Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,230 Bytes
4aa23ee 78c30f0 4aa23ee dbc8e33 056938d dbc8e33 78c30f0 797d38d 4aa23ee 78c30f0 dbc8e33 4aa23ee 7aaa8a4 4aa23ee 7aaa8a4 4aa23ee 797d38d dbc8e33 797d38d c5cdcf3 797d38d 4aa23ee 78c30f0 4aa23ee dbc8e33 c5cdcf3 78c30f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# =======================================
# ENTRY POINT - HUGGINGFACE SPACES
# Vocal Articulation Assessment v2.0
# =======================================
import os
import logging
import gradio as gr
# Suppress Starlette warnings
logging.getLogger("starlette").setLevel(logging.ERROR)
logging.getLogger("uvicorn").setLevel(logging.ERROR)
from app.interface import create_interface, initialize_model
from app.api_gradio import create_api_interface
if __name__ == '__main__':
print('Starting Vocal Articulation Assessment System v2.0...')
# Initialize model once at startup (prevents double-run issue)
print('Preloading Whisper model...')
initialize_model()
print('Model preloaded successfully!')
# Create UI and API interfaces
ui_demo = create_interface()
api_demo = create_api_interface()
# Combine both interfaces with tabs
demo = gr.TabbedInterface(
[ui_demo, api_demo],
["🎤 Assessment UI", "📡 JSON API"],
title="Vocal Articulation System v2.0"
)
# Launch
demo.launch(
server_name='0.0.0.0',
server_port=7860,
share=False,
show_error=False,
max_threads=40,
quiet=True
) |