import json from threading import Thread import gradio as gr import spaces from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, ) MAX_NEW_TOKENS = 8192 MODEL_NAME = "Azure99/Blossom-V6.2-14B" model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype="auto", device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) def get_messages(user, history): try: parsed_body = json.loads(user) if parsed_body.get("by_json_str"): return parsed_body["messages"] except: pass messages = [] messages.extend(history or []) messages.append({"role": "user", "content": user}) return messages @spaces.GPU(duration=120) def chat(user, history, temperature, top_p, repetition_penalty): streamer = TextIteratorStreamer( tokenizer, skip_prompt=True, skip_special_tokens=True ) messages = get_messages(user, history) print(f"Messages: {messages}") input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to( model.device ) generation_kwargs = dict( input_ids=input_ids, streamer=streamer, do_sample=True, max_new_tokens=MAX_NEW_TOKENS, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, ) Thread(target=model.generate, kwargs=generation_kwargs).start() outputs = "" for new_text in streamer: outputs += new_text yield outputs additional_inputs = [ gr.Slider( label="Temperature", value=0.5, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Controls randomness in choosing words.", ), gr.Slider( label="Top-P", value=0.85, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Picks words until their combined probability is at least top_p.", ), gr.Slider( label="Repetition penalty", value=1.05, minimum=1.0, maximum=1.2, step=0.01, interactive=True, info="Repetition Penalty: Controls how much repetition is penalized.", ), ] gr.ChatInterface( chat, type="messages", chatbot=gr.Chatbot( show_label=False, height=500, show_copy_button=True, render_markdown=True, type="messages", latex_delimiters=[{"left": "\\[", "right": "\\]", "display": True}], ), textbox=gr.Textbox(placeholder="", container=False, scale=7), title=f"{MODEL_NAME} Demo", description="Hello, I am Blossom, an open source conversational large language model.🌠" 'GitHub', theme="soft", examples=[ ["Hello"], ["What is MBTI"], ["用Python实现二分查找"], ["为switch写一篇小红书种草文案,带上emoji"], ], cache_examples=False, additional_inputs=additional_inputs, additional_inputs_accordion=gr.Accordion(label="Config", open=True), ).queue().launch()