Commit
·
b65b15a
1
Parent(s):
794a8d6
Add application file
Browse files- .gitingore +0 -0
- app.py +82 -0
- requirements.txt +6 -0
.gitingore
ADDED
|
File without changes
|
app.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
import numpy as np
|
| 6 |
+
from torchvision.models.detection import FasterRCNN
|
| 7 |
+
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
|
| 8 |
+
|
| 9 |
+
# Load Models
|
| 10 |
+
def load_model(model_path, backbone_name, num_classes):
|
| 11 |
+
if backbone_name == "resnet50":
|
| 12 |
+
model = torch.load(model_path)
|
| 13 |
+
elif backbone_name == "mobilenet":
|
| 14 |
+
model = torch.load(model_path)
|
| 15 |
+
model.eval()
|
| 16 |
+
return model
|
| 17 |
+
|
| 18 |
+
resnet_model = load_model('fasterrcnnResnet.pth', 'resnet50', num_classes=6)
|
| 19 |
+
mobilenet_model = load_model('fasterrcnnMobilenet.pth', 'mobilenet', num_classes=6)
|
| 20 |
+
|
| 21 |
+
class_names = ['background', 'Ambulance', 'Bus', 'Car', 'Motorcycle', 'Truck']
|
| 22 |
+
|
| 23 |
+
# Inference Function for Images and Videos
|
| 24 |
+
|
| 25 |
+
def predict_image(image_path, model):
|
| 26 |
+
image = cv2.imread(image_path)
|
| 27 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 28 |
+
image_tensor = torch.tensor(image / 255.0).permute(2, 0, 1).float().unsqueeze(0)
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
output = model(image_tensor)[0]
|
| 31 |
+
for box, label, score in zip(output['boxes'], output['labels'], output['scores']):
|
| 32 |
+
if score > 0.5:
|
| 33 |
+
x1, y1, x2, y2 = map(int, box.tolist())
|
| 34 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 35 |
+
cv2.putText(image, f"{class_names[label]}: {score:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
|
| 36 |
+
return image
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def predict_video(video_path, model):
|
| 40 |
+
cap = cv2.VideoCapture(video_path)
|
| 41 |
+
frames = []
|
| 42 |
+
while cap.isOpened():
|
| 43 |
+
ret, frame = cap.read()
|
| 44 |
+
if not ret:
|
| 45 |
+
break
|
| 46 |
+
frame_tensor = torch.tensor(frame / 255.0).permute(2, 0, 1).float().unsqueeze(0)
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
output = model(frame_tensor)[0]
|
| 49 |
+
for box, label, score in zip(output['boxes'], output['labels'], output['scores']):
|
| 50 |
+
if score > 0.5:
|
| 51 |
+
x1, y1, x2, y2 = map(int, box.tolist())
|
| 52 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 53 |
+
cv2.putText(frame, f"{class_names[label]}: {score:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
|
| 54 |
+
frames.append(frame)
|
| 55 |
+
cap.release()
|
| 56 |
+
return frames[0] if frames else None
|
| 57 |
+
|
| 58 |
+
# Gradio Interface for Image and Video Inference
|
| 59 |
+
|
| 60 |
+
model_selection = gr.Dropdown(choices=["ResNet50", "MobileNet"], label="Select Model")
|
| 61 |
+
|
| 62 |
+
inputs_image = [gr.Image(type="filepath", label="Upload Image"), model_selection]
|
| 63 |
+
outputs_image = gr.Image(type="numpy", label="Detection Output")
|
| 64 |
+
|
| 65 |
+
inputs_video = [gr.Video(type="filepath", label="Upload Video"), model_selection]
|
| 66 |
+
outputs_video = gr.Image(type="numpy", label="Detection Output")
|
| 67 |
+
|
| 68 |
+
image_interface = gr.Interface(
|
| 69 |
+
fn=lambda img, model_name: predict_image(img, resnet_model if model_name == "ResNet50" else mobilenet_model),
|
| 70 |
+
inputs=inputs_image,
|
| 71 |
+
outputs=outputs_image,
|
| 72 |
+
title="Image Inference"
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
video_interface = gr.Interface(
|
| 76 |
+
fn=lambda vid, model_name: predict_video(vid, resnet_model if model_name == "ResNet50" else mobilenet_model),
|
| 77 |
+
inputs=inputs_video,
|
| 78 |
+
outputs=outputs_video,
|
| 79 |
+
title="Video Inference"
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
gr.TabbedInterface([image_interface, video_interface], ["Image", "Video"]).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
opencv-python-headless
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
| 5 |
+
numpy
|
| 6 |
+
matplotlib
|