Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -52,15 +52,14 @@ text_to_image_pipelines = {}
|
|
| 52 |
text_to_speech_pipelines = {}
|
| 53 |
|
| 54 |
# Initialize pipelines for other tasks
|
| 55 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 56 |
-
logger.info(f"Device set to use {device}")
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
| 64 |
|
| 65 |
# Load speaker embeddings for text-to-audio
|
| 66 |
def load_speaker_embeddings(model_name):
|
|
@@ -74,14 +73,14 @@ def load_speaker_embeddings(model_name):
|
|
| 74 |
|
| 75 |
# Use a different model for text-to-audio if stabilityai/stable-audio-open-1.0 is not supported
|
| 76 |
try:
|
| 77 |
-
text_to_audio_pipeline = pipeline("text-to-audio", model="stabilityai/stable-audio-open-1.0"
|
| 78 |
except ValueError as e:
|
| 79 |
logger.error(f"Error loading stabilityai/stable-audio-open-1.0: {e}")
|
| 80 |
logger.info("Falling back to a different text-to-audio model.")
|
| 81 |
-
text_to_audio_pipeline = pipeline("text-to-audio", model="microsoft/speecht5_tts"
|
| 82 |
speaker_embeddings = load_speaker_embeddings("microsoft/speecht5_tts")
|
| 83 |
|
| 84 |
-
audio_classification_pipeline = pipeline("audio-classification", model="facebook/wav2vec2-base"
|
| 85 |
|
| 86 |
def load_conversational_model(model_name):
|
| 87 |
if model_name not in conversational_models_loaded:
|
|
@@ -115,7 +114,7 @@ def chat(model_name, user_input, history=[]):
|
|
| 115 |
tokenizer, model = load_conversational_model(model_name)
|
| 116 |
|
| 117 |
# Encode the input
|
| 118 |
-
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
| 119 |
|
| 120 |
# Generate a response
|
| 121 |
with torch.no_grad():
|
|
|
|
| 52 |
text_to_speech_pipelines = {}
|
| 53 |
|
| 54 |
# Initialize pipelines for other tasks
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
|
| 57 |
+
visual_qa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
|
| 58 |
+
document_qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
| 59 |
+
image_classification_pipeline = pipeline("image-classification", model="facebook/deit-base-distilled-patch16-224")
|
| 60 |
+
object_detection_pipeline = pipeline("object-detection", model="facebook/detr-resnet-50")
|
| 61 |
+
video_classification_pipeline = pipeline("video-classification", model="facebook/timesformer-base-finetuned-k400")
|
| 62 |
+
summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 63 |
|
| 64 |
# Load speaker embeddings for text-to-audio
|
| 65 |
def load_speaker_embeddings(model_name):
|
|
|
|
| 73 |
|
| 74 |
# Use a different model for text-to-audio if stabilityai/stable-audio-open-1.0 is not supported
|
| 75 |
try:
|
| 76 |
+
text_to_audio_pipeline = pipeline("text-to-audio", model="stabilityai/stable-audio-open-1.0")
|
| 77 |
except ValueError as e:
|
| 78 |
logger.error(f"Error loading stabilityai/stable-audio-open-1.0: {e}")
|
| 79 |
logger.info("Falling back to a different text-to-audio model.")
|
| 80 |
+
text_to_audio_pipeline = pipeline("text-to-audio", model="microsoft/speecht5_tts")
|
| 81 |
speaker_embeddings = load_speaker_embeddings("microsoft/speecht5_tts")
|
| 82 |
|
| 83 |
+
audio_classification_pipeline = pipeline("audio-classification", model="facebook/wav2vec2-base")
|
| 84 |
|
| 85 |
def load_conversational_model(model_name):
|
| 86 |
if model_name not in conversational_models_loaded:
|
|
|
|
| 114 |
tokenizer, model = load_conversational_model(model_name)
|
| 115 |
|
| 116 |
# Encode the input
|
| 117 |
+
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
| 118 |
|
| 119 |
# Generate a response
|
| 120 |
with torch.no_grad():
|