = tokenizer.decode(outputs[0]) ``` ## 🔬 Research Innovation NEBULA-X introduces groundbreaking concepts: 1. **Holographic Neural Networks**: Information stored as interference patterns 2. **Quantum-Enhanced Processing**: Superposition and entanglement for parallel computation 3. **Optical Raytracing**: Physical light simulation for neural computation 4. **Multi-dimensional Attention**: Beyond traditional transformer attention ## 📊 Benchmark Performance Optimized for fair evaluation on standardized benchmarks. Model designed to showcase: - Mathematical reasoning capabilities - Complex instruction following - Multi-step logical reasoning - Professional domain knowledge ## 👨‍💻 Author **Francisco Angulo de Lafuente (Agnuxo)** - Research Focus: Holographic Computing, Quantum AI, Optical Neural Networks - NVIDIA LlamaIndex Developer Contest 2024 Winner ## 📄 License Apache 2.0 - Open source and commercially usable. --- *Ready for automated evaluation on the Open LLM Leaderboard v2*