#!/usr/bin/env python3 """ NEBULA-X: Enhanced Unified Holographic Neural Network Corrected & Hardened version Original author: Francisco Angulo de Lafuente - Agnuxo This file is a patched, complete and ready-to-run version of nebula_x_complete.py (robust handling for complex arrays, improved holographic correlation, safer quantum state initialization and other defensive fixes). """ import os import sys import json import time import logging import asyncio import threading from typing import Dict, List, Tuple, Optional, Any, Union from dataclasses import dataclass, field from abc import ABC, abstractmethod from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor import subprocess # Core scientific computing import numpy as np import scipy as sp from scipy import ndimage, fft, optimize import pandas as pd # Machine Learning & Deep Learning (optional usage) try: import torch import torch.nn as nn import torch.nn.functional as F import torch.cuda as cuda from torch.utils.data import DataLoader, Dataset import torchvision.transforms as transforms TORCH_AVAILABLE = True except Exception: TORCH_AVAILABLE = False # Quantum Computing try: import pennylane as qml from pennylane import numpy as pnp QUANTUM_AVAILABLE = True except ImportError: QUANTUM_AVAILABLE = False print("Warning: PennyLane not available. Quantum features disabled.") # GPU Acceleration & Raytracing try: import cupy as cp import cupyx.scipy.fft as cp_fft CUPY_AVAILABLE = True except Exception: CUPY_AVAILABLE = False print("Warning: CuPy not available. GPU acceleration limited.") # Optical Computing & CUDA kernels try: import pycuda.driver as cuda_driver import pycuda.autoinit import pycuda.gpuarray as gpuarray from pycuda.compiler import SourceModule PYCUDA_AVAILABLE = True except Exception: PYCUDA_AVAILABLE = False print("Warning: PyCUDA not available. Custom CUDA kernels disabled.") # Networking & P2P import socket import websockets import requests from urllib.parse import urlparse # Evolutionary Algorithms try: from deap import base, creator, tools, algorithms DEAP_AVAILABLE = True except Exception: DEAP_AVAILABLE = False print("Warning: DEAP not available. Evolutionary optimization disabled.") # Holographic Processing from PIL import Image import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Configuration & Utilities import yaml from datetime import datetime import pickle import hashlib import uuid # Set up logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # Helper utilities def ensure_complex_array(arr: np.ndarray) -> np.ndarray: """Return a complex copy of arr without losing imaginary parts and avoiding ComplexWarning.""" arr = np.asarray(arr) if np.iscomplexobj(arr): return arr.astype(np.complex128) else: return arr.astype(np.complex128) def safe_reshape_to_square_2d(data: np.ndarray) -> np.ndarray: """Pad (with complex zeros) and reshape 1D data to a square 2D complex array.""" data = np.asarray(data) if data.ndim == 1: size = int(np.ceil(np.sqrt(data.size))) total = size * size padded = np.zeros(total, dtype=np.complex128) padded[:data.size] = data.astype(np.complex128) return padded.reshape(size, size) elif data.ndim == 2: return ensure_complex_array(data) else: # Flatten high-dim arrays then reshape flat = data.flatten() return safe_reshape_to_square_2d(flat) # Constants LIGHT_SPEED = 299792458 # m/s PLANCK_CONSTANT = 6.62607015e-34 # J⋅Hz⁻¹ BOLTZMANN_CONSTANT = 1.380649e-23 # J⋅K⁻¹ @dataclass class NebulaConfig: """Complete configuration for NEBULA-X""" nebula_space_size: Tuple[int, int, int] = (1000, 1000, 1000) max_neurons: int = 1000000 initial_neurons: int = 10000 neuron_types: List[str] = field(default_factory=lambda: ['photonic', 'quantum', 'classical']) # Optical wavelength: float = 632.8e-9 refractive_index: float = 1.0 coherence_length: float = 1.0 beam_diameter: float = 1e-3 # Quantum qubits_per_neuron: int = 4 quantum_noise_level: float = 0.01 decoherence_time: float = 1e-6 # Raytracing rays_per_neuron: int = 1000 max_bounces: int = 10 raytracing_resolution: Tuple[int, int] = (1024, 1024) monte_carlo_samples: int = 10000 # Gravitational dynamics gravitational_constant: float = 1e-10 neuron_mass: float = 1.0 attraction_threshold: float = 0.1 repulsion_threshold: float = 0.05 # Evolutionary population_size: int = 100 mutation_rate: float = 0.1 crossover_rate: float = 0.8 generations: int = 1000 # P2P p2p_port: int = 8080 max_peers: int = 50 knowledge_sync_interval: float = 10.0 # Benchmark benchmark_datasets: List[str] = field(default_factory=lambda: ['mmlu', 'gsm8k']) evaluation_interval: int = 100 # Hardware use_gpu: bool = True use_rt_cores: bool = True use_tensor_cores: bool = True max_gpu_memory: float = 0.8 class QuantumNeuron: """Quantum neuron with local holographic memory""" def __init__(self, neuron_id: str, config: NebulaConfig): self.id = neuron_id self.config = config self.position = np.random.rand(3) * 1000 self.velocity = np.zeros(3) self.mass = config.neuron_mass self.luminosity = 1.0 self.connections: Dict[str, Any] = {} # Quantum state (if available) otherwise simulated complex state if QUANTUM_AVAILABLE: try: self.quantum_device = qml.device('default.qubit', wires=config.qubits_per_neuron) self.quantum_memory = self._initialize_quantum_state() except Exception as e: logger.warning(f"Failed to initialize PennyLane device: {e}") self.quantum_memory = self._simulate_quantum_state() else: self.quantum_memory = self._simulate_quantum_state() self.optical_properties = { 'reflectivity': float(np.random.rand()), 'transmissivity': float(np.random.rand()), 'phase_shift': float(np.random.rand() * 2 * np.pi), 'polarization': np.random.rand(3).tolist(), 'spectrum': np.random.rand(100).tolist() } self.holographic_memory = np.zeros((64, 64), dtype=np.complex128) def _simulate_quantum_state(self) -> np.ndarray: """Create a normalized complex state vector for simulation.""" size = 2 ** self.config.qubits_per_neuron state = np.random.randn(size) + 1j * np.random.randn(size) state = state.astype(np.complex128) norm = np.linalg.norm(state) if norm == 0: state[0] = 1.0 norm = 1.0 return state / norm def _initialize_quantum_state(self) -> np.ndarray: """Initialize a quantum state using PennyLane qnode (if available)""" @qml.qnode(self.quantum_device) def quantum_circuit(): for i in range(self.config.qubits_per_neuron): qml.RY(np.random.rand() * np.pi, wires=i) qml.RZ(np.random.rand() * 2 * np.pi, wires=i) return qml.state() return np.array(quantum_circuit()) def quantum_process(self, input_data: np.ndarray) -> np.ndarray: """Process input with the neuron's quantum memory (simulated if PennyLane not available).""" input_data = np.asarray(input_data) if not QUANTUM_AVAILABLE: # Simulated processing: project input onto quantum memory (real part) try: # make shapes compatible mem = np.asarray(self.quantum_memory) vec = np.resize(input_data, mem.shape) return np.real(np.vdot(mem, vec)) * np.ones(self.config.qubits_per_neuron) except Exception: return np.zeros(self.config.qubits_per_neuron) # If quantum available, build a small qnode @qml.qnode(self.quantum_device) def qnn(inputs): for i, val in enumerate(inputs[: self.config.qubits_per_neuron]): qml.RY(float(val) * np.pi, wires=i) # simple entangling layer for i in range(self.config.qubits_per_neuron - 1): qml.CNOT(wires=[i, i + 1]) return [qml.expval(qml.PauliZ(i)) for i in range(self.config.qubits_per_neuron)] # reshape input inputs = np.resize(input_data, (self.config.qubits_per_neuron,)) return np.array(qnn(inputs)) def gravitational_force(self, other_neuron: 'QuantumNeuron') -> np.ndarray: r_vec = other_neuron.position - self.position r_mag = np.linalg.norm(r_vec) if r_mag < 1e-6: return np.zeros(3) F_mag = ( self.config.gravitational_constant * self.mass * other_neuron.mass * self.luminosity * other_neuron.luminosity ) / (r_mag ** 2) return F_mag * (r_vec / r_mag) def update_position(self, dt: float, forces: np.ndarray): acceleration = forces / max(1e-12, self.mass) new_position = self.position + self.velocity * dt + 0.5 * acceleration * dt ** 2 # Clip per-dimension with nebula_space_size nx, ny, nz = self.config.nebula_space_size new_position = np.clip(new_position, 0, [nx, ny, nz]) self.velocity += acceleration * dt self.position = new_position def holographic_encode(self, data: np.ndarray) -> np.ndarray: """Encode input data into the neuron's local holographic memory and return hologram.""" data2d = safe_reshape_to_square_2d(np.asarray(data)) # create reference wave h, w = data2d.shape y, x = np.indices((h, w)) reference_wave = np.exp(1j * np.pi * (x + y)) object_wave = data2d.astype(np.complex128) hologram = np.abs(object_wave + reference_wave) ** 2 self.holographic_memory = np.fft.fft2(hologram) return hologram def holographic_decode(self) -> np.ndarray: reconstructed = np.fft.ifft2(self.holographic_memory) return np.real(reconstructed) class RaytracingEngine: def __init__(self, config: NebulaConfig): self.config = config self.scene_buffer = None self.ray_buffer = None self.cuda_module = None if PYCUDA_AVAILABLE and config.use_gpu: try: self._initialize_cuda_kernels() except Exception as e: logger.warning(f"CUDA kernel init failed: {e}") self.cuda_module = None def _initialize_cuda_kernels(self): cuda_code = r""" #include __global__ void trace_rays(float *rays, float *neurons, float *output, int num_rays, int num_neurons) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx >= num_rays) return; curandState state; curand_init(idx, 0, 0, &state); float3 origin = make_float3(rays[idx*6], rays[idx*6+1], rays[idx*6+2]); float3 direction = make_float3(rays[idx*6+3], rays[idx*6+4], rays[idx*6+5]); float intensity = 1.0f; float3 color = make_float3(1.0f, 1.0f, 1.0f); for (int bounce = 0; bounce < 10; bounce++) { float min_distance = INFINITY; int hit_neuron = -1; for (int n = 0; n < num_neurons; n++) { float3 neuron_pos = make_float3(neurons[n*7], neurons[n*7+1], neurons[n*7+2]); float neuron_radius = neurons[n*7+3]; float3 oc = origin - neuron_pos; float a = dot(direction, direction); float b = 2.0f * dot(oc, direction); float c = dot(oc, oc) - neuron_radius * neuron_radius; float discriminant = b*b - 4*a*c; if (discriminant > 0) { float distance = (-b - sqrt(discriminant)) / (2.0f * a); if (distance > 0.001f && distance < min_distance) { min_distance = distance; hit_neuron = n; } } } if (hit_neuron == -1) break; origin = origin + direction * min_distance; float reflectivity = neurons[hit_neuron*7+4]; float phase_shift = neurons[hit_neuron*7+6]; float3 normal = normalize(origin - make_float3(neurons[hit_neuron*7], neurons[hit_neuron*7+1], neurons[hit_neuron*7+2])); if (curand_uniform(&state) < reflectivity) { direction = direction - 2.0f * dot(direction, normal) * normal; intensity *= reflectivity; } else { intensity *= (1.0f - reflectivity); break; } color.x *= cos(phase_shift); color.y *= cos(phase_shift + 2.094f); color.z *= cos(phase_shift + 4.189f); intensity *= 0.9f; if (intensity < 0.01f) break; } output[idx*4] = intensity; output[idx*4+1] = color.x; output[idx*4+2] = color.y; output[idx*4+3] = color.z; } """ try: self.cuda_module = SourceModule(cuda_code) self.trace_rays_kernel = self.cuda_module.get_function("trace_rays") logger.info("CUDA raytracing kernels initialized successfully") except Exception as e: logger.warning(f"Failed to initialize CUDA kernels: {e}") self.cuda_module = None def trace_neural_rays(self, neurons: List[QuantumNeuron], input_data: np.ndarray) -> np.ndarray: num_neurons = len(neurons) if num_neurons == 0: return np.zeros((0, 4), dtype=np.float32) num_rays = max(1, int(self.config.rays_per_neuron * num_neurons)) rays = self._generate_rays(num_rays) neuron_data = np.zeros((num_neurons, 7), dtype=np.float32) for i, neuron in enumerate(neurons): neuron_data[i, :3] = np.asarray(neuron.position, dtype=np.float32) neuron_data[i, 3] = 1.0 neuron_data[i, 4] = float(neuron.optical_properties.get('reflectivity', 0.5)) neuron_data[i, 5] = float(neuron.optical_properties.get('transmissivity', 0.0)) neuron_data[i, 6] = float(neuron.optical_properties.get('phase_shift', 0.0)) if PYCUDA_AVAILABLE and self.cuda_module is not None: try: return self._cuda_raytrace(rays, neuron_data) except Exception as e: logger.warning(f"CUDA raytrace failed, falling back to CPU: {e}") return self._cpu_raytrace(rays, neuron_data) def _generate_rays(self, num_rays: int) -> np.ndarray: rays = np.zeros((num_rays, 6), dtype=np.float32) # positions nx, ny, nz = self.config.nebula_space_size rays[:, :3] = np.random.rand(num_rays, 3) * np.array([nx, ny, nz]) # directions phi = np.random.rand(num_rays) * 2 * np.pi costheta = 1 - 2 * np.random.rand(num_rays) theta = np.arccos(np.clip(costheta, -1, 1)) rays[:, 3] = np.sin(theta) * np.cos(phi) rays[:, 4] = np.sin(theta) * np.sin(phi) rays[:, 5] = np.cos(theta) return rays def _cuda_raytrace(self, rays: np.ndarray, neurons: np.ndarray) -> np.ndarray: num_rays = rays.shape[0] rays_gpu = gpuarray.to_gpu(rays.astype(np.float32)) neurons_gpu = gpuarray.to_gpu(neurons.astype(np.float32)) output_gpu = gpuarray.zeros((num_rays * 4,), dtype=np.float32) block_size = 256 grid_size = (num_rays + block_size - 1) // block_size self.trace_rays_kernel( rays_gpu, neurons_gpu, output_gpu, np.int32(num_rays), np.int32(neurons.shape[0]), block=(block_size, 1, 1), grid=(grid_size, 1) ) out = output_gpu.get().reshape(num_rays, 4) return out def _cpu_raytrace(self, rays: np.ndarray, neurons: np.ndarray) -> np.ndarray: num_rays = rays.shape[0] output = np.zeros((num_rays, 4), dtype=np.float32) for i in range(num_rays): origin = rays[i, :3].copy() direction = rays[i, 3:6].copy() direction = direction / (np.linalg.norm(direction) + 1e-12) intensity = 1.0 for bounce in range(min(5, self.config.max_bounces)): distances = np.linalg.norm(neurons[:, :3] - origin[None, :], axis=1) closest = np.argmin(distances) if distances[closest] > 10.0: break reflectivity = float(neurons[closest, 4]) intensity *= reflectivity * 0.9 direction = direction + 0.1 * np.random.randn(3) direction /= (np.linalg.norm(direction) + 1e-12) origin = neurons[closest, :3] if intensity < 0.01: break output[i, 0] = intensity output[i, 1:4] = intensity return output class HolographicMemory: def __init__(self, config: NebulaConfig): self.config = config self.memory_planes: Dict[str, Dict[str, Any]] = {} self.reconstruction_cache: Dict[str, np.ndarray] = {} def store_pattern(self, key: str, data: np.ndarray, reference_beam: Optional[np.ndarray] = None) -> bool: try: data_c = ensure_complex_array(np.asarray(data)) if reference_beam is None: reference_beam = self._generate_reference_beam(data_c.shape) object_beam = data_c / (np.max(np.abs(data_c)) + 1e-12) interference = np.abs(object_beam + reference_beam) ** 2 self.memory_planes[key] = { 'interference': interference, 'reference': reference_beam, 'metadata': { 'timestamp': time.time(), 'shape': data_c.shape, 'hash': hashlib.md5(data_c.tobytes()).hexdigest() } } if key in self.reconstruction_cache: del self.reconstruction_cache[key] logger.info(f"Stored holographic pattern: {key}") return True except Exception as e: logger.error(f"Failed to store pattern {key}: {e}") return False def retrieve_pattern(self, key: str) -> Optional[np.ndarray]: if key not in self.memory_planes: return None if key in self.reconstruction_cache: return self.reconstruction_cache[key] try: plane = self.memory_planes[key] interference = np.asarray(plane['interference']) reference = np.asarray(plane['reference']) reconstructed = interference * np.conj(reference) reconstructed_fft = np.fft.fft2(reconstructed) h, w = reconstructed_fft.shape mask = np.zeros((h, w), dtype=float) ch, cw = h // 2, w // 2 hh = max(1, h // 4) ww = max(1, w // 4) mask[ch - hh: ch + hh, cw - ww: cw + ww] = 1 filtered_fft = reconstructed_fft * mask result = np.fft.ifft2(filtered_fft) self.reconstruction_cache[key] = result logger.debug(f"Retrieved holographic pattern: {key}") return result except Exception as e: logger.error(f"Failed to retrieve pattern {key}: {e}") return None def _generate_reference_beam(self, shape: Tuple[int, ...]) -> np.ndarray: shape = tuple(int(s) for s in shape) if len(shape) == 1: x = np.arange(shape[0]) return np.exp(1j * 2 * np.pi * x / (shape[0] + 1e-12)).astype(np.complex128) elif len(shape) == 2: h, w = shape x, y = np.meshgrid(np.arange(w), np.arange(h)) angle = np.random.rand() * 2 * np.pi kx = np.cos(angle) ky = np.sin(angle) return np.exp(1j * 2 * np.pi * (kx * x / (w + 1e-12) + ky * y / (h + 1e-12))).astype(np.complex128) else: ref = np.ones(shape, dtype=np.complex128) for dim in range(len(shape)): dim_ref = self._generate_reference_beam((shape[dim],)) # reshape to broadcast reshape_shape = [1] * len(shape) reshape_shape[dim] = shape[dim] ref *= dim_ref.reshape(tuple(reshape_shape)) return ref def holographic_rag_search(self, query: np.ndarray, top_k: int = 5) -> List[Tuple[str, float, Optional[np.ndarray]]]: results: List[Tuple[str, float, Optional[np.ndarray]]] = [] try: query_hologram = self._data_to_hologram(query) except Exception as e: logger.warning(f"Failed to convert query to hologram: {e}") return results for key, plane in list(self.memory_planes.items()): try: stored_pattern = np.asarray(plane.get('interference')) # ensure shapes compatible corr = self._holographic_correlation(query_hologram, stored_pattern) score = float(np.max(np.abs(corr))) if corr.size > 0 else 0.0 retrieved = self.retrieve_pattern(key) results.append((key, score, retrieved)) except Exception as e: logger.warning(f"Error in holographic search for {key}: {e}") continue results.sort(key=lambda x: x[1], reverse=True) return results[:top_k] def _data_to_hologram(self, data: np.ndarray) -> np.ndarray: data = np.asarray(data) if data.ndim == 1: data2d = safe_reshape_to_square_2d(data) else: data2d = ensure_complex_array(data) reference = self._generate_reference_beam(data2d.shape) return np.abs(data2d.astype(np.complex128) + reference) ** 2 def _holographic_correlation(self, pattern1: np.ndarray, pattern2: np.ndarray) -> np.ndarray: p1 = np.asarray(pattern1) p2 = np.asarray(pattern2) # convert to 2D arrays if p1.ndim == 1: p1 = safe_reshape_to_square_2d(p1) if p2.ndim == 1: p2 = safe_reshape_to_square_2d(p2) # make same shape by cropping or padding h = max(p1.shape[0], p2.shape[0]) w = max(p1.shape[1], p2.shape[1]) def to_shape(x, h, w): out = np.zeros((h, w), dtype=np.complex128) hh = min(h, x.shape[0]) ww = min(w, x.shape[1]) out[:hh, :ww] = x[:hh, :ww] return out p1s = to_shape(p1, h, w) p2s = to_shape(p2, h, w) fft1 = np.fft.fft2(p1s) fft2 = np.fft.fft2(p2s) correlation_fft = fft1 * np.conj(fft2) correlation = np.fft.ifft2(correlation_fft) return correlation class EvolutionaryOptimizer: def __init__(self, config: NebulaConfig): self.config = config self.generation = 0 self.best_fitness = -np.inf self.fitness_history: List[float] = [] if DEAP_AVAILABLE: self._setup_deap() def _setup_deap(self): creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", list, fitness=creator.FitnessMax) self.toolbox = base.Toolbox() self.toolbox.register("attr_float", np.random.normal, 0, 1) self.toolbox.register("individual", tools.initRepeat, creator.Individual, self.toolbox.attr_float, n=100) self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual) self.toolbox.register("evaluate", self._evaluate_individual) self.toolbox.register("mate", tools.cxBlend, alpha=0.5) self.toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=self.config.mutation_rate) self.toolbox.register("select", tools.selTournament, tournsize=3) def _evaluate_individual(self, individual: List[float]) -> Tuple[float]: try: params = self._genes_to_params(individual) fitness = self._simulate_network_performance(params) return (fitness,) except Exception as e: logger.warning(f"Evaluation failed: {e}") return (-np.inf,) def _genes_to_params(self, genes: List[float]) -> Dict[str, Any]: params: Dict[str, Any] = {} params['learning_rate'] = max(0.0001, abs(genes[0]) * 0.1) params['neuron_density'] = max(0.1, abs(genes[1])) params['connection_strength'] = float(genes[2]) params['optical_coherence'] = float(max(0, min(1, genes[3]))) params['quantum_entanglement'] = float(max(0, min(1, genes[4]))) params['hologram_resolution'] = int(abs(genes[5]) * 100) + 32 params['reference_beam_angle'] = float(genes[6]) * np.pi params['interference_threshold'] = float(max(0, abs(genes[7]))) params['rays_per_sample'] = int(abs(genes[8]) * 1000) + 100 params['max_bounces'] = int(abs(genes[9]) * 10) + 1 params['photon_energy'] = max(0.1, abs(genes[10]) * 10) return params def _simulate_network_performance(self, params: Dict[str, Any]) -> float: base_performance = 0.5 if 0.001 <= params['learning_rate'] <= 0.01: base_performance += 0.1 if 0.5 <= params['neuron_density'] <= 2.0: base_performance += 0.1 if params['optical_coherence'] > 0.8: base_performance += 0.15 if params['quantum_entanglement'] > 0.6: base_performance += 0.1 if params['hologram_resolution'] > 512: base_performance -= 0.05 if params['rays_per_sample'] > 5000: base_performance -= 0.05 noise = np.random.normal(0, 0.02) return max(0, base_performance + noise) def evolve_architecture(self, generations: int = None) -> Dict[str, Any]: if not DEAP_AVAILABLE: logger.warning("DEAP not available, returning default parameters") return self._get_default_params() if generations is None: generations = self.config.generations population = self.toolbox.population(n=self.config.population_size) stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("avg", np.mean) stats.register("std", np.std) stats.register("min", np.min) stats.register("max", np.max) logger.info(f"Starting evolutionary optimization for {generations} generations") population, logbook = algorithms.eaSimple( population, self.toolbox, cxpb=self.config.crossover_rate, mutpb=self.config.mutation_rate, ngen=generations, stats=stats, verbose=True ) best_individual = tools.selBest(population, 1)[0] best_params = self._genes_to_params(best_individual) self.best_fitness = best_individual.fitness.values[0] logger.info(f"Evolution completed. Best fitness: {self.best_fitness}") return best_params def _get_default_params(self) -> Dict[str, Any]: return { 'learning_rate': 0.001, 'neuron_density': 1.0, 'connection_strength': 0.5, 'optical_coherence': 0.9, 'quantum_entanglement': 0.7, 'hologram_resolution': 256, 'reference_beam_angle': np.pi / 4, 'interference_threshold': 0.1, 'rays_per_sample': 1000, 'max_bounces': 5, 'photon_energy': 1.0 } class P2PNetworkManager: def __init__(self, config: NebulaConfig): self.config = config self.node_id = str(uuid.uuid4()) self.peers: Dict[str, Any] = {} self.knowledge_cache: Dict[str, Any] = {} self.server_socket = None self.running = False async def start_network(self): self.running = True start_server = websockets.serve(self.handle_connection, 'localhost', self.config.p2p_port) logger.info(f"P2P node {self.node_id} starting on port {self.config.p2p_port}") await asyncio.gather(start_server, self.discovery_loop(), self.sync_loop()) async def handle_connection(self, websocket, path): peer_id = None try: async for message in websocket: data = json.loads(message) if data.get('type') == 'handshake': peer_id = data.get('node_id') self.peers[peer_id] = {'websocket': websocket, 'last_seen': time.time(), 'knowledge_hash': data.get('knowledge_hash', ''), 'capabilities': data.get('capabilities', [])} response = {'type': 'handshake_response', 'node_id': self.node_id, 'knowledge_hash': self._compute_knowledge_hash(), 'capabilities': ['holographic_memory', 'quantum_processing', 'raytracing']} await websocket.send(json.dumps(response)) elif data.get('type') == 'knowledge_request': await self.handle_knowledge_request(websocket, data) elif data.get('type') == 'knowledge_share': await self.handle_knowledge_share(data) elif data.get('type') == 'computation_request': await self.handle_computation_request(websocket, data) except websockets.exceptions.ConnectionClosed: if peer_id and peer_id in self.peers: del self.peers[peer_id] logger.info(f"Peer {peer_id} disconnected") except Exception as e: logger.error(f"Error handling P2P connection: {e}") async def discovery_loop(self): while self.running: try: if len(self.peers) < self.config.max_peers: await self.discover_peers() current_time = time.time() disconnected = [pid for pid, p in self.peers.items() if current_time - p['last_seen'] > 60] for pid in disconnected: del self.peers[pid] logger.info(f"Removed inactive peer: {pid}") await asyncio.sleep(30) except Exception as e: logger.error(f"Error in discovery loop: {e}") await asyncio.sleep(10) async def sync_loop(self): while self.running: try: await self.sync_knowledge() await asyncio.sleep(self.config.knowledge_sync_interval) except Exception as e: logger.error(f"Error in sync loop: {e}") await asyncio.sleep(5) async def discover_peers(self): base_port = self.config.p2p_port for offset in range(1, 10): if len(self.peers) >= self.config.max_peers: break port = base_port + offset if port == self.config.p2p_port: continue uri = f"ws://localhost:{port}" try: websocket = await asyncio.wait_for(websockets.connect(uri), timeout=3) handshake = {'type': 'handshake', 'node_id': self.node_id, 'knowledge_hash': self._compute_knowledge_hash(), 'capabilities': ['holographic_memory', 'quantum_processing', 'raytracing']} await websocket.send(json.dumps(handshake)) response = await asyncio.wait_for(websocket.recv(), timeout=3) data = json.loads(response) if data.get('type') == 'handshake_response': pid = data.get('node_id') self.peers[pid] = {'websocket': websocket, 'last_seen': time.time(), 'knowledge_hash': data.get('knowledge_hash', ''), 'capabilities': data.get('capabilities', [])} logger.info(f"Connected to peer: {pid}") except Exception: continue async def sync_knowledge(self): if not self.peers: return my_hash = self._compute_knowledge_hash() for pid, peer in list(self.peers.items()): try: if peer.get('knowledge_hash') != my_hash: request = {'type': 'knowledge_request', 'requesting_node': self.node_id, 'knowledge_hash': my_hash} await peer['websocket'].send(json.dumps(request)) peer['last_seen'] = time.time() except websockets.exceptions.ConnectionClosed: del self.peers[pid] except Exception as e: logger.warning(f"Failed to sync with peer {pid}: {e}") async def handle_knowledge_request(self, websocket, data): requesting_node = data.get('requesting_node') their_hash = data.get('knowledge_hash') my_hash = self._compute_knowledge_hash() if their_hash != my_hash: knowledge_data = {'type': 'knowledge_share', 'from_node': self.node_id, 'knowledge_hash': my_hash, 'knowledge': self._serialize_knowledge(), 'timestamp': time.time()} await websocket.send(json.dumps(knowledge_data)) logger.debug(f"Shared knowledge with {requesting_node}") async def handle_knowledge_share(self, data): from_node = data.get('from_node') knowledge = data.get('knowledge') timestamp = data.get('timestamp') self._integrate_knowledge(knowledge, from_node, timestamp) logger.debug(f"Integrated knowledge from {from_node}") async def handle_computation_request(self, websocket, data): request_id = data.get('request_id') computation_type = data.get('computation_type') params = data.get('parameters', {}) try: result = await self._execute_computation(computation_type, params) response = {'type': 'computation_result', 'request_id': request_id, 'result': result, 'node_id': self.node_id} await websocket.send(json.dumps(response)) except Exception as e: error_response = {'type': 'computation_error', 'request_id': request_id, 'error': str(e), 'node_id': self.node_id} await websocket.send(json.dumps(error_response)) def _compute_knowledge_hash(self) -> str: try: knowledge_str = json.dumps(self.knowledge_cache, sort_keys=True) except Exception: knowledge_str = str(self.knowledge_cache) return hashlib.sha256(knowledge_str.encode()).hexdigest() def _serialize_knowledge(self) -> Dict[str, Any]: return {'patterns': list(self.knowledge_cache.keys()), 'metadata': {'node_id': self.node_id, 'timestamp': time.time(), 'version': '1.0'}} def _integrate_knowledge(self, knowledge: Dict[str, Any], from_node: str, timestamp: float): if not isinstance(knowledge, dict): return for pattern in knowledge.get('patterns', []): if pattern not in self.knowledge_cache: self.knowledge_cache[pattern] = {'source': from_node, 'received_at': timestamp, 'confidence': 0.5} async def _execute_computation(self, computation_type: str, parameters: Dict[str, Any]) -> Any: if computation_type == 'holographic_reconstruction': pattern = parameters.get('pattern', np.random.rand(64, 64)) return np.fft.ifft2(np.fft.fft2(pattern)).tolist() elif computation_type == 'quantum_simulation': return [0.5, 0.3, 0.2, 0.1] elif computation_type == 'raytracing_sample': return {'intensity': 0.8, 'color': [1.0, 0.9, 0.8]} else: raise ValueError(f"Unknown computation type: {computation_type}") class BenchmarkManager: def __init__(self, config: NebulaConfig): self.config = config self.results: Dict[str, float] = {} self.baseline_scores = {'mmlu': 0.25, 'gsm8k': 0.0} def load_datasets(self) -> Dict[str, Any]: datasets: Dict[str, Any] = {} if 'mmlu' in self.config.benchmark_datasets: datasets['mmlu'] = self._load_mmlu_dataset() if 'gsm8k' in self.config.benchmark_datasets: datasets['gsm8k'] = self._load_gsm8k_dataset() return datasets def _load_mmlu_dataset(self) -> Dict[str, Any]: logger.info("Loading MMLU dataset (simulated)") samples = [] subjects = ['mathematics', 'physics', 'computer_science', 'chemistry', 'biology'] for i in range(100): subject = np.random.choice(subjects) samples.append({'question': f"Sample MMLU question {i} in {subject}", 'choices': ["Option A", "Option B", "Option C", "Option D"], 'correct_answer': int(np.random.randint(0, 4)), 'subject': subject}) return {'samples': samples, 'metadata': {'total_samples': len(samples), 'subjects': subjects, 'format': 'multiple_choice'}} def _load_gsm8k_dataset(self) -> Dict[str, Any]: logger.info("Loading GSM8K dataset (simulated)") samples = [] for i in range(50): samples.append({'question': f"Math word problem {i}: If John has {np.random.randint(1,100)} apples and gives away {np.random.randint(1,50)}, how many does he have left?", 'answer': f"{np.random.randint(1,50)}", 'solution_steps': ["Step 1: Identify initial amount", "Step 2: Identify amount given away", "Step 3: Subtract to find remainder"]}) return {'samples': samples, 'metadata': {'total_samples': len(samples), 'format': 'math_word_problems'}} def evaluate_model(self, model, datasets: Dict[str, Any]) -> Dict[str, float]: results: Dict[str, float] = {} for dataset_name, dataset in datasets.items(): logger.info(f"Evaluating on {dataset_name}") if dataset_name == 'mmlu': score = self._evaluate_mmlu(model, dataset) elif dataset_name == 'gsm8k': score = self._evaluate_gsm8k(model, dataset) else: logger.warning(f"Unknown dataset: {dataset_name}") continue results[dataset_name] = score baseline = self.baseline_scores.get(dataset_name, 0.0) improvement = ((score - baseline) / baseline * 100) if baseline > 0 else 0 logger.info(f"{dataset_name} score: {score:.4f} (+{improvement:.1f}% vs baseline)") self.results.update(results) return results def _evaluate_mmlu(self, model, dataset: Dict[str, Any]) -> float: samples = dataset.get('samples', []) correct = 0 for sample in samples: try: prediction = self._simulate_mmlu_prediction(model, sample) if prediction == sample.get('correct_answer'): correct += 1 except Exception as e: logger.warning(f"Error evaluating MMLU sample: {e}") return correct / len(samples) if samples else 0.0 def _evaluate_gsm8k(self, model, dataset: Dict[str, Any]) -> float: samples = dataset.get('samples', []) correct = 0 for sample in samples: try: prediction = self._simulate_gsm8k_prediction(model, sample) if self._check_math_answer(prediction, sample.get('answer')): correct += 1 except Exception as e: logger.warning(f"Error evaluating GSM8K sample: {e}") return correct / len(samples) if samples else 0.0 def _encode_text_holographically(self, text: str) -> np.ndarray: text_hash = hashlib.md5(text.encode()).hexdigest() numeric_hash = int(text_hash, 16) np.random.seed(numeric_hash % (2 ** 32)) encoding = np.random.rand(128) return encoding / (np.linalg.norm(encoding) + 1e-12) def _simulate_holographic_rag(self, query_encoding: np.ndarray) -> np.ndarray: knowledge_base = np.random.rand(10, 128) similarities = np.dot(knowledge_base, query_encoding) weights = np.exp(similarities) / (np.sum(np.exp(similarities)) + 1e-12) relevant_knowledge = np.dot(weights, knowledge_base) return relevant_knowledge def _simulate_quantum_reasoning(self, question: np.ndarray, knowledge: np.ndarray) -> np.ndarray: combined = np.concatenate([question, knowledge]) phase_shifts = np.random.rand(len(combined)) * 2 * np.pi quantum_state = combined * np.exp(1j * phase_shifts) probabilities = np.abs(quantum_state) ** 2 return probabilities[: len(question)] def _simulate_mmlu_prediction(self, model, sample: Dict[str, Any]) -> int: question = sample.get('question', '') choices = sample.get('choices', []) question_encoding = self._encode_text_holographically(question) relevant_knowledge = self._simulate_holographic_rag(question_encoding) quantum_reasoning = self._simulate_quantum_reasoning(question_encoding, relevant_knowledge) confidence_scores = [] for choice in choices: choice_encoding = self._encode_text_holographically(choice) compatibility = float(np.dot(quantum_reasoning, choice_encoding[: len(quantum_reasoning)])) confidence_scores.append(compatibility) return int(np.argmax(confidence_scores)) if confidence_scores else 0 def _simulate_gsm8k_prediction(self, model, sample: Dict[str, Any]) -> str: question = sample.get('question', '') problem_structure = self._analyze_math_problem(question) reasoning_steps = self._simulate_math_reasoning(problem_structure) answer = self._extract_numerical_answer(reasoning_steps) return str(answer) def _analyze_math_problem(self, question: str) -> Dict[str, Any]: import re numbers = [float(x) for x in re.findall(r'\d+(?:\.\d+)?', question)] operations = [] ql = question.lower() if 'give' in ql or 'lose' in ql: operations.append('subtract') if 'get' in ql or 'buy' in ql: operations.append('add') if 'times' in ql or 'multiply' in ql: operations.append('multiply') return {'numbers': numbers, 'operations': operations, 'entities': ['apples', 'person']} def _simulate_math_reasoning(self, problem: Dict[str, Any]) -> List[str]: numbers = problem.get('numbers', []) operations = problem.get('operations', []) steps = [f"Initial amount: {numbers[0] if numbers else 0}", f"Operation: {operations[0] if operations else 'unknown'}", f"Second amount: {numbers[1] if len(numbers) > 1 else 0}"] return steps def _extract_numerical_answer(self, steps: List[str]) -> float: import re numbers = [] for step in steps: found = re.findall(r'\d+(?:\.\d+)?', step) numbers.extend([float(x) for x in found]) if len(numbers) >= 2: return max(0, numbers[0] - numbers[1]) elif len(numbers) == 1: return numbers[0] else: return 0 def _check_math_answer(self, predicted: str, correct: str) -> bool: try: return abs(float(predicted) - float(correct)) < 0.001 except Exception: return str(predicted).strip() == str(correct).strip() def generate_report(self) -> str: if not self.results: return "No benchmark results available" report = ["=" * 50, "NEBULA-X BENCHMARK REPORT", "=" * 50, f"Timestamp: {datetime.now().isoformat()}", ""] total_improvement = 0 valid_scores = 0 for dataset, score in self.results.items(): baseline = self.baseline_scores.get(dataset, 0) improvement = ((score - baseline) / baseline * 100) if baseline > 0 else 0 total_improvement += improvement valid_scores += 1 report.extend([f"Dataset: {dataset.upper()}", f" Score: {score:.4f}", f" Baseline: {baseline:.4f}", f" Improvement: +{improvement:.1f}%", ""]) if valid_scores > 0: avg_improvement = total_improvement / valid_scores report.extend([f"OVERALL PERFORMANCE:", f" Average Improvement: +{avg_improvement:.1f}%", f" Datasets Evaluated: {valid_scores}", ""]) report.extend(["TECHNOLOGY HIGHLIGHTS:", " ✓ Holographic Memory Processing", " ✓ Quantum-Enhanced Reasoning", " ✓ Optical Neural Networks", " ✓ P2P Knowledge Distribution", " ✓ Evolutionary Architecture Optimization", "=" * 50]) return "\n".join(report) class NebulaXModel: def __init__(self, config: NebulaConfig): self.config = config self.neurons: List[QuantumNeuron] = [] self.raytracing_engine = RaytracingEngine(config) self.holographic_memory = HolographicMemory(config) self.evolutionary_optimizer = EvolutionaryOptimizer(config) self.p2p_manager = P2PNetworkManager(config) self.benchmark_manager = BenchmarkManager(config) self.training_step = 0 self.performance_history: List[float] = [] self.nebula_space = np.zeros(config.nebula_space_size) self._initialize_neural_network() logger.info("NEBULA-X Model initialized successfully") def _initialize_neural_network(self): logger.info("Initializing quantum neural network...") n = max(1, min(self.config.initial_neurons, 20000)) # safety cap for i in range(n): neuron_id = f"neuron_{i:06d}" neuron = QuantumNeuron(neuron_id, self.config) self.neurons.append(neuron) self._create_initial_connections() logger.info(f"Created {len(self.neurons)} quantum neurons") def _create_initial_connections(self): num_neurons = len(self.neurons) if num_neurons <= 1: return for i, neuron in enumerate(self.neurons): # connect to a subset to avoid O(n^2) explosion sample_count = min(50, num_neurons - 1) indices = np.random.choice([j for j in range(num_neurons) if j != i], sample_count, replace=False) for j in indices: other = self.neurons[j] distance = np.linalg.norm(neuron.position - other.position) connection_prob = float(np.exp(-distance / 100)) if np.random.rand() < connection_prob: strength = float(np.random.rand()) neuron.connections[other.id] = {'strength': strength, 'type': 'excitatory' if strength > 0.5 else 'inhibitory'} def forward(self, input_data: np.ndarray) -> np.ndarray: holographic_input = self._encode_input_holographically(input_data) self._distribute_input_to_neurons(holographic_input) optical_signals = self.raytracing_engine.trace_neural_rays(self.neurons, input_data) quantum_outputs = [] for i, neuron in enumerate(self.neurons): try: if i < len(optical_signals): neuron_input = optical_signals[i] else: neuron_input = np.zeros(self.config.qubits_per_neuron) quantum_output = neuron.quantum_process(neuron_input) quantum_outputs.append(np.asarray(quantum_output)) except Exception as e: logger.debug(f"Quantum processing failed for neuron {neuron.id}: {e}") quantum_outputs.append(np.zeros(self.config.qubits_per_neuron)) self._apply_gravitational_dynamics() rag_results = self.holographic_memory.holographic_rag_search(holographic_input, top_k=5) final_output = self._combine_outputs(quantum_outputs, rag_results) return final_output def _encode_input_holographically(self, input_data: np.ndarray) -> np.ndarray: arr = np.asarray(input_data) arr = arr / (np.max(np.abs(arr)) + 1e-12) reference_beam = np.exp(1j * np.pi * np.arange(arr.size)).astype(np.complex128) object_beam = arr.astype(np.complex128) hologram = np.abs(object_beam + reference_beam) ** 2 return np.fft.fft(hologram) def _distribute_input_to_neurons(self, holographic_input: np.ndarray): input_size = holographic_input.size num_neurons = len(self.neurons) if num_neurons == 0: return chunk_size = max(1, input_size // num_neurons) for i, neuron in enumerate(self.neurons): start = i * chunk_size end = min((i + 1) * chunk_size, input_size) if start < input_size: neuron_input = holographic_input[start:end] try: neuron.holographic_encode(np.real(neuron_input)) except Exception as e: logger.debug(f"Failed encoding to neuron {neuron.id}: {e}") input_magnitude = np.abs(neuron_input).mean() if neuron_input.size else 0 neuron.luminosity = min(3.0, neuron.luminosity + float(input_magnitude) * 0.1) def _apply_gravitational_dynamics(self): dt = 0.01 for i, neuron in enumerate(self.neurons): total_force = np.zeros(3) for j, other in enumerate(self.neurons): if i == j: continue try: force = neuron.gravitational_force(other) distance = np.linalg.norm(other.position - neuron.position) if distance > self.config.repulsion_threshold: total_force += force else: total_force += (neuron.position - other.position) * 0.1 except Exception: continue neuron.update_position(dt, total_force) def _combine_outputs(self, quantum_outputs: List[np.ndarray], rag_results: List[Tuple[str, float, Optional[np.ndarray]]]) -> np.ndarray: if quantum_outputs: quantum_stack = np.vstack([np.resize(q, self.config.qubits_per_neuron) for q in quantum_outputs]) quantum_avg = np.mean(quantum_stack, axis=0) else: quantum_avg = np.zeros(self.config.qubits_per_neuron) rag_contribution = np.zeros_like(quantum_avg, dtype=float) for key, score, pattern in rag_results: if pattern is None: continue pattern_flat = np.ravel(pattern) L = min(len(pattern_flat), len(rag_contribution)) rag_contribution[:L] += np.real(pattern_flat[:L]) * float(score) if np.max(np.abs(rag_contribution)) > 0: rag_contribution /= (np.max(np.abs(rag_contribution)) + 1e-12) alpha, beta = 0.7, 0.3 final_output = alpha * np.real(quantum_avg) + beta * rag_contribution return final_output def train_step(self, input_data: np.ndarray, target: np.ndarray) -> float: output = self.forward(input_data) target_arr = np.asarray(target) min_len = min(output.size, target_arr.size) if min_len == 0: return float(np.nan) loss = float(np.mean((output[:min_len] - target_arr[:min_len]) ** 2)) pattern_key = f"pattern_{self.training_step}" try: self.holographic_memory.store_pattern(pattern_key, input_data) except Exception as e: logger.debug(f"Failed to store pattern during training: {e}") self._apply_evolutionary_pressure(loss) self.training_step += 1 self.performance_history.append(loss) if self.training_step % 100 == 0: try: self._evolutionary_optimization_step() except Exception as e: logger.warning(f"Evolution step failed: {e}") return loss def _apply_evolutionary_pressure(self, loss: float): if not self.neurons: return performance_threshold = np.median([n.luminosity for n in self.neurons]) for n in self.neurons: if n.luminosity > performance_threshold: n.luminosity *= 1.01 n.mass *= 1.001 else: n.luminosity *= 0.99 n.mass *= 0.999 n.luminosity = np.clip(n.luminosity, 0.1, 3.0) n.mass = np.clip(n.mass, 0.5, 2.0) def _evolutionary_optimization_step(self): logger.info("Executing evolutionary optimization step") try: optimized_params = self.evolutionary_optimizer.evolve_architecture(generations=10) self._apply_optimized_parameters(optimized_params) except Exception as e: logger.warning(f"Evolutionary optimization failed: {e}") def _apply_optimized_parameters(self, params: Dict[str, Any]): try: for neuron in self.neurons: neuron.optical_properties['reflectivity'] *= float(params.get('optical_coherence', 1.0)) neuron.optical_properties['phase_shift'] += float(params.get('reference_beam_angle', 0)) * 0.1 if 'rays_per_sample' in params: self.config.rays_per_neuron = min(10000, max(100, int(params['rays_per_sample']))) except Exception as e: logger.debug(f"Failed to apply optimized parameters: {e}") async def start_p2p_network(self): try: await self.p2p_manager.start_network() except Exception as e: logger.error(f"Failed to start P2P network: {e}") def evaluate_benchmarks(self) -> Dict[str, float]: logger.info("Starting benchmark evaluation") datasets = self.benchmark_manager.load_datasets() results = self.benchmark_manager.evaluate_model(self, datasets) report = self.benchmark_manager.generate_report() logger.info(f"Benchmark Report:\n{report}") return results def save_model(self, filepath: str): model_data = {'config': self.config.__dict__, 'neurons': [{'id': n.id, 'position': n.position.tolist(), 'luminosity': n.luminosity, 'mass': n.mass, 'optical_properties': n.optical_properties, 'connections': n.connections} for n in self.neurons], 'training_step': self.training_step, 'performance_history': self.performance_history, 'holographic_memory_keys': list(self.holographic_memory.memory_planes.keys()), 'timestamp': datetime.now().isoformat()} with open(filepath, 'wb') as f: pickle.dump(model_data, f) logger.info(f"Model saved to {filepath}") def load_model(self, filepath: str): with open(filepath, 'rb') as f: model_data = pickle.load(f) config_dict = model_data.get('config', {}) self.config = NebulaConfig(**config_dict) self.neurons = [] for neuron_data in model_data.get('neurons', []): neuron = QuantumNeuron(neuron_data.get('id', str(uuid.uuid4())), self.config) neuron.position = np.array(neuron_data.get('position', neuron.position)) neuron.luminosity = neuron_data.get('luminosity', neuron.luminosity) neuron.mass = neuron_data.get('mass', neuron.mass) neuron.optical_properties = neuron_data.get('optical_properties', neuron.optical_properties) neuron.connections = neuron_data.get('connections', {}) self.neurons.append(neuron) self.training_step = model_data.get('training_step', 0) self.performance_history = model_data.get('performance_history', []) logger.info(f"Model loaded from {filepath}") def create_demo_model() -> NebulaXModel: config = NebulaConfig(initial_neurons=1000, rays_per_neuron=500, generations=50, max_peers=10) model = NebulaXModel(config) logger.info("Demo model created successfully") return model def run_complete_demo(): print("\n" + "=" * 60) print("🌌 NEBULA-X: Enhanced Unified Holographic Neural Network") print(" Francisco Angulo de Lafuente - Agnuxo") print(" Winner: NVIDIA LlamaIndex Developer Contest 2024") print("=" * 60) try: print("\n🔧 Initializing NEBULA-X model...") model = create_demo_model() print("\n📊 Generating test data...") input_data = np.random.rand(128) target_data = np.random.rand(4) print("\n🎯 Training model...") for epoch in range(10): loss = model.train_step(input_data, target_data) if epoch % 2 == 0: print(f" Epoch {epoch}: Loss = {loss:.6f}") print("\n📈 Running benchmark evaluation...") benchmark_results = model.evaluate_benchmarks() print("\n🏆 BENCHMARK RESULTS:") for dataset, score in benchmark_results.items(): print(f" {dataset.upper()}: {score:.4f}") print("\n🔬 Advanced Features Demo:") test_pattern = np.random.rand(64, 64) model.holographic_memory.store_pattern("demo_pattern", test_pattern) retrieved = model.holographic_memory.retrieve_pattern("demo_pattern") print(f" ✓ Holographic Memory: Pattern stored and retrieved") rag_results = model.holographic_memory.holographic_rag_search(np.random.rand(64), top_k=3) print(f" ✓ Holographic RAG: Found {len(rag_results)} relevant patterns") optical_output = model.raytracing_engine.trace_neural_rays(model.neurons[:10], input_data) print(f" ✓ Optical Raytracing: Traced {len(optical_output)} rays") print(" 🧬 Running evolutionary optimization...") try: optimized_params = model.evolutionary_optimizer.evolve_architecture(generations=5) print(f" ✓ Evolution: Optimized {len(optimized_params)} parameters") except Exception as e: print(f" ⚠️ Evolution failed: {e}") print("\n💾 Saving model...") model.save_model("nebula_x_demo.pkl") print("\n📊 FINAL STATISTICS:") print(f" Neurons: {len(model.neurons)}") print(f" Training Steps: {model.training_step}") print(f" Holographic Patterns: {len(model.holographic_memory.memory_planes)}") print(f" Performance History: {len(model.performance_history)} points") print("\n🚀 IMPLEMENTED TECHNOLOGIES:") tech_status = [("Holographic Neural Networks", "✅ Active"), ("Quantum Memory (4 qubits/neuron)", "✅ Active"), ("GPU-Accelerated Raytracing", "✅ Active" if PYCUDA_AVAILABLE else "⚠️ Simulated"), ("P2P Knowledge Distribution", "✅ Ready"), ("Evolutionary Optimization", "✅ Active" if DEAP_AVAILABLE else "⚠️ Simulated"), ("Holographic RAG System", "✅ Active"), ("Gravitational Dynamics", "✅ Active"), ("Benchmark Integration", "✅ Active")] for name, status in tech_status: print(f" {name}: {status}") except Exception as e: logger.error(f"Demo failed: {e}") if __name__ == '__main__': run_complete_demo()