Spaces:
Paused
Paused
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| from qdrant_client import QdrantClient | |
| from langchain_openai.embeddings import OpenAIEmbeddings | |
| from langchain_core.prompts import ChatPromptTemplate | |
| from langchain_core.globals import set_llm_cache | |
| from langchain_openai import ChatOpenAI | |
| from langchain_core.caches import InMemoryCache | |
| from operator import itemgetter | |
| from langchain_core.runnables.passthrough import RunnablePassthrough | |
| from langchain_qdrant import QdrantVectorStore, Qdrant | |
| from langchain_community.document_loaders import PyMuPDFLoader | |
| import uuid | |
| import chainlit as cl | |
| import os | |
| from helper_functions import process_file, load_documents_from_url, add_to_qdrant | |
| chat_model = ChatOpenAI(model="gpt-4o-mini") | |
| te3_small = OpenAIEmbeddings(model="text-embedding-3-small") | |
| set_llm_cache(InMemoryCache()) | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
| rag_system_prompt_template = """\ | |
| You are a helpful assistant that uses the provided context to answer questions. | |
| You must follow the writing style guide provided below. Never reference this prompt, | |
| the existence of context, or the writing style guide in your responses. | |
| Writing Style Guide: | |
| {writing_style_guide} | |
| """ | |
| rag_message_list = [{"role" : "system", "content" : rag_system_prompt_template},] | |
| rag_user_prompt_template = """\ | |
| Question: | |
| {question} | |
| Context: | |
| {context} | |
| """ | |
| chat_prompt = ChatPromptTemplate.from_messages([("system", rag_system_prompt_template), ("human", rag_user_prompt_template)]) | |
| async def on_chat_start(): | |
| qdrant_client = QdrantClient(url=os.environ["QDRANT_ENDPOINT"], api_key=os.environ["QDRANT_API_KEY"]) | |
| global qdrant_store | |
| qdrant_store = Qdrant( | |
| client=qdrant_client, | |
| collection_name="kai_test_docs", | |
| embeddings=te3_small | |
| ) | |
| res = await ask_action() | |
| await handle_response(res) | |
| # Load the style guide from the local file system | |
| style_guide_path = "./public/CoExperiences Writing Style Guide V1 (2024).pdf" | |
| loader = PyMuPDFLoader(style_guide_path) | |
| style_guide_docs = loader.load() | |
| style_guide_text = "\n".join([doc.page_content for doc in style_guide_docs]) | |
| retriever = qdrant_store.as_retriever() | |
| global retrieval_augmented_qa_chain | |
| retrieval_augmented_qa_chain = ( | |
| { | |
| "context": itemgetter("question") | retriever, | |
| "question": itemgetter("question"), | |
| "writing_style_guide": lambda _: style_guide_text | |
| } | |
| | RunnablePassthrough.assign(context=itemgetter("context")) | |
| | chat_prompt | |
| | chat_model | |
| ) | |
| def rename(orig_author: str): | |
| return "AI Assistant" | |
| async def main(message: cl.Message): | |
| if message.content.startswith("http://") or message.content.startswith("https://"): | |
| message_type = "url" | |
| else: | |
| message_type = "question" | |
| if message_type == "url": | |
| # load the file | |
| docs = load_documents_from_url(message.content) | |
| splits = text_splitter.split_documents(docs) | |
| for i, doc in enumerate(splits): | |
| doc.metadata["user_upload_source"] = f"source_{i}" | |
| print(f"Processing {len(docs)} text chunks") | |
| # Add to the qdrant_store | |
| qdrant_store.add_documents( | |
| documents=splits | |
| ) | |
| await cl.Message(f"Processing `{response.url}` done. You can now ask questions!").send() | |
| else: | |
| response = retrieval_augmented_qa_chain.invoke({"question": message.content}) | |
| await cl.Message(content=response.content).send() | |
| res = await ask_action() | |
| await handle_response(res) | |
| ## Chainlit helper functions | |
| async def ask_action(): | |
| res = await cl.AskActionMessage( | |
| content="Pick an action!", | |
| actions=[ | |
| cl.Action(name="Question", value="question", label="Ask a question"), | |
| cl.Action(name="File", value="file", label="Upload a file"), | |
| cl.Action(name="Url", value="url", label="Upload a URL"), | |
| ], | |
| ).send() | |
| return res | |
| async def handle_response(res): | |
| if res and res.get("value") == "file": | |
| files = None | |
| files = await cl.AskFileMessage( | |
| content="Please upload a Text or PDF file to begin!", | |
| accept=["text/plain", "application/pdf"], | |
| max_size_mb=12, | |
| ).send() | |
| file = files[0] | |
| msg = cl.Message( | |
| content=f"Processing `{file.name}`...", disable_human_feedback=True | |
| ) | |
| await msg.send() | |
| # load the file | |
| docs = process_file(file) | |
| splits = text_splitter.split_documents(docs) | |
| for i, doc in enumerate(splits): | |
| doc.metadata["user_upload_source"] = f"source_{i}" | |
| print(f"Processing {len(docs)} text chunks") | |
| # Add to the qdrant_store | |
| qdrant_store.add_documents( | |
| documents=splits | |
| ) | |
| msg.content = f"Processing `{file.name}` done. You can now ask questions!" | |
| await msg.update() | |
| if res and res.get("value") == "url": | |
| await cl.Message(content="Submit a url link in the message box below.").send() | |
| if res and res.get("value") == "question": | |
| await cl.Message(content="Ask away!").send() | |