File size: 12,109 Bytes
963ae98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
# Unified AI Services
A comprehensive AI platform that integrates Named Entity Recognition (NER), Optical Character Recognition (OCR), and Retrieval-Augmented Generation (RAG) services into a unified application.
## π Features
### Core Services
- **NER Service** (Port 8500): Advanced named entity recognition with relationship extraction
- **OCR Service** (Port 8400): Document processing with Azure Document Intelligence
- **RAG Service** (Port 8401): Vector search and document retrieval
- **Unified App** (Port 8000): Coordinated workflows and service management
### Key Capabilities
- β
Multi-language support (Thai + English)
- β
Complex relationship extraction
- β
Entity deduplication
- β
Graph database exports (Neo4j, GraphML, GEXF)
- β
Vector search with semantic similarity
- β
Document processing (PDF, images, text)
- β
Real-time service health monitoring
- β
Unified workflows combining all services
- β
Comprehensive API documentation
## π Quick Start
### Prerequisites
- Python 3.8 or higher
- PostgreSQL with vector extension support
- Azure OpenAI account
- Azure Document Intelligence account
- DeepSeek API account (for advanced NER)
### Automated Setup
1. **Clone and navigate to the project directory**
```bash
cd unified-ai-services
```
2. **Run the automated setup**
```bash
python setup.py
```
This will:
- Check your Python environment
- Create necessary directories
- Help you configure .env file
- Install dependencies
- Validate configuration
- Create startup scripts
3. **Start the unified application**
```bash
python app.py
```
Or use the generated scripts:
- Windows: `start_services.bat`
- Unix/Linux/Mac: `./start_services.sh`
4. **Run comprehensive tests**
```bash
python test_unified.py
```
Or use the generated scripts:
- Windows: `run_tests.bat`
- Unix/Linux/Mac: `./run_tests.sh`
### Manual Setup
If you prefer manual setup:
1. **Install dependencies**
```bash
pip install -r requirements.txt
```
2. **Create .env file** (copy from .env.example)
```bash
cp .env.example .env
# Edit .env with your configuration
```
3. **Set up directories**
```bash
mkdir -p services exports logs temp tests data
```
4. **Place service files in the services directory**
```
services/
βββ ner_service.py
βββ ocr_service.py
βββ rag_service.py
```
## π Project Structure
```
unified-ai-services/
βββ app.py # Main unified application
βββ configs.py # Centralized configuration
βββ setup.py # Automated setup script
βββ requirements.txt # Python dependencies
βββ test_unified.py # Comprehensive test suite
βββ .env # Environment configuration
βββ services/ # Individual service files
β βββ ner_service.py # NER service implementation
β βββ ocr_service.py # OCR service implementation
β βββ rag_service.py # RAG service implementation
βββ exports/ # Generated export files
βββ logs/ # Application logs
βββ temp/ # Temporary files
βββ tests/ # Additional test files
βββ data/ # Data files
```
## βοΈ Configuration
### Environment Variables
The system uses a `.env` file for configuration. Key variables include:
#### Server Configuration
```bash
HOST=0.0.0.0
DEBUG=True
MAIN_PORT=8000
NER_PORT=8500
OCR_PORT=8400
RAG_PORT=8401
```
#### Database Configuration
```bash
POSTGRES_HOST=your-postgres-server.com
POSTGRES_PORT=5432
POSTGRES_USER=your-username
POSTGRES_PASSWORD=your-password
POSTGRES_DATABASE=postgres
```
#### Azure OpenAI Configuration
```bash
AZURE_OPENAI_ENDPOINT=https://your-openai.openai.azure.com/
AZURE_OPENAI_API_KEY=your-api-key
EMBEDDING_MODEL=text-embedding-3-large
```
#### DeepSeek Configuration
```bash
DEEPSEEK_ENDPOINT=https://your-deepseek-endpoint/
DEEPSEEK_API_KEY=your-deepseek-key
DEEPSEEK_MODEL=DeepSeek-R1-0528
```
#### Azure Document Intelligence Configuration
```bash
AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT=https://your-di.cognitiveservices.azure.com/
AZURE_DOCUMENT_INTELLIGENCE_KEY=your-di-key
```
#### Azure Storage Configuration
```bash
AZURE_STORAGE_ACCOUNT_URL=https://yourstorage.blob.core.windows.net/
AZURE_BLOB_SAS_TOKEN=your-sas-token
BLOB_CONTAINER=historylog
```
## π§ API Documentation
Once running, access the interactive API documentation:
- **Unified API**: http://localhost:8000/docs
- **NER Service**: http://localhost:8500/docs
- **OCR Service**: http://localhost:8400/docs
- **RAG Service**: http://localhost:8401/docs
## π― API Usage Examples
### 1. Unified Analysis (Text + RAG Indexing)
```python
import httpx
async def unified_analysis():
data = {
"text": "Your text content here...",
"extract_relationships": True,
"include_embeddings": False,
"generate_graph_files": True,
"export_formats": ["neo4j", "json"],
"enable_rag_indexing": True,
"rag_title": "My Document",
"rag_keywords": ["keyword1", "keyword2"]
}
async with httpx.AsyncClient() as client:
response = await client.post("http://localhost:8000/analyze/unified", json=data)
return response.json()
```
### 2. Combined Search with NER Analysis
```python
async def combined_search():
data = {
"query": "search query here",
"limit": 10,
"similarity_threshold": 0.2,
"include_ner_analysis": True
}
async with httpx.AsyncClient() as client:
response = await client.post("http://localhost:8000/search/combined", json=data)
return response.json()
```
### 3. File Upload Analysis
```python
async def analyze_file():
files = {"file": ("document.pdf", open("document.pdf", "rb"), "application/pdf")}
data = {
"extract_relationships": "true",
"generate_graph_files": "true",
"export_formats": "neo4j,json"
}
async with httpx.AsyncClient() as client:
response = await client.post("http://localhost:8000/ner/analyze/file", files=files, data=data)
return response.json()
```
## π§ͺ Testing
### Comprehensive Test Suite
The project includes comprehensive tests covering:
- β
Service health checks
- β
Individual service functionality
- β
Unified workflow testing
- β
Service proxy functionality
- β
Error handling and resilience
- β
Performance testing
- β
File upload/download testing
Run tests with:
```bash
python test_unified.py
```
### Individual Service Tests
Test individual services:
```bash
# Test NER service
python test_ner.py
# Test RAG service
python test_rag.py
```
### Quick Health Check
```bash
curl http://localhost:8000/health
```
## π Monitoring and Health Checks
### Health Endpoints
- **Unified System**: `GET /health`
- **Individual Services**: `GET /ner/health`, `GET /ocr/health`, `GET /rag/health`
- **Detailed Status**: `GET /status`
- **Service Discovery**: `GET /services`
### Monitoring Features
- Real-time service health monitoring
- Response time tracking
- Service uptime monitoring
- Error rate tracking
- Resource usage monitoring
## π Service Architecture
```mermaid
graph TB
Client[Client Applications]
subgraph "Unified AI Services (Port 8000)"
UA[Unified App]
Proxy[Service Proxies]
Health[Health Monitor]
end
subgraph "Core Services"
NER[NER Service<br/>Port 8500]
OCR[OCR Service<br/>Port 8400]
RAG[RAG Service<br/>Port 8401]
end
subgraph "External Services"
Azure[Azure Services]
DeepSeek[DeepSeek API]
DB[(PostgreSQL)]
end
Client --> UA
UA --> Proxy
Proxy --> NER
Proxy --> OCR
Proxy --> RAG
NER --> Azure
NER --> DeepSeek
NER --> DB
OCR --> Azure
RAG --> Azure
RAG --> DB
RAG --> OCR
```
## π οΈ Development
### Adding New Features
1. **Service Modifications**: Update individual service files in `services/`
2. **Unified Workflows**: Modify `app.py` for new combined workflows
3. **Configuration**: Update `configs.py` for new settings
4. **Tests**: Add tests to `test_unified.py`
### Debugging
1. **Check Service Logs**: Services log to console
2. **Health Checks**: Use `/health` endpoints
3. **Configuration**: Run `python configs.py` to validate
4. **Database**: Check PostgreSQL connectivity
5. **Azure Services**: Verify API keys and endpoints
### Service Management
Start individual services for development:
```bash
# Start NER service only
cd services && python ner_service.py
# Start OCR service only
cd services && python ocr_service.py
# Start RAG service only
cd services && python rag_service.py
```
## π¨ Troubleshooting
### Common Issues
#### 1. Services Won't Start
- Check port availability: `netstat -an | grep :8000`
- Verify Python dependencies: `pip list`
- Check .env configuration: `python configs.py`
#### 2. Database Connection Issues
- Verify PostgreSQL is running
- Check connection string in .env
- Test connectivity: `python -c "import asyncpg; asyncio.run(asyncpg.connect('your-connection-string'))"`
#### 3. Azure Service Issues
- Verify API keys and endpoints
- Check Azure service status
- Review rate limits and quotas
#### 4. Performance Issues
- Monitor resource usage: `top` or Task Manager
- Check database performance
- Review log files for errors
### Error Codes
- **500**: Internal service error
- **503**: Service unavailable
- **400**: Bad request (check input data)
- **422**: Validation error
- **404**: Endpoint not found
## π Performance Optimization
### Recommended Settings
#### Production Configuration
```bash
DEBUG=False
MAX_FILE_SIZE=50
REQUEST_TIMEOUT=300
CHUNK_SIZE=1000
CHUNK_OVERLAP=200
```
#### Database Optimization
- Use connection pooling
- Configure appropriate indexes
- Monitor query performance
- Regular maintenance
#### Service Optimization
- Enable caching where appropriate
- Use async operations
- Optimize batch processing
- Monitor memory usage
## π Security Considerations
### API Security
- Implement authentication/authorization as needed
- Use HTTPS in production
- Validate all input data
- Rate limiting
### Data Security
- Secure database connections (SSL)
- Encrypt sensitive data
- Regular security updates
- Monitor access logs
### Azure Security
- Rotate API keys regularly
- Use managed identities where possible
- Monitor usage and costs
- Follow Azure security best practices
## π License
This project is licensed under the MIT License - see the LICENSE file for details.
## π€ Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Add tests for new functionality
5. Run the test suite
6. Submit a pull request
## π Support
For support and questions:
1. Check this README for common issues
2. Review the test suite for usage examples
3. Check service logs for error details
4. Verify configuration with `python configs.py`
## π― Roadmap
### Current Version (1.0.0)
- β
Unified service integration
- β
Comprehensive testing
- β
Multi-language support
- β
Graph database exports
### Future Enhancements
- π Advanced caching mechanisms
- π Enhanced monitoring and analytics
- π Additional export formats
- π Improved error recovery
- π Performance optimizations
- π Additional language support |