Spaces:
Runtime error
Runtime error
Refactored the code and made it faster
Browse files
semf1.py
CHANGED
|
@@ -26,6 +26,9 @@ from numpy.typing import NDArray
|
|
| 26 |
from sentence_transformers import SentenceTransformer
|
| 27 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 28 |
import torch
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
_CITATION = """\
|
| 31 |
@inproceedings{bansal-etal-2022-sem,
|
|
@@ -120,6 +123,9 @@ Examples:
|
|
| 120 |
[0.77, 0.56]
|
| 121 |
"""
|
| 122 |
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
class Encoder(metaclass=abc.ABCMeta):
|
| 125 |
@abc.abstractmethod
|
|
@@ -149,23 +155,12 @@ class SBertEncoder(Encoder):
|
|
| 149 |
|
| 150 |
def _get_encoder(model_name: str, device: Union[str, int], batch_size: int) -> Encoder:
|
| 151 |
if model_name == "use":
|
| 152 |
-
return SBertEncoder(model_name, device)
|
| 153 |
# return USE() # TODO: This will change depending on PyTorch USE VS TF USE model
|
| 154 |
else:
|
| 155 |
return SBertEncoder(model_name, device, batch_size)
|
| 156 |
|
| 157 |
|
| 158 |
-
def _compute_f1(p, r, eps=sys.float_info.epsilon):
|
| 159 |
-
'''
|
| 160 |
-
Computes F1 value
|
| 161 |
-
:param p: Precision Value
|
| 162 |
-
:param r: Recall Value
|
| 163 |
-
:return:
|
| 164 |
-
'''
|
| 165 |
-
f1 = 2 * p * r / (p + r + eps)
|
| 166 |
-
return f1
|
| 167 |
-
|
| 168 |
-
|
| 169 |
def _compute_cosine_similarity(pred_embeds: NDArray, ref_embeds: NDArray) -> Tuple[float, float]:
|
| 170 |
cosine_scores = cosine_similarity(pred_embeds, ref_embeds)
|
| 171 |
precision_per_sentence_sim = np.max(cosine_scores, axis=-1)
|
|
@@ -173,6 +168,48 @@ def _compute_cosine_similarity(pred_embeds: NDArray, ref_embeds: NDArray) -> Tup
|
|
| 173 |
return np.mean(precision_per_sentence_sim).item(), np.mean(recall_per_sentence_sim).item()
|
| 174 |
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 177 |
class SemF1(evaluate.Metric):
|
| 178 |
_MODEL_TYPE_TO_NAME = {
|
|
@@ -251,7 +288,8 @@ class SemF1(evaluate.Metric):
|
|
| 251 |
"""Optional: download external resources useful to compute the scores"""
|
| 252 |
import nltk
|
| 253 |
nltk.download("punkt", quiet=True)
|
| 254 |
-
# if not nltk.data.find("tokenizers/punkt"):
|
|
|
|
| 255 |
|
| 256 |
|
| 257 |
def _compute(
|
|
@@ -260,114 +298,71 @@ class SemF1(evaluate.Metric):
|
|
| 260 |
references,
|
| 261 |
model_type: Optional[str] = None,
|
| 262 |
tokenize_sentences: bool = True,
|
|
|
|
| 263 |
gpu: Union[bool, int] = False,
|
| 264 |
batch_size: int = 32,
|
| 265 |
-
):
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
# TODO: Also have a check on references to ensure they are also in correct format
|
| 287 |
-
# Ensure prediction documents are not already tokenized if tokenize_sentences is True
|
| 288 |
-
if not isinstance(predictions[0], str) and tokenize_sentences:
|
| 289 |
-
raise ValueError(f"Each prediction/reference should be a document i.e. when tokenize_sentences is True. "
|
| 290 |
-
f"Currently, each prediction is of type {type(predictions[0])} ")
|
| 291 |
-
|
| 292 |
-
# Check single reference or multi-reference case
|
| 293 |
-
multi_references = False
|
| 294 |
-
if tokenize_sentences:
|
| 295 |
-
# references: List[List[reference]]
|
| 296 |
-
if isinstance(references[0], list) and isinstance(references[0][0], str):
|
| 297 |
-
multi_references = True
|
| 298 |
-
else:
|
| 299 |
-
# references: List[List[List[sentence]]]
|
| 300 |
-
if (
|
| 301 |
-
isinstance(references[0], list) and
|
| 302 |
-
isinstance(references[0][0], list) and
|
| 303 |
-
isinstance(references[0][0][0], str)
|
| 304 |
-
):
|
| 305 |
-
multi_references = True
|
| 306 |
|
| 307 |
# Get the encoder model
|
| 308 |
model_name = self._get_model_name(model_type)
|
| 309 |
-
encoder = _get_encoder(model_name, device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
|
| 311 |
# Init output scores
|
| 312 |
-
|
| 313 |
-
recalls = [0] * len(predictions)
|
| 314 |
-
f1_scores = [0] * len(predictions)
|
| 315 |
|
| 316 |
-
# Compute
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
p, r = _compute_cosine_similarity(pred_embeddings, ref_embeddings)
|
| 331 |
-
f1 = _compute_f1(p, r)
|
| 332 |
-
precisions[idx] = p
|
| 333 |
-
recalls[idx] = r
|
| 334 |
-
f1_scores[idx] = f1
|
| 335 |
-
|
| 336 |
-
else:
|
| 337 |
-
# Compute Score in case of multiple reference
|
| 338 |
-
for idx, (pred, refs) in enumerate(zip(predictions, references)):
|
| 339 |
-
# Sentence Tokenize prediction and reference
|
| 340 |
-
if tokenize_sentences:
|
| 341 |
-
refs = [nltk.tokenize.sent_tokenize(ref) for ref in refs] # List[List[str]]
|
| 342 |
-
pred = nltk.tokenize.sent_tokenize(pred) # List[str]
|
| 343 |
-
|
| 344 |
-
ref_count = len(refs)
|
| 345 |
-
pred_sent_count = len(pred)
|
| 346 |
-
ref_sent_counts = [0] + [len(ref) for ref in refs]
|
| 347 |
-
cumsum_ref_sent_counts = np.cumsum(ref_sent_counts)
|
| 348 |
-
|
| 349 |
-
all_sentences = pred + sum(refs, [])
|
| 350 |
-
embeddings = encoder.encode(all_sentences)
|
| 351 |
-
pred_embeddings = embeddings[:pred_sent_count]
|
| 352 |
-
ref_embeddings = [
|
| 353 |
-
embeddings[pred_sent_count + cumsum_ref_sent_counts[c_idx]:
|
| 354 |
-
pred_sent_count + cumsum_ref_sent_counts[c_idx + 1]]
|
| 355 |
-
for c_idx in range(ref_count)
|
| 356 |
-
]
|
| 357 |
-
# pred_embeddings = encoder.encode(pred)
|
| 358 |
-
# ref_embeddings = [encoder.encode(refs) for ref in refs]
|
| 359 |
-
|
| 360 |
-
# Precision: Concatenate all the sentences in all the references
|
| 361 |
-
concat_ref_embeddings = np.concatenate(ref_embeddings, axis=0)
|
| 362 |
-
p, _ = _compute_cosine_similarity(pred_embeddings, concat_ref_embeddings)
|
| 363 |
-
|
| 364 |
-
# Recall: Compute individually for each reference
|
| 365 |
-
scores = [_compute_cosine_similarity(r_embeds, pred_embeddings) for r_embeds in ref_embeddings]
|
| 366 |
-
r = np.mean([r_scores for (r_scores, _) in scores]).item()
|
| 367 |
-
|
| 368 |
-
f1 = _compute_f1(p, r)
|
| 369 |
-
precisions[idx] = p # TODO: check why idx says invalid type
|
| 370 |
-
recalls[idx] = r
|
| 371 |
-
f1_scores[idx] = f1
|
| 372 |
-
|
| 373 |
-
return {"precision": precisions, "recall": recalls, "f1": f1_scores}
|
|
|
|
| 26 |
from sentence_transformers import SentenceTransformer
|
| 27 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 28 |
import torch
|
| 29 |
+
from tqdm import tqdm
|
| 30 |
+
|
| 31 |
+
from utils import is_list_of_strings_at_depth, Scores, slice_embeddings, flatten_list
|
| 32 |
|
| 33 |
_CITATION = """\
|
| 34 |
@inproceedings{bansal-etal-2022-sem,
|
|
|
|
| 123 |
[0.77, 0.56]
|
| 124 |
"""
|
| 125 |
|
| 126 |
+
_PREDICTION_TYPE = Union[List[str], List[List[str]]]
|
| 127 |
+
_REFERENCE_TYPE = Union[List[str], List[List[str]], List[List[List[str]]]]
|
| 128 |
+
|
| 129 |
|
| 130 |
class Encoder(metaclass=abc.ABCMeta):
|
| 131 |
@abc.abstractmethod
|
|
|
|
| 155 |
|
| 156 |
def _get_encoder(model_name: str, device: Union[str, int], batch_size: int) -> Encoder:
|
| 157 |
if model_name == "use":
|
| 158 |
+
return SBertEncoder(model_name, device, batch_size)
|
| 159 |
# return USE() # TODO: This will change depending on PyTorch USE VS TF USE model
|
| 160 |
else:
|
| 161 |
return SBertEncoder(model_name, device, batch_size)
|
| 162 |
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
def _compute_cosine_similarity(pred_embeds: NDArray, ref_embeds: NDArray) -> Tuple[float, float]:
|
| 165 |
cosine_scores = cosine_similarity(pred_embeds, ref_embeds)
|
| 166 |
precision_per_sentence_sim = np.max(cosine_scores, axis=-1)
|
|
|
|
| 168 |
return np.mean(precision_per_sentence_sim).item(), np.mean(recall_per_sentence_sim).item()
|
| 169 |
|
| 170 |
|
| 171 |
+
def _get_gpu(gpu: Union[bool, int]) -> Union[str, int]:
|
| 172 |
+
# Ensure gpu index is within the range of total available gpus
|
| 173 |
+
gpu_available = torch.cuda.is_available()
|
| 174 |
+
if gpu_available:
|
| 175 |
+
gpu_count = torch.cuda.device_count()
|
| 176 |
+
if isinstance(gpu, int) and gpu >= gpu_count:
|
| 177 |
+
raise ValueError(
|
| 178 |
+
f"There are {gpu_count} gpus available. Provide the correct gpu index. You provided: {gpu}"
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
# get the device
|
| 182 |
+
if gpu is False:
|
| 183 |
+
device = "cpu"
|
| 184 |
+
elif gpu is True and gpu_available:
|
| 185 |
+
device = 0 # by default run on device 0
|
| 186 |
+
elif isinstance(gpu, int):
|
| 187 |
+
device = gpu
|
| 188 |
+
else: # This will never happen
|
| 189 |
+
raise ValueError(f"gpu must be bool or int. Provided value: {gpu}")
|
| 190 |
+
|
| 191 |
+
return device
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _validate_input_format(
|
| 195 |
+
tokenize_sentences: bool,
|
| 196 |
+
multi_references: bool,
|
| 197 |
+
predictions: _PREDICTION_TYPE,
|
| 198 |
+
references: _REFERENCE_TYPE,
|
| 199 |
+
):
|
| 200 |
+
if tokenize_sentences and multi_references:
|
| 201 |
+
condition = is_list_of_strings_at_depth(predictions, 1) and is_list_of_strings_at_depth(references, 2)
|
| 202 |
+
elif not tokenize_sentences and multi_references:
|
| 203 |
+
condition = is_list_of_strings_at_depth(predictions, 2) and is_list_of_strings_at_depth(references, 3)
|
| 204 |
+
elif tokenize_sentences and not multi_references:
|
| 205 |
+
condition = is_list_of_strings_at_depth(predictions, 1) and is_list_of_strings_at_depth(references, 1)
|
| 206 |
+
else:
|
| 207 |
+
condition = is_list_of_strings_at_depth(predictions, 2) and is_list_of_strings_at_depth(references, 2)
|
| 208 |
+
|
| 209 |
+
if not condition:
|
| 210 |
+
raise ValueError("Predictions are references are not valid input format. Refer to documentation.")
|
| 211 |
+
|
| 212 |
+
|
| 213 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 214 |
class SemF1(evaluate.Metric):
|
| 215 |
_MODEL_TYPE_TO_NAME = {
|
|
|
|
| 288 |
"""Optional: download external resources useful to compute the scores"""
|
| 289 |
import nltk
|
| 290 |
nltk.download("punkt", quiet=True)
|
| 291 |
+
# if not nltk.data.find("tokenizers/punkt"): # TODO: check why it is not working
|
| 292 |
+
# pass
|
| 293 |
|
| 294 |
|
| 295 |
def _compute(
|
|
|
|
| 298 |
references,
|
| 299 |
model_type: Optional[str] = None,
|
| 300 |
tokenize_sentences: bool = True,
|
| 301 |
+
multi_references: bool = False,
|
| 302 |
gpu: Union[bool, int] = False,
|
| 303 |
batch_size: int = 32,
|
| 304 |
+
) -> List[Scores]:
|
| 305 |
+
"""
|
| 306 |
+
Compute precision, recall, and F1 scores for given predictions and references.
|
| 307 |
+
|
| 308 |
+
:param predictions
|
| 309 |
+
:param references
|
| 310 |
+
:param model_type: Type of model to use for encoding.
|
| 311 |
+
:param tokenize_sentences: Flag to sentence tokenize the document.
|
| 312 |
+
:param multi_references: Flag to indicate multiple references.
|
| 313 |
+
:param gpu: GPU device to use.
|
| 314 |
+
:param batch_size: Batch size for encoding.
|
| 315 |
+
|
| 316 |
+
:return: List of Scores dataclass with precision, recall, and F1 scores.
|
| 317 |
+
"""
|
| 318 |
+
|
| 319 |
+
# Validate inputs corresponding to flags
|
| 320 |
+
_validate_input_format(tokenize_sentences, multi_references, predictions, references)
|
| 321 |
+
|
| 322 |
+
# Get GPU
|
| 323 |
+
device = _get_gpu(gpu)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
# Get the encoder model
|
| 326 |
model_name = self._get_model_name(model_type)
|
| 327 |
+
encoder = _get_encoder(model_name, device=device, batch_size=batch_size)
|
| 328 |
+
|
| 329 |
+
# We'll handle the single reference and multi-reference case same way. So change the data format accordingly
|
| 330 |
+
if not multi_references:
|
| 331 |
+
references = [[ref] for ref in references]
|
| 332 |
+
|
| 333 |
+
# Tokenize sentences if required
|
| 334 |
+
if tokenize_sentences:
|
| 335 |
+
predictions = [nltk.tokenize.sent_tokenize(pred) for pred in predictions]
|
| 336 |
+
references = [[nltk.tokenize.sent_tokenize(ref) for ref in refs] for refs in references]
|
| 337 |
+
|
| 338 |
+
# Flatten the data for batch processing
|
| 339 |
+
all_sentences = flatten_list(predictions) + flatten_list(references)
|
| 340 |
+
|
| 341 |
+
# Get num of sentences to get the corresponding embeddings
|
| 342 |
+
prediction_sentences_count = [len(pred) for pred in predictions]
|
| 343 |
+
reference_sentences_count = [[len(ref) for ref in refs] for refs in references]
|
| 344 |
+
|
| 345 |
+
# Note: This is the most optimal way of doing it
|
| 346 |
+
# Encode all sentences in one go
|
| 347 |
+
embeddings = encoder.encode(all_sentences)
|
| 348 |
+
|
| 349 |
+
# Get embeddings corresponding to predictions and references
|
| 350 |
+
pred_embeddings = slice_embeddings(embeddings, prediction_sentences_count)
|
| 351 |
+
ref_embeddings = slice_embeddings(embeddings[sum(prediction_sentences_count):], reference_sentences_count)
|
| 352 |
|
| 353 |
# Init output scores
|
| 354 |
+
results = []
|
|
|
|
|
|
|
| 355 |
|
| 356 |
+
# Compute scores
|
| 357 |
+
for preds, refs in zip(pred_embeddings, ref_embeddings):
|
| 358 |
+
# Precision: Concatenate all the sentences in all the references
|
| 359 |
+
concat_refs = np.concatenate(refs, axis=0)
|
| 360 |
+
precision, _ = _compute_cosine_similarity(preds, concat_refs)
|
| 361 |
+
|
| 362 |
+
# Recall: Compute individually for each reference
|
| 363 |
+
recall_scores = [_compute_cosine_similarity(r_embeds, preds) for r_embeds in refs]
|
| 364 |
+
recall_scores = [r_scores for (r_scores, _) in recall_scores]
|
| 365 |
+
|
| 366 |
+
results.append(Scores(precision, recall_scores))
|
| 367 |
+
|
| 368 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
import statistics
|
| 3 |
+
import sys
|
| 4 |
+
from typing import List, Union
|
| 5 |
+
|
| 6 |
+
from numpy.typing import NDArray
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
NumSentencesType = Union[List[int], List[List[int]]]
|
| 10 |
+
EmbeddingSlicesType = Union[List[NDArray], List[List[NDArray]]]
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def slice_embeddings(embeddings: NDArray, num_sentences: NumSentencesType) -> EmbeddingSlicesType:
|
| 14 |
+
def _slice_embeddings(s_idx: int, n_sentences: List[int]):
|
| 15 |
+
_result = []
|
| 16 |
+
for count in n_sentences:
|
| 17 |
+
_result.append(embeddings[s_idx:s_idx + count])
|
| 18 |
+
s_idx += count
|
| 19 |
+
return _result, s_idx
|
| 20 |
+
|
| 21 |
+
if isinstance(num_sentences, list) and all(isinstance(item, int) for item in num_sentences):
|
| 22 |
+
result, _ = _slice_embeddings(0, num_sentences)
|
| 23 |
+
return result
|
| 24 |
+
elif isinstance(num_sentences, list) and all(
|
| 25 |
+
isinstance(sublist, list) and all(
|
| 26 |
+
isinstance(item, int) for item in sublist
|
| 27 |
+
)
|
| 28 |
+
for sublist in num_sentences
|
| 29 |
+
):
|
| 30 |
+
nested_result = []
|
| 31 |
+
start_idx = 0
|
| 32 |
+
for nested_num_sentences in num_sentences:
|
| 33 |
+
embedding_slice, start_idx = _slice_embeddings(start_idx, nested_num_sentences)
|
| 34 |
+
nested_result.append(embedding_slice)
|
| 35 |
+
|
| 36 |
+
return nested_result
|
| 37 |
+
else:
|
| 38 |
+
raise TypeError(f"Incorrect Type for {num_sentences=}")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def is_list_of_strings_at_depth(obj, depth: int) -> bool:
|
| 42 |
+
if depth == 0:
|
| 43 |
+
return isinstance(obj, str)
|
| 44 |
+
elif depth > 0:
|
| 45 |
+
return isinstance(obj, list) and all(is_list_of_strings_at_depth(item, depth - 1) for item in obj)
|
| 46 |
+
else:
|
| 47 |
+
raise ValueError("Depth can't be negative")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def flatten_list(nested_list: list) -> list:
|
| 51 |
+
"""
|
| 52 |
+
Recursively flattens a nested list of any depth.
|
| 53 |
+
|
| 54 |
+
Parameters:
|
| 55 |
+
nested_list (list): The nested list to flatten.
|
| 56 |
+
|
| 57 |
+
Returns:
|
| 58 |
+
list: A flat list containing all the elements of the nested list.
|
| 59 |
+
"""
|
| 60 |
+
flat_list = []
|
| 61 |
+
for item in nested_list:
|
| 62 |
+
if isinstance(item, list):
|
| 63 |
+
flat_list.extend(flatten_list(item))
|
| 64 |
+
else:
|
| 65 |
+
flat_list.append(item)
|
| 66 |
+
return flat_list
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def compute_f1(p: float, r: float, eps=sys.float_info.epsilon) -> float:
|
| 70 |
+
"""
|
| 71 |
+
Computes F1 value
|
| 72 |
+
:param p: Precision Value
|
| 73 |
+
:param r: Recall Value
|
| 74 |
+
:param eps: Epsilon Value
|
| 75 |
+
:return:
|
| 76 |
+
"""
|
| 77 |
+
f1 = 2 * p * r / (p + r + eps)
|
| 78 |
+
return f1
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
@dataclass
|
| 82 |
+
class Scores:
|
| 83 |
+
precision: float
|
| 84 |
+
recall: List[float]
|
| 85 |
+
|
| 86 |
+
def __post_init__(self):
|
| 87 |
+
self.f1: float = compute_f1(self.precision, statistics.fmean(self.recall))
|