""" Unified Articulation Analysis Service Gabungan PER-based (dengan reference) dan Clarity-based (tanpa reference) """ import torch import torchaudio import librosa import numpy as np from typing import Dict, List, Tuple, Optional import re from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from rapidfuzz import fuzz class ArticulationService: """Analisis artikulasi unified (dengan/tanpa reference text)""" def __init__(self): """Initialize Wav2Vec2 untuk phoneme recognition""" print("šŸ—£ļø Initializing Articulation Service...") # Load Wav2Vec2 Indonesian model untuk phoneme detection model_name = "indonesian-nlp/wav2vec2-indonesian-javanese-sundanese" # Set cache directory (production: /.cache, local: default) import os cache_dir = os.environ.get('HF_HOME', '/.cache') try: print(f"šŸ“¦ Loading Wav2Vec2 model: {model_name}") print(f"šŸ“ Cache directory: {cache_dir}") self.processor = Wav2Vec2Processor.from_pretrained(model_name, cache_dir=cache_dir) self.model = Wav2Vec2ForCTC.from_pretrained(model_name, cache_dir=cache_dir) self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model.to(self.device) self.model_loaded = True print(f"šŸ’» Device: {self.device}") except Exception as e: print(f"āš ļø Warning: Failed to load Wav2Vec2 model: {e}") print("āš ļø Will use fallback articulation analysis") self.model_loaded = False # Filler words bahasa Indonesia self.filler_words = [ 'eh', 'ehm', 'em', 'aa', 'ah', 'mm', 'hmm', 'anu', 'itu', 'gitu', 'kayak', 'seperti', 'ya', 'yaa', 'nah', 'terus', 'jadi', 'soalnya' ] print("āœ… Articulation Service ready!\n") def extract_audio_features(self, audio_path: str) -> Tuple[Dict, torch.Tensor, int]: """Extract fitur audio untuk analisis artikulasi""" print(f"šŸŽµ Extracting audio features from: {audio_path}") # Load audio waveform, sr = torchaudio.load(audio_path) # Convert to mono if waveform.shape[0] > 1: waveform = torch.mean(waveform, dim=0, keepdim=True) # Resample ke 16kHz jika perlu if sr != 16000: resampler = torchaudio.transforms.Resample(sr, 16000) waveform = resampler(waveform) sr = 16000 # Convert to numpy audio = waveform.squeeze().numpy() # Extract features features = { 'duration': len(audio) / sr, 'rms_energy': np.sqrt(np.mean(audio**2)), 'zero_crossing_rate': librosa.zero_crossings(audio).sum() / len(audio), 'spectral_centroid': np.mean(librosa.feature.spectral_centroid(y=audio, sr=sr)), 'spectral_rolloff': np.mean(librosa.feature.spectral_rolloff(y=audio, sr=sr)) } print(f" Duration: {features['duration']:.2f}s") print(f" RMS Energy: {features['rms_energy']:.4f}") return features, waveform, sr def analyze_phoneme_clarity(self, waveform: torch.Tensor, sr: int) -> Dict: """Analisis kejelasan phoneme menggunakan Wav2Vec2""" print("šŸ” Analyzing phoneme clarity...") if self.model is None or self.processor is None: print("āš ļø Wav2Vec2 not available, using fallback") return { 'clarity_score': 70.0, # Default score 'avg_confidence': 0.7, 'min_confidence': 0.5, 'confidence_std': 0.15, 'consistency': 0.85 } try: # Prepare input inputs = self.processor( waveform.squeeze().numpy(), sampling_rate=sr, return_tensors="pt", padding=True ) inputs = {k: v.to(self.device) for k, v in inputs.items()} # Get logits with torch.no_grad(): logits = self.model(**inputs).logits # Get confidence scores probs = torch.nn.functional.softmax(logits, dim=-1) max_probs = torch.max(probs, dim=-1).values # Calculate clarity metrics avg_confidence = torch.mean(max_probs).item() min_confidence = torch.min(max_probs).item() confidence_std = torch.std(max_probs).item() # Clarity score (0-100) clarity_score = avg_confidence * 100 print(f" Clarity Score: {clarity_score:.2f}%") print(f" Avg Confidence: {avg_confidence:.3f}") return { 'clarity_score': clarity_score, 'avg_confidence': avg_confidence, 'min_confidence': min_confidence, 'confidence_std': confidence_std, 'consistency': 1 - confidence_std } except Exception as e: print(f"āš ļø Error in phoneme clarity analysis: {e}") return { 'clarity_score': 70.0, 'avg_confidence': 0.7, 'min_confidence': 0.5, 'confidence_std': 0.15, 'consistency': 0.85 } def detect_filler_words(self, transcript: str) -> Dict: """Deteksi kata-kata pengisi (filler words)""" print("šŸ”Ž Detecting filler words...") # Split by whitespace to preserve original form words = transcript.split() total_words = len(words) if total_words == 0: return { 'filler_count': 0, 'filler_words_found': [] } # Count filler words using fuzzy matching + exact match for short words filler_found = [] filler_count = 0 for word in words: # Clean word for checking (lowercase, remove punctuation) clean_word = re.sub(r'[^\w\s]', '', word.lower()) # Skip empty words if not clean_word: continue is_filler = False # For short words (2-3 chars), use exact match to avoid false positives if len(clean_word) <= 3: if clean_word in self.filler_words: is_filler = True else: # For longer words, use fuzzy matching with 90% threshold for filler_word in self.filler_words: similarity = fuzz.ratio(clean_word, filler_word) if similarity >= 90: # 90% threshold untuk presisi lebih tinggi is_filler = True break if is_filler: filler_count += 1 # Keep original word form (with punctuation like 'ehm...') if word not in filler_found: filler_found.append(word) # Calculate filler ratio filler_ratio = filler_count / total_words if total_words > 0 else 0 print(f" Filler Words: {filler_count}/{total_words} ({filler_ratio*100:.1f}%)") if filler_found: print(f" Found: {', '.join(filler_found)}") return { 'filler_count': filler_count, 'filler_ratio': filler_ratio, 'filler_words_found': filler_found } def analyze_speech_rate_stability(self, audio_path: str) -> Dict: """Analisis kestabilan kecepatan bicara""" print("šŸ“Š Analyzing speech rate stability...") try: # Load audio y, sr = librosa.load(audio_path, sr=16000) # Detect onsets (segment boundaries) onset_frames = librosa.onset.onset_detect(y=y, sr=sr, units='frames') onset_times = librosa.frames_to_time(onset_frames, sr=sr) if len(onset_times) < 2: print(" āš ļø Not enough onsets detected") return { 'stability_score': 50.0, 'avg_syllable_rate': 0, 'rate_std': 0 } # Calculate inter-onset intervals (IOI) ioi = np.diff(onset_times) # Speech rate metrics avg_rate = 1 / np.mean(ioi) if len(ioi) > 0 else 0 rate_std = np.std(ioi) if len(ioi) > 0 else 0 # Stability score (semakin rendah std, semakin stabil) stability_score = max(0, 100 - (rate_std * 100)) print(f" Stability Score: {stability_score:.2f}%") print(f" Syllable Rate: {avg_rate:.2f}/s") return { 'stability_score': stability_score, 'avg_syllable_rate': avg_rate, 'rate_std': rate_std, 'onset_count': len(onset_times) } except Exception as e: print(f"āš ļø Error in stability analysis: {e}") return { 'stability_score': 60.0, 'avg_syllable_rate': 0, 'rate_std': 0 } def calculate_per(self, reference: str, hypothesis: str) -> float: """ Calculate Phoneme Error Rate (word-level approximation) Using Levenshtein distance """ ref_words = reference.lower().split() hyp_words = hypothesis.lower().split() m, n = len(ref_words), len(hyp_words) # Dynamic programming for edit distance dp = [[0] * (n + 1) for _ in range(m + 1)] for i in range(m + 1): dp[i][0] = i for j in range(n + 1): dp[0][j] = j for i in range(1, m + 1): for j in range(1, n + 1): if ref_words[i-1] == hyp_words[j-1]: dp[i][j] = dp[i-1][j-1] else: dp[i][j] = 1 + min( dp[i-1][j], # deletion dp[i][j-1], # insertion dp[i-1][j-1] # substitution ) errors = dp[m][n] per = (errors / m * 100) if m > 0 else 0 return per def calculate_overall_score( self, clarity: Dict, filler: Dict, stability: Dict, features: Dict, per: Optional[float] = None ) -> Dict: """Hitung skor keseluruhan artikulasi""" print("\nšŸŽÆ Calculating overall articulation score...") # Clarity score (0-100) clarity_score = clarity['clarity_score'] # Filler score (0-100, semakin sedikit filler semakin baik) filler_score = max(0, 100 - (filler['filler_ratio'] * 200)) # Stability score (0-100) stability_score = stability['stability_score'] # Energy score (normalized RMS energy) energy_score = min(100, features['rms_energy'] * 1000) if per is not None: # Mode 1: WITH REFERENCE - PER based # Weight untuk dengan reference weights = { 'per': 0.4, # 40% - PER adalah gold standard 'clarity': 0.3, # 30% - Kejelasan phoneme 'stability': 0.2, # 20% - Kestabilan tempo 'energy': 0.1 # 10% - Energi/volume bicara } # PER score (lower is better, invert to 0-100 scale) per_score = max(0, 100 - per) # Weighted average total_score = ( per_score * weights['per'] + clarity_score * weights['clarity'] + stability_score * weights['stability'] + energy_score * weights['energy'] ) # Convert to 1-5 scale score_5 = int(np.clip(total_score / 20, 1, 5)) # Category if score_5 >= 5: category = "Sempurna" reason = f"PER sangat rendah ({per:.1f}%), artikulasi sangat jelas" elif score_5 >= 4: category = "Baik" reason = f"PER rendah ({per:.1f}%), artikulasi jelas" elif score_5 >= 3: category = "Cukup" reason = f"PER sedang ({per:.1f}%), artikulasi cukup jelas" elif score_5 >= 2: category = "Kurang" reason = f"PER tinggi ({per:.1f}%), banyak kesalahan pengucapan" else: category = "Buruk" reason = f"PER sangat tinggi ({per:.1f}%), artikulasi tidak jelas" print(f"\nšŸ“Š Score Breakdown (WITH REFERENCE):") print(f" PER: {per:.1f}% → Score: {per_score:.1f}% (weight: {weights['per']*100:.0f}%)") print(f" Clarity: {clarity_score:.1f}% (weight: {weights['clarity']*100:.0f}%)") print(f" Stability: {stability_score:.1f}% (weight: {weights['stability']*100:.0f}%)") print(f" Energy: {energy_score:.1f}% (weight: {weights['energy']*100:.0f}%)") print(f" TOTAL: {total_score:.1f}% → {score_5}/5") return { 'score': score_5, 'category': category, 'reason': reason, 'mode': 'with_reference', 'details': { 'per': round(per, 2), 'per_score': round(per_score, 2), 'clarity_score': round(clarity_score, 2), 'stability_score': round(stability_score, 2), 'energy_score': round(energy_score, 2), 'total_score': round(total_score, 2) } } else: # Mode 2: WITHOUT REFERENCE - Clarity based # Weight untuk tanpa reference (TANPA filler component) weights = { 'clarity': 0.5, # 50% - Kejelasan phoneme paling penting 'stability': 0.3, # 30% - Kestabilan tempo 'energy': 0.2 # 20% - Energi/volume bicara } # Weighted average total_score = ( clarity_score * weights['clarity'] + stability_score * weights['stability'] + energy_score * weights['energy'] ) # Convert to 1-5 scale based on percentage ranges # 81-100% = 5, 61-80% = 4, 41-60% = 3, 21-40% = 2, 0-20% = 1 if total_score >= 81: score_5 = 5 category = "Sempurna" reason = f"Artikulasi sangat jelas ({total_score:.1f}%) dan konsisten" elif total_score >= 61: score_5 = 4 category = "Baik" reason = f"Artikulasi jelas ({total_score:.1f}%) dengan tempo stabil" elif total_score >= 41: score_5 = 3 category = "Cukup" reason = f"Artikulasi cukup jelas ({total_score:.1f}%), ada sedikit variasi tempo" elif total_score >= 21: score_5 = 2 category = "Kurang" reason = f"Artikulasi kurang jelas ({total_score:.1f}%), tempo tidak stabil" else: score_5 = 1 category = "Buruk" reason = f"Artikulasi tidak jelas ({total_score:.1f}%) dan sulit dipahami" print(f"\nšŸ“Š Score Breakdown (WITHOUT REFERENCE):") print(f" Clarity: {clarity_score:.1f}% (weight: {weights['clarity']*100:.0f}%)") print(f" Stability: {stability_score:.1f}% (weight: {weights['stability']*100:.0f}%)") print(f" Energy: {energy_score:.1f}% (weight: {weights['energy']*100:.0f}%)") print(f" TOTAL: {total_score:.1f}% → {score_5}/5") return { 'score': score_5, 'category': category, 'reason': reason, 'mode': 'without_reference', 'details': { 'clarity_score': round(clarity_score, 2), 'stability_score': round(stability_score, 2), 'energy_score': round(energy_score, 2), 'total_score': round(total_score, 2) } } def analyze(self, audio_path: str, transcript: str, reference_text: Optional[str] = None) -> Dict: """ Analisis artikulasi unified (auto-detect mode) Args: audio_path: Path ke file audio transcript: Hasil transcription reference_text: Text reference (optional, jika ada gunakan PER mode) Returns: Dict hasil analisis artikulasi """ print("\n" + "="*60) if reference_text and reference_text.strip(): print("šŸ—£ļø ARTICULATION ANALYSIS (WITH REFERENCE)") mode_desc = "PER-based" else: print("šŸ—£ļø ARTICULATION ANALYSIS (WITHOUT REFERENCE)") mode_desc = "Clarity-based" print("="*60) # Extract audio features features, waveform, sr = self.extract_audio_features(audio_path) # Analyze phoneme clarity clarity = self.analyze_phoneme_clarity(waveform, sr) # Detect filler words filler = self.detect_filler_words(transcript) # Analyze speech rate stability stability = self.analyze_speech_rate_stability(audio_path) # Calculate PER if reference provided per = None if reference_text and reference_text.strip(): print(f"\nšŸ“ Calculating PER...") per = self.calculate_per(reference_text, transcript) print(f" PER: {per:.2f}%") # Calculate overall score result = self.calculate_overall_score(clarity, filler, stability, features, per) # Add detailed metrics result['clarity_metrics'] = { 'avg_confidence': round(clarity['avg_confidence'], 3), 'consistency': round(clarity['consistency'], 3) } result['filler_count'] = filler['filler_count'] result['filler_words'] = filler['filler_words_found'] result['stability_metrics'] = { 'syllable_rate': round(stability['avg_syllable_rate'], 2), 'rate_variation': round(stability['rate_std'], 3) } if per is not None: result['metrics'] = { 'reference_words': len(reference_text.split()), 'transcript_words': len(transcript.split()), 'per': round(per, 2) } print("\nāœ… Articulation analysis complete!") print("="*60 + "\n") return result \ \ class ProfanityDetector: """Deteksi kata tidak senonoh menggunakan hybrid approach (exact + fuzzy + pattern)""" # Base profanity words (kata dasar) PROFANITY_WORDS = { 'anjir', 'anjay', 'njir', 'njay', 'anjrit', 'njrit', 'anjim', 'anjing', 'anjrot', 'asu', 'babi', 'bacot', 'bajingan', 'banci', 'bangke', 'bangor', 'bangsat', 'bego', 'bejad', 'bencong', 'bodat', 'bodoh', 'bugil', 'bundir', 'bunuh', 'burik', 'burit', 'cawek', 'cemen', 'cipok', 'cium', 'colai', 'coli', 'colmek', 'cukimai', 'cukimay', 'culun', 'cumbu', 'dancuk', 'dewasa', 'dick', 'dildo', 'encuk', 'fuck', 'gay', 'gei', 'gembel', 'gey', 'gigolo', 'gila', 'goblog', 'goblok', 'haram', 'hencet', 'hentai', 'idiot', 'jablai', 'jablay', 'jancok', 'jancuk', 'jangkik', 'jembut', 'jilat', 'jingan', 'kampang', 'keparat', 'kimak', 'kirik', 'klentit', 'klitoris', 'konthol', 'kontol', 'koplok', 'kunyuk', 'kutang', 'kutis', 'kwontol', 'lonte', 'maho', 'masturbasi', 'matane', 'mati', 'memek', 'mesum', 'modar', 'modyar', 'mokad', 'najis', 'nazi', 'ndhasmu', 'nenen', 'ngentot', 'ngolom', 'ngulum', 'nigga', 'nigger', 'onani', 'oon', 'orgasme', 'paksa', 'pantat', 'pantek', 'pecun', 'peli', 'penis', 'pentil', 'pepek', 'perek', 'perkosa', 'piatu', 'porno', 'pukimak', 'qontol', 'selangkang', 'sempak', 'senggama', 'setan', 'setubuh', 'shit', 'silet', 'silit', 'sinting', 'sodomi', 'stres', 'telanjang', 'telaso', 'tete', 'tewas', 'titit', 'togel', 'toket', 'tolol', 'tusbol', 'urin', 'vagina' } # Multi-word profanity phrases PROFANITY_PHRASES = { 'gak ada otak', 'tidak ada otak', 'ga ada otak' } # Character substitution map (leet speak) CHAR_SUBSTITUTIONS = { '0': 'o', '1': 'i', '3': 'e', '4': 'a', '5': 's', '7': 't', '8': 'b', '@': 'a', '$': 's', '*': '' } @classmethod def normalize_word(cls, word: str) -> str: """Normalize word by replacing common character substitutions""" normalized = word.lower() for char, replacement in cls.CHAR_SUBSTITUTIONS.items(): normalized = normalized.replace(char, replacement) return normalized @classmethod def detect_profanity(cls, text: str) -> dict: """ Detect profanity using hybrid approach: 1. Exact match for quick detection 2. Fuzzy match for typo variations 3. Pattern matching for character substitution (leet speak) """ text_lower = text.lower() # Extract words and normalize raw_words = re.findall(r'\w+', text_lower) found_profanity = [] profanity_count = 0 # Step 1: Check multi-word phrases first for phrase in cls.PROFANITY_PHRASES: if phrase in text_lower: profanity_count += 1 if phrase not in found_profanity: found_profanity.append(phrase) # Step 2: Check individual words for word in raw_words: is_profane = False matched_word = word # A. Exact match (fastest) if word in cls.PROFANITY_WORDS: is_profane = True # B. Normalize and check (handle leet speak: t0l0l → tolol) elif len(word) > 0: normalized = cls.normalize_word(word) if normalized in cls.PROFANITY_WORDS: is_profane = True matched_word = normalized # C. Fuzzy match for typo variations (anjiir, anjiirr, etc.) if not is_profane and len(word) > 3: for profane_word in cls.PROFANITY_WORDS: # Only compare words with similar length (±3 chars) if abs(len(word) - len(profane_word)) <= 3: similarity = fuzz.ratio(word, profane_word) if similarity >= 85: # 85% threshold for profanity is_profane = True matched_word = profane_word break if is_profane: profanity_count += 1 # Keep original word if not already in list if word not in found_profanity: found_profanity.append(word) return { 'has_profanity': len(found_profanity) > 0, 'profanity_count': profanity_count, 'profanity_words': list(set(found_profanity)) }