File size: 16,582 Bytes
36deff5
 
 
 
 
 
 
 
 
 
 
 
 
7a71a9c
59d8bcf
36deff5
 
 
 
 
 
eaab8c7
36deff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9942da6
36deff5
 
 
9942da6
36deff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c562e2
 
4ac587b
 
 
 
 
5c562e2
 
 
36deff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2946af2
bfe0fc7
36deff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98bbfe6
36deff5
 
 
98bbfe6
36deff5
 
 
 
 
 
98bbfe6
 
36deff5
98bbfe6
 
 
36deff5
98bbfe6
36deff5
98bbfe6
eaab8c7
 
 
36deff5
 
 
 
 
 
eaab8c7
36deff5
 
 
 
 
 
 
 
 
eaab8c7
 
 
 
 
 
 
 
f656c8f
eaab8c7
 
 
36deff5
eaab8c7
 
 
 
 
36deff5
 
eaab8c7
36deff5
 
 
 
 
 
 
 
 
 
 
00f89f7
36deff5
 
 
 
 
 
 
 
eaab8c7
36deff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaab8c7
36deff5
 
 
 
 
 
 
 
 
 
 
 
 
 
99d4e94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36deff5
 
 
 
 
 
00f89f7
36deff5
 
ecd102d
00f89f7
36deff5
 
 
ecd102d
36deff5
6f054c1
e3768f8
 
 
 
 
 
 
 
 
21e17cc
17c4968
124ef75
e3768f8
21e17cc
17c4968
 
 
e3768f8
17c4968
21e17cc
17c4968
 
4c38303
 
e3768f8
21e17cc
17c4968
 
 
ffa0f17
e3768f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ac587b
36deff5
4ac587b
36deff5
aa9ea62
 
 
 
 
 
f9fcbab
b1cd9b8
 
 
 
 
aa9ea62
b1cd9b8
 
 
36deff5
aa9ea62
 
 
 
4ac587b
 
 
 
36deff5
7b866c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36deff5
c870bd4
98bbfe6
 
 
 
7b866c6
98bbfe6
 
 
 
 
 
 
 
36deff5
 
 
 
 
 
 
 
98bbfe6
36deff5
 
 
 
 
 
 
 
a6fb87c
36deff5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# -*- coding: utf-8 -*-
"""Defense QA Chatbot - Streamlit Version with Password Protection"""

import streamlit as st
import pandas as pd
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
import pickle
import os
import warnings



warnings.filterwarnings("ignore")
torch.manual_seed(42)
np.random.seed(42)

# ========== Page Config ==========
st.set_page_config(
    page_title="Mission Assistant",
    layout="wide",
    initial_sidebar_state="collapsed"
)

# ========== Custom CSS ==========
st.markdown("""
<style>
    @import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
    
    * {
        font-family: 'Inter', sans-serif;
    }
    
    .main {
        background: linear-gradient(to bottom, #0f172a 0%, #1e293b 100%);
    }
    
    #MainMenu {visibility: hidden;}
    footer {visibility: hidden;}
    header {visibility: hidden;}
    
    .header-container {
        background: linear-gradient(135deg, #1e40af 0%, #3b82f6 50%, #60a5fa 100%);
        padding: 43px 30px;
        text-align: center;
        color: white;
        border-radius: 16px;
        margin: -60px -20px 20px -20px;
        box-shadow: 0 8px 32px rgba(59, 130, 246, 0.3);
    }
    
    .header-container h1 {
        margin: 0 0 12px 0;
        font-size: 36px;
        font-weight: 700;
    }
    
    .header-container p {
        margin: 0;
        font-size: 16px;
        opacity: 0.95;
    }
    


    .stChatMessage {
        background: rgba(30, 41, 59, 0.6);
        border-radius: 12px;
        border: 1px solid rgba(148, 163, 184, 0.3);
        margin: 10px 0;
    }

    
    .stTextInput input, .stTextArea textarea {
        background: rgba(30, 41, 59, 0.8) !important;
        color: #f1f5f9 !important;
        border: 2px solid rgba(148, 163, 184, 0.4) !important;
        border-radius: 12px !important;
        font-size: 15px !important;
    }
    
    .stTextArea textarea {
        min-height: 100px !important;
    }
    
    .stButton button {
        background: linear-gradient(135deg, #2563eb, #1e40af) !important;
        color: white !important;
        border: none !important;
        border-radius: 10px !important;
        font-weight: 600 !important;
        padding: 12px 24px !important;
        width: 100%;
    }
    
    .stButton button:hover {
        background: linear-gradient(135deg, #1e40af, #1e3a8a) !important;
        transform: translateY(-2px);
    }
    
    .streamlit-expanderHeader {
        background: rgba(51, 65, 85, 0.9) !important;
        color: #60a5fa !important;
        border-radius: 12px !important;
        font-weight: 600 !important;
    }
    
    .streamlit-expanderContent {
        background: rgba(30, 41, 59, 0.8) !important;
        border: 1px solid rgba(148, 163, 184, 0.3) !important;
        border-radius: 0 0 12px 12px !important;
    }
    
    .info-box {
        background: rgba(51, 65, 85, 0.5);
        padding: 20px;
        border-radius: 10px;
        border: 1px solid rgba(148, 163, 184, 0.3);
        color: #e2e8f0;
    }
    
    .info-box h3 {
        color: #60a5fa;
        font-size: 16px;
        font-weight: 600;
        margin-bottom: 12px;
        border-bottom: 2px solid #3b82f6;
        padding-bottom: 8px;
    }
    
    .footer-container {
        text-align: center;
        padding: 30px 20px;
        margin-top: 50px;
        margin-bottom: 20px;
        color: #64748b;
        border-top: 1px solid rgba(148, 163, 184, 0.3);
    }
    
    .nwtc-badge {
        display: inline-block;
        background: rgba(59, 130, 246, 0.1);
        padding: 10px 20px;
        border-radius: 8px;
        margin-top: 10px;
        border: 1px solid rgba(59, 130, 246, 0.3);
        color: #3b82f6;
        font-weight: 600;
    }
    
    .login-box {
        background: rgba(30, 41, 59, 0.8);
        padding: 40px;
        border-radius: 16px;
        border: 1px solid rgba(148, 163, 184, 0.3);
        text-align: center;
        max-width: 500px;
        margin: 100px auto;
    }
</style>
""", unsafe_allow_html=True)

# ========== Configuration ==========
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name = "huawei-noah/TinyBERT_General_4L_312D"
max_length = 512

MODEL_PATH = "tinybert_defense_aug.pt"
EMBEDDINGS_PATH = "defense_embeddings_p3.pkl"

# ========== Helper Functions ==========
def mean_pooling(last_hidden, mask):
    mask = mask.unsqueeze(-1).type_as(last_hidden)
    summed = (last_hidden * mask).sum(dim=1)
    counts = mask.sum(dim=1).clamp(min=1e-6)
    emb = summed / counts
    emb = F.normalize(emb, p=2, dim=1)
    return emb

# ========== Chatbot Class ==========
class DefenseQAChatbot:
    def __init__(self, model, tokenizer, device, embeddings_path):
        self.model = model.eval()
        self.tok = tokenizer
        self.device = device

        with open(embeddings_path, 'rb') as f:
            saved_data = pickle.load(f)

        self.response_embs = saved_data['embeddings']

        if 'responses' in saved_data:
            self.responses = saved_data['responses']
        else:
            num_embeddings = len(self.response_embs)
            self.responses = [f"Defense Response #{i+1}" for i in range(num_embeddings)]

    def _embed_one(self, text):
        with torch.no_grad():
            enc = self.tok([text], truncation=True, padding="longest",
                           max_length=max_length, return_tensors="pt").to(self.device)
            out = self.model(**enc)
            emb = mean_pooling(out.last_hidden_state, enc["attention_mask"])
        return emb[0].cpu().numpy()
    
    def get_response(self, user_prompt, top_k=5, reject=0.55):
        if not user_prompt.strip():
            return "Please ask a question about defense protocols."
    
        q = self._embed_one(user_prompt)
        sims = self.response_embs @ q
        top = np.argpartition(-sims, min(top_k, len(sims)-1))[:top_k]
        top = top[np.argsort(-sims[top])]
        best = top[0]
        score = float(sims[best])
    
        # ุฅุฐุง ุงู„ุซู‚ุฉ ู…ู†ุฎูุถุฉ ุฌุฏุงู‹
        if score < reject:
            return "I couldn't find a reliable answer. Please try rephrasing your question or ask about specific defense protocols and procedures."
    
        # ุฅุฑุฌุงุน ุงู„ุฅุฌุงุจุฉ ุจุฏูˆู† ุชู‚ูŠูŠู…
        response_text = self.responses[best]
        return response_text

        
# ========== Password Protection ==========


# ========== Password Protection ==========
def check_password():
    """Returns True if user entered correct password"""
    
    def password_entered():
        """Checks whether password is correct"""
        # ุบูŠู‘ุฑ ูƒู„ู…ุฉ ุงู„ุณุฑ ู‡ู†ุง
        CORRECT_PASSWORD = "NWTC@2025"
        
        if st.session_state["password"] == CORRECT_PASSWORD:
            st.session_state["password_correct"] = True
            del st.session_state["password"]
        else:
            st.session_state["password_correct"] = False

    if "password_correct" not in st.session_state:
        st.markdown("""
        <div class="header-container">
            <div style="display: flex; align-items: center; justify-content: center; gap: 20px;">
                <h1 style="margin: 0;">Mission Assistant</h1>
            </div>
            <p style="margin-top: 15px; font-size: 18px;">Secure Access Required</p>
        </div>
        """, unsafe_allow_html=True)

        
        col1, col2, col3 = st.columns([1, 2, 1])
        with col2:
            st.markdown("""
            <div class="login-box">
                <h2 style="color: #60a5fa; margin-bottom: 20px;">๐Ÿ” Enter Access Code</h2>
                <p style="color: #cbd5e1; margin-bottom: 30px;">
                    This system is restricted to authorized personnel only
                </p>
            </div>
            """, unsafe_allow_html=True)
            
            st.text_input(
                "Password",
                type="password",
                on_change=password_entered,
                key="password",
                label_visibility="collapsed",
                placeholder="Enter your access code..."
            )
            
            st.markdown("""
            <p style="text-align: center; color: #64748b; font-size: 13px; margin-top: 20px;">
                ๐Ÿ‡ธ๐Ÿ‡ฆ Made by NWTC 
            </p>
            """, unsafe_allow_html=True)
        
        return False
    
    elif not st.session_state["password_correct"]:
        st.markdown("""
        <div class="header-container">
            <h1>Mission Assistant</h1>
            <p style="margin-top: 15px; font-size: 18px;">Secure Access Required</p>
        </div>
        """, unsafe_allow_html=True)
        
        col1, col2, col3 = st.columns([1, 2, 1])
        with col2:
            st.markdown("""
            <div class="login-box">
                <h2 style="color: #60a5fa; margin-bottom: 20px;">๐Ÿ” Enter Access Code</h2>
                <p style="color: #cbd5e1; margin-bottom: 30px;">
                    This system is restricted to authorized personnel only
                </p>
            </div>
            """, unsafe_allow_html=True)
            
            st.text_input(
                "Password",
                type="password",
                on_change=password_entered,
                key="password",
                label_visibility="collapsed",
                placeholder="Enter your access code..."
            )
            
            st.error("โŒ Access Denied - Incorrect password")
            
            st.markdown("""
            <p style="text-align: center; color: #64748b; font-size: 13px; margin-top: 20px;">
                ๐Ÿ‡ธ๐Ÿ‡ฆ Made by NWTC 
            </p>
            """, unsafe_allow_html=True)
        
        return False
    
    else:
        return True

if not check_password():
    st.stop()

# ========== Load Model (Cached) ==========
@st.cache_resource
def load_model():
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModel.from_pretrained(model_name).to(device)
        
        if os.path.exists(MODEL_PATH):
            # Try loading with weights_only=False
            try:
                ckpt = torch.load(MODEL_PATH, map_location=device, weights_only=False)
            except:
                # Fallback to old method
                ckpt = torch.load(MODEL_PATH, map_location=device)
                
            model.load_state_dict(ckpt["model_state"])
            model.eval()
        
        chatbot = DefenseQAChatbot(
            model=model,
            tokenizer=tokenizer,
            device=device,
            embeddings_path=EMBEDDINGS_PATH
        )
        
        return chatbot
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        st.stop()
        
chatbot = load_model()

# ========== Initialize Session State ==========
if "messages" not in st.session_state:
    st.session_state.messages = []

# ========== Header ==========
# ========== Header ==========
st.markdown("""
<div class="header-container">
    <h1 style="margin: 0;">Mission Assistant</h1>
</div>
""", unsafe_allow_html=True)


# ========== Info Expander ==========

with st.expander("๐Ÿ’ก Quick Questions & Examples"):
    st.markdown("""
    <p style="color: #cbd5e1; font-size: 14px; margin-bottom: 20px; text-align: center;">
        Click any question to ask instantly
    </p>
    """, unsafe_allow_html=True)
    
    # Organize questions by category
    categories = {
        "C2/STAFF": [
            "What elements make up a C2 system in military operations?",
            "What is the purpose of coordination measures in staff operations?"
        ],
        "INTEL/RECON": [
            "What are the key components of intelligence operations according to ADP 2-0?",
            "Why are reconnaissance objectives important in planning missions?",
           
        ],

        "TACTICAL": [
            "What is the goal of tactical weapon positioning?",
            "What are common maneuver forms used in offensive operations?",
            

        ],
        "OE/ENVIRONMENT": [
            "What details should be included when describing an area-type disposition?",
            "What is terrain analysis and why is it important in military operations?",
            "How does precipitation affect operational planning?"
        ]
    }
    
    # Create tabs for categories
    tabs = st.tabs(list(categories.keys()))
    
    for tab, (category, questions) in zip(tabs, categories.items()):
        with tab:
            for i, question in enumerate(questions):
                if st.button(
                    f"โ†’ {question}", 
                    key=f"{category}_{i}",
                    use_container_width=True
                ):
                    st.session_state.messages.append({"role": "user", "content": question})
                    with st.chat_message("assistant"):
                        with st.spinner("Analyzing..."):
                            response = chatbot.get_response(question)
                            st.markdown(response)
                    st.session_state.messages.append({"role": "assistant", "content": response})
                    st.rerun()


# ========== Chat Display ==========
# Empty state - only show when no messages
if len(st.session_state.messages) == 0:
    st.markdown(
        """
        <div style="text-align: center; padding: 100px 20px; color: #64748b;">
            <div style="font-size: 100px; font-weight: 700; color: #475569; margin-bottom: 20px;">
                NWTC
            </div>
            <p style="font-size: 15px; margin: 0; color: #94a3b8; line-height: 1.8; max-width: 900px; margin: 0 auto;">
                Ask only about:<br>
            โ€ข C2 (command & staff)<br>
            โ€ข Intel/Recon (intelligence collection, analysis & reconnaissance tasks)<br>
            โ€ข OE/Environment (terrain, weather, infrastructure & civil factors)<br>
            โ€ข Tactical concepts & techniques (high-level; no step-by-step actionable instructions)
            </p>



        </div>
        """,
        unsafe_allow_html=True
    )


# Chat container with fixed height
chat_container = st.container()
with chat_container:
    for message in st.session_state.messages:
        if message["role"] == "user":
            st.markdown(f"""
            <div style="background: linear-gradient(90deg, rgba(59, 130, 246, 0.25), rgba(37, 99, 235, 0.1));
                        border-left: 4px solid #3b82f6;
                        border-radius: 12px;
                        padding: 15px 20px;
                        margin: 12px 0;">
                <div style="color: #60a5fa; font-weight: 600; margin-bottom: 8px;">๐Ÿ‘ค You</div>
                <div style="color: #e2e8f0; line-height: 1.6;">{message["content"]}</div>
            </div>
            """, unsafe_allow_html=True)
        else:
            st.markdown(f"""
            <div style="background: linear-gradient(90deg, rgba(16, 185, 129, 0.25), rgba(5, 150, 105, 0.1));
                        border-left: 4px solid #10b981;
                        border-radius: 12px;
                        padding: 15px 20px;
                        margin: 12px 0;">
                <div style="color: #34d399; font-weight: 600; margin-bottom: 8px;">๐Ÿค– Assistant</div>
                <div style="color: #e2e8f0; line-height: 1.6;">{message["content"]}</div>
            </div>
            """, unsafe_allow_html=True)

      
# ========== Chat Input & Clear Button ==========
col1, col2 = st.columns([5, 1])

with col1:
    prompt = st.chat_input("Enter your inquiry here...")


with col2:
    if st.button("๐Ÿ—‘๏ธ Clear", use_container_width=True):
        st.session_state.messages = []
        st.rerun()
# Process message
if prompt:
    st.session_state.messages.append({"role": "user", "content": prompt})
    
    with st.chat_message("assistant"):
        with st.spinner("Analyzing..."):
            response = chatbot.get_response(prompt)
            st.markdown(response)
    
    st.session_state.messages.append({"role": "assistant", "content": response})
    st.rerun()

# ========== Footer ==========
st.markdown("""
<div class="footer-container">
    <p style="font-size: 14px; margin: 8px 0;">
        Powered by Advanced Natural Language Processing
    </p>
    <div class="nwtc-badge">
        ๐Ÿ‡ธ๐Ÿ‡ฆ Made by NWTC
    </div>
</div>
""", unsafe_allow_html=True)