Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from gradio_pdf import PDF | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from pathlib import Path | |
| from markitdown import MarkItDown | |
| from utils import generate_answer, get_condense_kv_cache | |
| import spaces | |
| import torch | |
| MID = MarkItDown() | |
| MODEL_ID = "unsloth/Mistral-7B-Instruct-v0.2" | |
| MODEL = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to("cuda") | |
| TOKENIZER = AutoTokenizer.from_pretrained(MODEL_ID) | |
| MAX_CHARS_TO_COMPRESS = 15000 | |
| def get_model_kv_cache(context_ids): | |
| context_ids = context_ids.to("cuda") | |
| past_key_values = MODEL(context_ids, num_logits_to_keep=1).past_key_values | |
| return past_key_values | |
| def inference(question: str, doc_path: str, use_turbo=True) -> str: | |
| question = "\n\nBased on above informations, answer this question: " + question | |
| doc_md = MID.convert(doc_path) | |
| doc_text = doc_md.text_content[:20000] | |
| to_compress_doc = "<s> [INST] " + doc_text[:MAX_CHARS_TO_COMPRESS] | |
| remaining_doc_and_question_prompt = doc_text[MAX_CHARS_TO_COMPRESS:] + question + " [/INST] " | |
| prompt_ids = TOKENIZER.encode(remaining_doc_and_question_prompt, add_special_tokens=False, return_tensors="pt") | |
| context_ids = TOKENIZER.encode(to_compress_doc, add_special_tokens=False, return_tensors="pt") | |
| context_length = context_ids.shape[1] | |
| if use_turbo: | |
| print("turbo-mode-on") | |
| kv_cache = get_condense_kv_cache(to_compress_doc) | |
| kv_cache = kv_cache.to("cuda") | |
| else: | |
| print("turbo-mode-off") | |
| kv_cache = get_model_kv_cache(context_ids) | |
| print("kv-length", kv_cache.get_seq_length()) | |
| answer = generate_answer(MODEL, TOKENIZER, prompt_ids, kv_cache, context_length, 128) | |
| print(answer) | |
| return answer | |
| demo = gr.Interface( | |
| inference, | |
| [gr.Textbox(label="Question"), PDF(label="Document"), gr.Checkbox(label="Turbo Bittensor", info="Use Subnet 47 API for Prefilling")], | |
| gr.Textbox(), | |
| examples=[["What is the total gross worth?", "phi-4.pdf"]] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) |