Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import random | |
| import time | |
| from ctransformers import AutoModelForCausalLM | |
| import datetime | |
| import os | |
| params = { | |
| "max_new_tokens":512, | |
| "stop":["<end>" ,"<|endoftext|>"], | |
| "temperature":0.7, | |
| "top_p":0.8, | |
| "stream":True, | |
| "batch_size": 8} | |
| def save_log(task, to_save): | |
| with open("logs.txt", "a") as log_file: | |
| current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| log_file.write(f"[{current_time}] - {task}: {to_save}\n") | |
| print(to_save) | |
| llm = AutoModelForCausalLM.from_pretrained("Aspik101/Llama-2-7b-chat-hf-pl-lora_GGML", model_type="llama") | |
| with gr.Blocks() as demo: | |
| chatbot = gr.Chatbot() | |
| msg = gr.Textbox() | |
| clear = gr.Button("Clear") | |
| def user(user_message, history): | |
| return "", history + [[user_message, None]] | |
| def parse_history(hist): | |
| history_ = "" | |
| for q, a in hist: | |
| history_ += f"<user>: {q } \n" | |
| if a: | |
| history_ += f"<assistant>: {a} \n" | |
| return history_ | |
| def bot(history): | |
| print("history: ",history) | |
| prompt = f"Jesteś AI assystentem. Odpowiadaj po polsku. {parse_history(history)}. <assistant>:" | |
| print("prompt: ",prompt) | |
| stream = llm(prompt, **params) | |
| history[-1][1] = "" | |
| answer_save = "" | |
| for character in stream: | |
| history[-1][1] += character | |
| answer_save += character | |
| time.sleep(0.005) | |
| yield history | |
| print("answer_save: ",answer_save) | |
| msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
| bot, chatbot, chatbot | |
| ) | |
| clear.click(lambda: None, None, chatbot, queue=False) | |
| demo.queue() | |
| demo.launch() |